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Improving Estimates of Abundance by
Aggregating Sparse Capture-Recapture Data

Andrea R. LITT and Robert J. STEIDL

Inferences about abundance often are based on unadjusted counts of individuals
observed, in part, because of the large amount of data required to generate reliable esti-
mates of abundance. Where capture-recapture data are sparse, aggregating data across
multiple sample elements by pooling species, locations, and sampling periods increases
the information available for modeling detection probability, a necessary step for esti-
mating abundance reliably. The process of aggregating sample elements involves bal-
ancing trade-offs related to the number of aggregated elements; although larger aggre-
gates increase the amount of information available for estimation, they often require
more complex models. We describe a heuristic approach for aggregating data for stud-
ies with multiple sample elements, use simulated data to evaluate the efficacy of ag-
gregation, and illustrate the approach using data from a field study. Aggregating data
systematically improved reliability of model selection and increased accuracy of abun-
dance estimates while still providing estimates of abundance for each original sample
unit, an important benefit necessary to maintain the design and sampling structure of a
study. Within the framework of capture-recapture sampling, aggregating data improves
estimates of abundance and increases the reliability of subsequent inferences made from
sparse data. Additional tables and datasets may be found in the online supplements.

Key Words: Abundance estimation; Data aggregation; Mark-recapture; Program
CAPTURE; Program MARK; Population parameters.

1. INTRODUCTION

Many ecological studies seek to make inferences about changes in population size over
space, across time, or in response to experimental manipulations, and often base these in-
ferences on counts of organisms that have not been adjusted for imperfect and varying
detection probability. During a survey, many factors make it unlikely that all individuals
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will be detected without error. Consequently, the ability to draw reliable inferences from
counts depends on accounting for individuals not observed. The growing literature on es-
timating population parameters emphasizes the fundamental need to account for imperfect
detectability to make inferences reliable (reviews in Seber 1982, 1986, 1992; Schwarz and
Seber 1999).

For methods based on capture-recapture sampling, the framework and tools for mod-
eling detection probability have become increasingly powerful and sophisticated. Within
this framework, researchers ideally would generate estimates of abundance by modeling
variation in detection probability for each species, sample plot, and sampling period in a
study. Choosing an appropriate model for detection probability as the basis for generat-
ing estimates of abundance, however, requires a large amount of data (Otis et al. 1978;
Rosenberg, Overton, and Anthony 1995). Therefore, even when sampling effort is high,
these data demands may be impossible to meet when population sizes are naturally small
or detectability is low (e.g., McKelvey and Pearson 2001; Bowden et al. 2003; MacKenzie
et al. 2005).

When data are insufficient to reliably choose a model for detection probability for each
species, sample plot, and sampling period, studies often rely on unadjusted counts or enu-
meration statistics, such as the number of unique individuals captured or the total number
of captures, to draw inferences about relative differences in abundance over space or time
(McKelvey and Pearson 2001). This approach has been vigorously criticized because it
assumes detection probabilities are equal among groups being compared, an assumption
that is likely to be met only in rare circumstances (Nichols 1992; MacKenzie and Kendall
2002). Further, variation in detection probability among species makes interspecific and
community-scale comparisons based on unadjusted counts unreliable (Nichols 1986).

At least three methods have been used commonly to overcome the high data require-
ments for estimation procedures. One method is to choose a single model for detection
probability that is then applied to all sample units (e.g., Rosenberg, Swindle, and Anthony
2003). A second solution is to use traditional hypothesis tests (Skalski, Robson, and Sim-
mons 1983) or equivalence tests (MacKenzie and Kendall 2002) to assess the assumption
of equal detection probability to justify the use of unadjusted counts. A third method is
to estimate detection probability for a spatial or temporal subset of sample units where
data are sufficient and use these estimates of detection probability to generate estimates of
abundance for the remaining sample units (e.g., Lynam et al. 2009). With sparse data, how-
ever, there may be little information with which to rigorously evaluate the reliability of any
of these alternatives. Consequently, metrics with lower data requirements than abundance
estimation, such as occupancy or species richness, have increased in popularity (MacKen-
zie et al. 2005). If study objectives dictate inferences based on abundance, however, these
metrics may not be suitable alternatives.

When abundance is the parameter of interest and data are sparse, an additional solution
is to aggregate or pool data to increase the information available to generate estimates of
abundance that have been adjusted for detection probability. Initial approaches to aggrega-
tion focused on simplifying the sampling structure within which the data were collected by
pooling data across capture occasions, sites, or sampling periods in ways such that elements
of the original sample structure were lost (e.g., Hargrove and Borland 1994). Contempo-
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rary approaches to aggregation, such as we describe here, result in no loss of information
or structure and use all available data as part of the aggregation process (Boyce et al. 2001;
Bowden et al. 2003; MacKenzie et al. 2005; White 2005; Conn et al. 2006).

Although aggregating data from multiple sample units is a common practice by experts
in population analysis and some basic information is available on the process (Burnham
and Anderson 2002; MacKenzie et al. 2005; White 2005; Conn et al. 2006), our goal is to
encourage increased use of data aggregation in practice by providing a clear, synthetic de-
scription of the process and making these methods accessible to a wider range of ecologists.
Therefore, we describe a heuristic approach that uses biological and empirical information
to guide the aggregation process for studies based on capture-recapture sampling. We de-
velop a general framework for aggregation, use simulated data to examine its efficacy, and
illustrate the approach with field data.

2. OVERVIEW OF DATA AGGREGATION

Data aggregation involves assembling data from multiple sample units or “elements”
into a single dataset to increase the information available for selecting an appropriate model
for detection probability as the basis for estimating abundance. Elements to consider for
aggregation will vary by study, but might include data collected from the same sample
unit over time, from multiple sample units over space, from multiple species (MacKenzie
et al. 2005; White 2005), or even data from different studies, especially for rare species.
Aggregating data from multiple sample elements assumes that one model can be used ef-
fectively to describe the different processes driving variation in detection probability for
all elements in the aggregate. In studies where data arise from a complex set of sample
elements, the decision as to how best to aggregate data for estimation involves consider-
ing trade-offs related to the size of the aggregate. In general, larger aggregates are more
likely to combine sample elements that vary with respect to the processes that drive de-
tection probability (e.g., heterogeneity, behavior, time). More complex models and larger
datasets (i.e., more individuals) are needed to describe multiple detection processes and to
represent the more complex sampling structure of the elements combined (e.g., species,
seasons, plots) in larger aggregates. In contrast, in smaller aggregates sample elements are
likely to be more homogeneous with respect to detection processes and have simpler sam-
pling structures, requiring simpler models for detection probability and, correspondingly,
less data. Therefore, the process of aggregating data should seek to balance the benefits of
increased information available in larger aggregates with the increased complexity result-
ing from combining sample elements with disparate detection processes and more complex
sampling structures. For studies with many sample elements where several potential aggre-
gates are possible, we suggest that the process of aggregation should begin by considering
biological information as the basis for refining the set of potential aggregates, using avail-
able data to explore the complexity of processes driving detection probability in potential
aggregates, and using model-selection procedures to choose among candidate models for
detectability.
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2.1. CONSIDER BIOLOGICAL INFORMATION

Decisions about which sample elements to aggregate should begin by considering bio-
logical information about the species, environmental variation, and sampling structure of
the study to help narrow the range of possible aggregates (Alldredge et al. 2007) and re-
duce the complexity and number of candidate models (Figure 1). Biological information to
consider should include life-history attributes of a species that could affect the processes
driving variation in detection probability, such as whether the species is known to respond
behaviorally to trapping or whether the processes might be expected to vary seasonally
or during periods of reproductive activity. For example, if one species responds behav-
iorally to trapping and another species displays temporal variation in detection probabil-
ity, a simple model may not accurately describe variation in detection probability for both
species. Aggregating elements with many different detection processes may bias estimates,
the magnitude of which will depend in part on the robustness of the estimator.

To illustrate this issue with a simple example, we created two datasets, each represent-
ing a population with true abundance of 100 sampled in a single survey with five sampling
occasions. In one set, detection probability changed behaviorally in response to trapping
(probability of initial capture = 0.2, probability of recapture = 0.6, {p(·), c(·)}, Table 1)
and in the other set it changed temporally (probability of capture on day 1 = 0.2 increasing
by 0.1 each subsequent day, {p(t) = c(t)}). We aggregated data from these two heteroge-
neous sample elements and when we estimated abundance using a model with temporal
variation in detection probability ({p(t) = c(t)}), the estimate for the element with be-

Figure 1. Decision tree for the process of aggregating data from multiple sampling elements.
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Table 1. Notation used for general models of detection probability.

Processes driving variation in Otis et al. (1978)
detection probability notation Expanded notation

Constant (null) Mo {p(·) = c(·)}
Behavioral response Mb {p(·), c(·)}
Heterogeneity Mh {pa(·) = ca(·), pb(·) = cb(·),π}
Temporal Mh {p(t) = c(t)}
Behavioral response, heterogeneity Mbh {pa(·), ca(·),pb(·), cb(·),π}
Temporal, heterogeneity Mth {pa(t) = ca(t),pb(t) = cb(t),π}
Temporal, behavioral response Mtb {p(t), c(t)}
Temporal, behavioral, heterogeneity Mtbh {pa(t), ca(t),pb(t), cb(t),π}

NOTE: Expanded notation describes model parameters: p = probability of capture, c = probability of recapture,
and π = probability of belonging to a subgroup of animals (mixture) that has homogeneous detection probability.
Probability of capture and recapture may be constant (·) or may vary over time (t ), be based on a behavioral
response to trapping (b, p �= c), or vary among heterogeneous mixtures (h, two mixtures denoted by a and b). In
subsequent tables, if recapture parameters (c) are not specified, then p = c.

havioral variation was negatively biased by 33%, whereas the estimate for the element
with temporal variation was positively biased by 5%. The estimator for temporal variation
in detection probability is not robust to variation due to behavioral responses to trapping
(Otis et al. 1978), demonstrating the potential pitfalls of aggregating across elements where
detection probability is heterogeneous and that these elements might be better modeled
independently. Although a more complex model that included both temporal and behav-
ioral variation could be used to model detection probability for these aggregated elements
({p(t), c(t)}), modeling complex aggregates requires considerably larger datasets. As such,
considering biological characteristics of sample elements can reduce complexity and po-
tential biases associated with aggregating disparate elements.

2.2. MODEL DETECTION PROBABILITY

When the number of elements to aggregate and the number of candidate models re-
main large after biological information has been considered, fitting simple “general” mod-
els that describe the basic processes driving detection probability (Table 1) to individual
sample elements that are data rich can help to further reduce the number of potential ag-
gregates and candidate models (Table 1, Figure 1). If similar models emerge for individual
elements, then it seems reasonable to aggregate these elements. For example, if similar
models emerge regardless of season, aggregation across seasons should be effective and
introduce little complexity to the aggregate. In contrast, if many different models emerge
for elements sampled in different seasons, modeling these potentially disparate elements
within a single aggregate will require a more complex model and larger datasets, suggest-
ing that aggregating across seasons may be less effective than creating separate aggregated
datasets for each season to reduce model complexity. Ideally, information used to assess
the appropriateness of different aggregates would be gleaned from the current study; how-
ever, previous studies might also help to guide the process. This step should be considered
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exploratory, as these smaller datasets may not be sufficient to identify reliably complex
variation in detection processes.

After establishing aggregates, the set of candidate models that will be used to model
detection probability for the aggregated data are developed. Starting with simple general
models that describe the basic processes driving detection probability (Table 1), classifica-
tion variables or covariates that represent the structure of the sample elements combined
in the aggregate are incorporated into models. These “flexible” models can be created
by denoting each aggregated element as a unique “group” in the input dataset containing
capture histories, building design matrices to identify the structure of the individual sam-
ple elements, and incorporating additive or multiplicative terms to constrain variables and
effectively create a wide range of related flexible models. As such, values for detection
probability can be allowed to vary for individual elements or sets of elements in the ag-
gregate. The process of starting with a general model then adding parameters to increase
model flexibility for capture-recapture data is analogous to selecting a key function then
incorporating a series expansion within the context of distance sampling (Buckland et al.
1993); that is, adding parameters increases the ability of the model to describe variation
inherent in the data.

The number and complexity of flexible models can increase quickly as the number of
elements aggregated and the number of classification variables increase, which can easily
require hundreds of parameters. For example, fitting a model with both temporal variation
and heterogeneity in detection probability for data with five capture occasions requires as
many as 11 parameters for just one sample element ({pa(t) = ca(t),pb(t) = cb(t),π}). For
an aggregate that includes data for one species from five plots sampled in three seasons,
the fully multiplicative time and heterogeneity model for these 15 sample elements re-
quires 165 parameters ({pa(t ∗season∗plot) = ca(t ∗season∗plot),pb(t ∗season∗plot) =
cb(t ∗ season ∗ plot),π}). Thus, using biological information to refine the aggregate and
candidate model set is necessary to ensure that the number of models, the number of model
parameters, and the size of design matrices remain manageable. In addition, detecting very
complex patterns of variation in detection processes require rich datasets (Anderson, Burn-
ham, and White 1994). Once the set of candidate flexible models has been refined and fit,
support for these models can be assessed within an information-theoretic framework (Fig-
ure 1).

2.3. GENERATE ESTIMATES

Estimates of abundance could be generated based on the flexible model with the most
support (e.g., smallest AICc) or averaged across competing models to account for uncer-
tainty in model selection (Burnham and Anderson 2002). Because aggregated elements are
identified uniquely as groups within the input dataset, unique estimates of abundance can
be generated for each sample element (Figure 1) as data are pooled only for the purposes
of improving estimates. These element-specific estimates can be used within a hypothesis-
testing framework to address questions about treatment effects because the experimental
units and design structure for randomized experiments has been retained and traditional
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estimates of experimental error can be used as a basis for inference. Although other ap-
proaches also could be used to answer these questions, a frequentist approach offers ad-
vantages within the context of randomized, replicated designs (Burnham and Anderson
2002).

3. EFFICACY OF AGGREGATING

3.1. SIMULATION METHODS

We used simulations to explore consequences of aggregating data for two challenges
associated with sparse data: choosing an appropriate model for detection probability and
generating accurate estimates. Simulated survey data were based on five trapping occa-
sions, a duration common for small mammal studies (McKelvey and Pearson 2001). We
created aggregates that included three sample elements that could represent multiple sur-
veys of the same sample unit or three sample units surveyed simultaneously, for example.

We manipulated three factors in simulations: (1) the true flexible model used to gen-
erate the data, (2) overall detection probability, and (3) true abundance (N ) of the en-
tire aggregate. We modeled three types of variation in detection probability to represent a
range of detection processes: heterogeneity, behavioral response, and temporal variation.
For simulated data with heterogeneity, we established two groups of equal size (π = 0.5),
each with different detection probabilities (Appendix 1). For simulated data with a be-
havioral response, we set recapture probability to be higher than the probability of initial
capture, a trap-happy response (Appendix 2). For simulated data with temporal variation,
we set detection probability to be lowest on the first occasion, slightly higher and con-
stant on the second through fourth sampling occasions, and highest on the fifth occasion
(Appendix 3), a scenario that might reflect studies where trapping begins without a pre-
baiting period. We explored different flexible models to generate data where detection
probability among elements in the aggregate was (1) constant (e.g., {p(t) = c(t)}), (2) var-
ied additively (e.g., {p(t + group) = c(t + group)}), and (3) varied multiplicatively (e.g.,
{p(t ∗ group) = c(t ∗ group)}). We examined two levels of detection probability (low and
high, Appendices 1–3) and six values of true abundance for the entire aggregate (60, 150,
300, 600, 1200, or 1500 individuals), with true abundance varying among the three el-
ements (each element was 1/3, 1/6, 1/2 of the total true abundance) in the aggregate.
The resulting aggregate size (number of individuals captured) was a function of true abun-
dance of the aggregate and detection probability. We considered all levels of factors in
all combinations, yielding 84 sets of simulations, and used the identity link function to
establish parameter values for generating models.

For each combination of factors, we used the Huggins closed-capture simulation plat-
form in Program MARK (version 5.1, White and Burnham 1999) to generate 1000 datasets.
To assess the consequences of aggregation on model fitting and estimation, for each
dataset we generated an estimate of abundance for each element based on four types of
models of detection probability: (1) the generating model used to create the data (e.g.,
{p(t +group) = c(t +group)}), (2) other flexible models based on the same general model
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(e.g., {p(t) = c(t)}, {p(t ∗ group) = c(t ∗ group)}), (3) flexible models with constant de-
tection probability, as they are likely to emerge with sparse data and because they are rela-
tively robust to temporal variation in detection probability (Otis et al. 1978) ({p(·) = c(·)},
{p(· + group) = c(· + group)}), and (4) other flexible models incorrectly specifying varia-
tion in detection probability (e.g., based on general models with heterogeneity and behav-
ior for generating models with temporal variation). We fit a total of nine candidate models
(Table 2) to each set of simulated data and used the logit link function for estimation.

For each dataset, we generated a list of competing models (defined as �AICc ≤ 2) and
estimates of abundance for each of the three aggregated elements. To determine how aggre-
gation affected selection of an appropriate model, we computed the percentage of times the
true generating model was among the list of competing models for all datasets. To deter-
mine how aggregation affected bias of estimates, we computed the average absolute value
of percent relative bias (PRB) of abundance estimates for each element in the aggregate for
all competing models. To determine how aggregation affected precision of estimates, we
computed the interquartile range (IQR) for PRB.

3.2. SIMULATION RESULTS AND DISCUSSION

As true abundance of the aggregate and detection probability increased, the frequency
with which the generating model was chosen increased (Table 2). When generating mod-
els included heterogeneity (e.g., {pa(·),pb(·),π}), other models were selected more often
than the true model unless aggregate size was large (Table 2). Further, if the generating
model was complex (e.g., included multiplicative effects), both true abundance and de-
tection probability had to be large before the generating model was selected consistently
(Table 2), especially when the generating model included heterogeneity in detection proba-
bility. When generating models included heterogeneity and capture probabilities were low,
generating models were never selected most often, regardless of the aggregate size. In-
stead, simpler models with constant detection probabilities ({p(·) = c(·)}, {p(· + group) =
c(· + group)}) were selected most frequently (Table 2).

As expected, estimates of abundance were relatively consistent and unbiased when es-
timated with the correct model; as aggregate size increased, precision increased and bias
decreased (Table 3). Even when estimates were generated with competing models other
than the true model, estimates were usually consistent and reasonably unbiased (Table 3).
The exception was when both true abundance and detection probability were low and a
competing model incorrectly included behavioral variation, when estimates were more
variable and had higher bias (Table 3). When generating models included heterogeneity,
estimates from the true model had lower precision and higher bias than estimates from
competing models (Table 3). In almost all circumstances, however, aggregating data im-
proved accuracy of estimates by improving selection of an appropriate model, especially
when detection probabilities were high. Even when based on competing models rather than
the generating model, estimates usually provided acceptable accuracy, which is important
given that for real data the “true” model is unknown.

Note that we only evaluated aggregates that included sample elements subject to the
same general detection process; the efficacy of aggregating sample elements with different
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Table 3. Bias (average absolute value of percent relative bias) and precision (interquartile range for percent rel-
ative bias) for estimates from the true generating model and from all competing, but incorrect, models
for simulated datasets.

Bias (%) Precision (%)

Detection True Competing True Competing
True model probability N model models model models

{pa(·),pb(·),π} Low 60 17 15 22 20
150 26 10 18 13
600 15 5 10 6

1500 12 5 7 4

High 60 15 6 10 9
150 9 4 8 5
600 5 4 4 3

1500 2 14 3 5

{pa(· ∗ group),pb(· ∗ group),π} Low 60 28 16 26 22
150 20 13 24 16
600 15 8 9 9

1500 12 6 7 6

High 60 18 7 10 10
150 11 5 8 7
600 9 3 5 4

1500 7 3 4 3

{p(·), c(·)} Low 60 40 22 44 19
150 17 24 25 14
600 7 21 12 20

1500 5 13 8 20

High 60 10 16 15 14
150 6 14 9 13
600 3 5 5 8

1500 2 3 3 5

{p(· + group), c(· + group)} Low 60 58 30 52 33
150 42 24 39 27
600 23 22 19 23

1500 15 22 13 25

High 60 23 12 21 17
150 12 9 12 16
600 5 12 6 10

1500 3 * 4 *

{p(t ∗ group)} Low 60 13 34 19 33
150 8 24 11 24
600 4 6 6 7

1500 2 3 4 4

High 60 4 8 5 8
150 3 4 4 5
600 1 1 2 2

1500 1 1 1 1

{p(t)} Low 60 10 41 17 43
150 7 41 11 48
600 3 8 5 9

1500 2 3 3 5
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Table 3. (Continued.)

Bias (%) Precision (%)

Detection True Competing True Competing
True model probability N model models model models

{p(t)} High 60 4 10 6 11
150 2 6 4 7
600 1 1 2 2

1500 1 1 1 1

{p(t + group)} Low 60 18 42 19 38
150 9 39 12 37
600 4 5 6 6

1500 3 3 4 4

High 60 4 14 4 10
150 3 11 4 7
600 1 1 2 2

1500 1 1 1 1

{p(t ∗ group)} Low 60 13 34 19 33
150 8 24 11 24
600 4 6 6 7

1500 2 3 4 4

High 60 4 8 5 8
150 3 4 4 5
600 1 1 2 2

1500 1 1 1 1

NOTE: Detection probabilities are provided in Appendices 1–3. We show complete results for N = 60, 150, 300,
600, 1200, and 1500 in Appendix 5. ∗ = no competing models.

detection processes will vary, in part, with complexity of the aggregate, amount of data
available, and robustness of individual estimators. Therefore, during the design phase of
a study, all efforts should be made to increase capture success (e.g., prebaiting, using a
sufficient number of traps with appropriate spacing), as accuracy of model selection and
the resulting estimates increase appreciably as detection probability increases.

4. CASE STUDY

4.1. FIELD METHODS

To illustrate the process of data aggregation, we explored data collected to quantify how
abundance of small mammal populations varied in response to differences in dominance
of nonnative grass cover and prescribed fire. Data were a subset from a larger study (Litt
2007) collected between spring 2000 and winter 2002 in grasslands of southern Arizona
on 27 study plots established in areas with three levels of nonnative grass: (1) dominated
by nonnative grass (nonnative), (2) dominated by native grass (native), and (3) a mixture of
native and nonnative grasses (mixed), with nine plots established at each level. Plots were
randomly assigned to one of three fire treatments: (1) no fire, (2) fire in spring 2001, or
(3) fire in summer 2001.
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We trapped small mammals for five consecutive nights during sampling periods in
spring, summer, and winter each year. We used an 8 × 8 grid of Sherman live traps on each
plot and marked individuals uniquely. Because richness of small mammals in this grassland
community is high (24 species) and trapping grids relatively small, we rarely had sufficient
data to reliably choose models to estimate abundance by species, plot, and sampling period,
even for the most common species. Because we wanted to generate plot-specific estimates
of abundance to examine treatment effects from this replicated experiment, we aggregated
data to facilitate choosing models to generate estimates of abundance.

4.2. CASE STUDY RESULTS AND DISCUSSION

4.2.1. Considering Biological Information

We considered potential aggregates based on data pooled across species (24 total
species), sampling seasons (winter, spring, summer), sampling years (2000–2002), veg-
etation composition (nonnative, mixed, native), and fire treatments (no fire, spring fire,
summer fire). A single aggregated dataset that combined all of these elements would in-
clude 3,888 different sample elements. Consequently, we first considered biological and
empirical information as a basis to restrict candidate aggregates and refine the set of can-
didate models (Figure 1).

The 24 species in 12 genera that we captured offered multiple potential aggregates. We
restricted potential aggregates to species within the same genus, assuming that variation
in detection probability was more likely to be driven by the same processes for congeners
than noncongeners. This reduced the number of sample elements in the aggregate for the
genus Perognathus, for example, with two species, to 324 elements. To evaluate whether
variation in detection probability seemed to be driven by similar processes, we first consid-
ered variation in morphology and behavior. For the two species of Perognathus, P. flavus
(silky pocket mouse) and P. hispidus (hispid pocket mouse), P. flavus averaged 7.5 g total
mass (SE = 0.05, n = 1297) and 56.9 mm body length (SE = 0.12), whereas P. hispidus
averaged 33.3 g (SE = 0.28, n = 1418) and 96.8 mm (SE = 0.33). Individual P. flavus were
captured on fewer occasions per sampling period (mean = 1.6 occasions, SE = 0.4) than
P. hispidus (mean = 2.6, SE = 0.4). P. hispidus also enters torpor during winter, emerg-
ing only on particularly warm days, a pattern we did not observe with P. flavus. Although
detection processes for landbirds surveyed with point-count methods can be similar (All-
dredge et al. 2007), detection processes for small mammals can vary widely among species
(Hammond and Anthony 2006). This difference suggests that aggregating data across small
mammal species will usually require fitting complex models. Given that these biological
differences between species were likely to affect patterns of detection, we did not aggre-
gate data across species in the same genus to simplify models for aggregates. Instead, we
considered a separate aggregated dataset for each species, which reduced the number of
sample elements in each aggregate to 162.

We also considered torpor in P. hispidus as a reason not to aggregate across sampling
seasons as major seasonal differences in activity could result in different processes driving
variation in detection probability. For example, detectability for P. hispidus may vary daily
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with variation in temperature during winter, where a temporal model of detection probabil-
ity might be most appropriate. This model might be less appropriate in other seasons when
these animals are consistently active, more detectable, and somewhat trap-happy. We chose
to apply the same aggregation strategy for all species; therefore, if a level of aggregation
was not supported for some species or circumstances, we rejected that level for all species.
As such, we considered a separate aggregated dataset for each species and each season,
reducing the number of elements in each aggregate to 54.

We could not envision a biological reason why the process driving variation in detection
probability would differ among years for a given season or vary with the amount of non-
native grass, therefore, for each species we aggregated data over years and over levels of
vegetation composition. Because we were interested in comparing changes in abundance
in response to prescribed fire treatments, we also considered aggregating over fire season.
By including plots that received different fire treatments in the same aggregate, we avoided
confounding potential biases due to model choice with any treatment effects. Therefore,
we created aggregated datasets for each species and season that included multiple sam-
pling years, all levels of vegetation composition, and all fire treatments.

4.2.2. Modeling Detection Probability

Although 54 aggregated elements and the resulting candidate models seemed relatively
reasonable, we explored support for this candidate aggregate empirically, using the rich-
est datasets from potential elements—plots or sets of plots that received the same treat-
ment and were sampled at the same time. For P. flavus, we considered eight datasets, each
with 45–101 captured individuals (Table 4). These datasets represented all sampling years
(5 datasets for 2000, 2 for 2001, and 2 for 2002), all categories of vegetation composition
(5 datasets for native, 2 for mixed, and 1 for nonnative), but only unburned areas. We used
these data to explore eight general models for detection probability (Table 1) and gauged
consistency in the set of competing models (�AICc ≤ 2) for datasets from different years,
vegetation composition categories, or fire treatments (Table 4). A general model with tem-
poral variation was among competing models for 7 of 8 datasets and was the model with

Table 4. Competing general models (�AICc ≤ 2) and number of individuals captured (Mt+1) for individual
datasets for Perognathus flavus.

Data set Season Year Vegetation Mt+1 Competing models

1 Spring 2000 Mixed 45 {p(·), c(·)}, {p(·)}, {p(t)}
2 Winter 2002 Native 45 {p(t)}
3 Summer 2000 Nonnative 46 {p(·)}, {pa(·),pb(·),π}, {p(·), c(·)}
4 Spring 2001 Native 48 {p(·)}, {p(t)}
5 Summer 2001 Native 61 {p(t)}
6 Summer 2000 Native 87 {pa(·),pb(·),π}, {p(t)}
7 Spring 2000 Native 97 {p(t)}
8 Summer 2000 Mixed 101 {p(t)}, {pa(t),pb(t),π}

NOTE: Datasets included sets of plots sampled at the same time and that received the same treatment. Competing
general models are listed in order of increasing AICc value.
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the lowest AICc value for 4 of 8 datasets (Table 4). For years, a model with temporal varia-

tion was among competing models for all three years, suggesting that variation in detection

probability might be driven by similar processes. For vegetation, temporal variation in de-

tection probability was clearly evident in two of three categories and suggestive for the

third (within 2.5 of the smallest AICc) (Table 4, dataset 3), again suggesting that a single

process would likely be reasonable to describe variation in detection probability, regard-

less of vegetation composition. As such, the empirical information we considered seemed

to support the level of aggregation suggested based on biological information.

Ultimately, we created three aggregated datasets for each species, one each for winter,

spring, and summer sampling seasons, and used these to generate estimates of abundance,

which we illustrate for P. flavus during summer. Each aggregate was comprised of 27 in-

dividual plots sampled in each of two years, resulting in 54 aggregated elements, each

element identified as a unique group in the input dataset. We considered seven general

models (first seven models in Table 1) and constructed associated flexible models that in-

corporated both additive and multiplicative terms to represent aggregated elements (sam-

pling year, vegetation composition, application of fire, and fire season; examples provided

in Appendix 6). We created design matrices in Program MARK that incorporated classifi-

cation variables to identify aggregated elements and built models by constraining specific

variables in the design matrix (Appendix 6).

4.2.3. Generating Estimates

After fitting all candidate models, there were several competing models, all of which

were based on two general models, one with heterogeneity and temporal variation and the

other with temporal variation only (Table 5). All competing models indicated that detection

probability varied with differences in vegetation composition. Because there was support

for several flexible models, we generated model-averaged estimates of abundance to pro-

vide estimates of abundance for the original sample elements in the aggregate (Table 6).

Table 5. Flexible models (shown where AICc weight ≥ 0.01) used to generate model-averaged estimates of
abundance for the aggregate of plots sampled in summer for Perognathus flavus (Mt+1 = 319).

AICc No.
Flexible model �AICc weight parameters

{pa(t + veg + yr),pb(t + veg + yr),π} 0.00 0.37 17
{pa(t + veg),pb(t + veg),π} 0.82 0.25 15
{p(t ∗ veg)} 1.58 0.17 15
{pa(t + veg + yr + burn),pb(t + veg + yr + burn),π} 3.07 0.08 19
{pa(t + veg + burn),pb(t + veg + burn),π} 3.19 0.08 17
{pa(t + veg + burn + fireseas),pb(t + veg + burn + fireseas),π} 5.45 0.02 19
{pa(t + veg + yr + burn + fireseas),pb(t + veg + yr + burn + fireseas),π} 5.80 0.02 21
{p(t ∗ yr)} 8.28 0.01 10
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Table 6. Total number of individuals captured and model-averaged estimates of abundance for aggregated data
for Perognathus flavus. We show a subset of 10 of 54 plots in the aggregate of plots sampled in summer.

Aggregated data

Plot Mt+1 N̂ SE

1 23 32.6 4.3
2 1 1.4 0.8
3 17 24.1 3.6
4 5 9.1 2.9
5 4 7.2 2.6
6 5 9.1 2.9
7 0 0.0 0.0
8 5 8.7 2.8
9 10 17.4 4.4

10 13 18.4 3.1

5. DISCUSSION

Ecological studies of vertebrates based on capture-recapture approaches often fail to
generate sufficient data to estimate abundance reliably at the level of individual sample
units, for all sampling periods, and for all species of interest (McKelvey and Pearson 2001).
In our case study, for example, sampling effort was 51,840 trap nights that resulted in the
capture of nearly 5,600 individual small mammals, and the larger study (Litt 2007) in-
cluded approximately 210,000 trap nights and over 11,000 individuals. Nonetheless, for
many species, reliably selecting a model to estimate abundance at the level of the individ-
ual plot was impossible. Even for common species, data occasionally were sparse for some
plots and sampling periods. Aggregating data increased the ability to account for variation
in detection probability, allowing for more reliable estimates of abundance and subsequent
inferences compared to unadjusted counts. Because the quality of results from aggregat-
ing depends on how well the model used for estimation captures the various processes
driving variation in detection probability within the aggregate, using biological and empir-
ical information to evaluate the potential variation in an aggregate is an essential step in
the aggregation process.

Larger pools of information provide more precise estimates of detection probability and
abundance (Burnham and Anderson 2002; White 2005) if the model used for estimation
describes well the range of processes driving variation in detection probability in the aggre-
gate. With sparse data, the “true” underlying detection processes may not be represented
among competing models, however, reasonable estimates can still be generated (Anderson
et al. 1994). We found that estimates generated from competing but misspecified mod-
els generally were comparable to those from the true model, indicating an increased de-
gree of robustness gained through data aggregation (Table 3). Although estimates from
aggregated datasets may not be completely unbiased, they likely will be less biased than
results based on unadjusted counts (White 2005). Further, model-averaged estimates ac-
count for uncertainty in the model-selection process when data do not clearly support a
single model (Burnham and Anderson 2002). Capabilities in estimation software, such as
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Program MARK, allow more realistic, flexible, and complex models to be built, improving
considerably on previous alternatives, especially with sparse data.

Hierarchical Bayesian models provide an alternative approach to inform the aggrega-
tion process we described. This framework offers the ability to accommodate the same
types of complexity we considered when evaluating models for aggregates, but it can also
incorporate random effects and explicit structures for addressing parameter and model un-
certainty (Congdon 2003; Clark 2005; Clark and LaDeau 2006). The approach involves
building a model for pooled data by identifying and modeling hierarchical relationships
among aggregated elements without the need to identify precisely the underlying processes
or factors that might be influencing detection probability. When it is reasonable to assume
similar relationships among different elements, such as for multiple sites sampled over
time or space, information can be shared to improve estimation procedures (e.g., Congdon
2003; Kéry and Royle 2008) much like the approach we describe. Resources for applying
Bayesian tools in ecology have been increasing rapidly (Clark 2005; Clark and Gelfand
2006; McCarthy 2007; Kéry and Royle 2008).

Data aggregation provides a promising alternative for capture-recapture studies with
sparse data and is almost certainly a better strategy than relying on unadjusted counts or
a single estimator to make comparisons and draw inferences. Increasing sample sizes by
aggregating improves the ability to model variation in detection probability, ultimately re-
ducing bias and increasing precision of parameter estimates regardless of the sampling
framework. With more information, a model for estimation can be selected that describes
variation in detection probability that is reliably grounded in data and provides estimates
with higher precision (MacKenzie et al. 2005). Increased reliability of species-specific es-
timates also provides a better foundation for interspecific or community-wide comparisons
that are inadvisable with unadjusted count data (Nichols 1986). Further, data are aggregated
only to choose among models for detection probability, as unique estimates of abundance
are generated for each element in the aggregate, which offers the advantage of retaining
individual experimental units for analysis of replicated experiments. Because of these ad-
vantages, data aggregation can improve the reliability of ecological inferences in a wide
variety of sampling circumstances.

SUPPLEMENTAL MATERIAL

Datasets: Datasets used in this article are available as supplemental material online.
(13253_2009_17_MOESM1_ESM.pdf)
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