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Introduction

For organ segmentation, different methods can be adopted, 
ranging from manual to automated methods, each with 
advantages and disadvantages whereof. The artificial intelli-
gence (AI), if used, might contribute to the integration of the 
advantages of both methods. Through AI, the precision of 
manual segmentation, which was not possible in traditional 
automated methods, can be achieved, along with a less erro-
neous iterative machine function. AI-created MRI images 
of the organ segmentation is a wide-ranging, controversial, 
and burgeoning research work. The automated segmenta-
tions could be used for dosimetry and attenuation correction 
purposes in nuclear medicine, assisted image interpreta-
tions, and research-oriented mass image processing [1–5].

The AI used previously for classification purposes [3, 4] 
cannot be employed for segmentation, and the denoted seg-
mentation scripts are not sophisticated enough to delineate 
the boundaries of many organs, such as the liver and embed-
ded tumors. Currently, deep learning (DL) is the optimal AI 
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Abstract
Segmentation of organs and lesions could be employed for the express purpose of dosimetry in nuclear medicine, assisted 
image interpretations, and mass image processing studies. Deep leaning created liver and liver lesion segmentation on 
clinical 3D MRI data has not been fully addressed in previous experiments. To this end, the required data were collected 
from 128 patients, including their T1w and T2w MRI images, and ground truth labels of the liver and liver lesions were 
generated. The collection of 110 T1w-T2w MRI image sets was divided, with 94 designated for training and 16 for vali-
dation. Furthermore, 18 more datasets were separately allocated for use as hold-out test datasets. The T1w and T2w MRI 
images were preprocessed into a two-channel format so that they were used as inputs to the deep learning model based on 
the Isensee 2017 network. To calculate the final Dice coefficient of the network performance on test datasets, the binary 
average of T1w and T2w predicted images was used. The deep learning model could segment all 18 test cases, with an 
average Dice coefficient of 88% for the liver and 53% for the liver tumor. Liver segmentation was carried out with rather 
a high accuracy; this could be achieved for liver dosimetry during systemic or selective radiation therapies as well as 
for attenuation correction in PET/MRI scanners. Nevertheless, the delineation of liver lesions was not optimal; therefore, 
tumor detection was not practical by the proposed method on clinical data.
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technology for segmentation. DL has been previously used 
for liver segmentation and the detection of liver tumors 
in CT scans [6, 7]; nevertheless, such an application has 
not been sufficiently employed for segmentation on MRI 
images (Table 1). There are some studies wherein 2D MRI 
image slices [8, 9] and machine learning [10, 11] are used. 
Yet three-dimensional imaging data shows more potential 
for correct assessment of liver tumors and also enjoys more 
features for improved segmentation.

One of the less studied organs is the liver. Liver lesions, 
although very common, are also among the most difficult 
tumors for segmentation as it is challenging to isolate lesions 
from the normal liver parenchyma, even for experienced 
radiologists using single imaging sequences (i.e., T1w or 
T2w). However, the interpreter can examine different image 
sequences, scroll up and down the images, and even search 
for previous imaging data and clinical history of the patient. 
It is believed that this procedure can be learned by AI using 
DL for segmentation of the liver and extracting liver lesions. 
Considering aforementioned obstacles, efficient AI segmen-
tation of the liver and liver lesions on T1 and T2 weighted 
MRI images is not widely documented, in contrast to simi-
lar experiments for CT images (Table 1).

This study’s key contributions are its application of deep 
learning techniques for the precise segmentation of both 
liver and liver lesions in 3D T1w and T2w MRI images, 
using a specialized dataset for this dual analysis. The net-
work used in this study, established and applied for seg-
mentation purposes, had not previously been utilized for 
segmenting liver and liver lesions. Given the network’s 
proven efficacy in brain tumor segmentation, its successful 
application in training for organ and tumor segmentation 
would highlight its versatility for such tasks. The utiliza-
tion of actual noisy clinical MRI data in the current study 
is unique which underscores real word DL organ segmen-
tation strengths and drawbacks. The study results enhance 
segmentation accuracy in 3D clinical MRI and set a new 
precedent for DL in the detailed examination and differen-
tiation of liver and liver lesions.

Materials and methods

A brief visual representation of the procedures of the current 
study is illustrated in Fig. 1.

Table 1 Previous approaches to Segmentation of liver using deep learning
Ref First author 

surname
Title Network Goal Data Result

1  [1] Tang, X., 
et al.

Whole liver segmentation based on deep learning and 
manual adjustment for clinical use in SIRT.

Multi-scale 
CNN

Liver 
segmentation

CT DSC 
median = 94% 
(for liver 
segmentation)

2  [6] Hu, P., et al. Automatic 3D liver segmentation based on deep learning 
and globally optimized surface evolution

3D deep CNN Liver 
segmentation

CT DSC 
mean = 97%

3  [7] Dou, Q., 
et al.

3D deeply supervised network for automatic liver segmen-
tation from CT volumes

3D deeply 
supervised 
network

Liver 
segmentation

CT VOE = 5.4%

4  [13] Ahmad, M., 
et al.

Convolutional-neural-network-based feature extraction for 
liver segmentation from CT images

CNN Liver 
segmentation

CT DSC 
mean = 95.4%

5  [14] Ahmad, M., 
et al.

Deep-stacked auto encoder for liver segmentation. In 
Advances in Image and Graphics Technologies: 12th 
Chinese conference

Deep stacked 
auto-encoder

Liver 
segmentation

CT DSC = 90.1%

6  [15] Ahmad, M., 
et al.

Deep Belief Network Modeling for Automatic Liver 
Segmentation

Deep belief 
network

Liver 
segmentation

CT DSC = 94.8%

7  [16] Ahmad, M., 
et al.

A Lightweight Convolutional Neural Network Model for 
Liver Segmentation in Medical Diagnosis

Gaussian-weight 
initialization 
CNN

Liver 
segmentation

CT DSC = 95.0%

8  [8] Jansen, 
M.J., et al.

Liver segmentation and metastases detection in MR images 
using convolutional neural networks.

CNN Liver seg-
mentation and 
metastasis 
detection

MRI DSC 
median = 95%

9  [11] Wang, K., 
et al.

Automated CT and MRI liver segmentation and biometry 
using a generalized convolutional neural network.

2D U-Net CNN Liver 
segmentation

CT 
and 
MRI

DSC 
mean = 94%

10  [10] Masoumi, 
H., et al.

Automatic liver segmentation in MRI images using an 
iterative watershed algorithm and artificial neural network.

Combined 
neural network 
and watershed 
algorithm

2D liver 
segmentation

MRI Accu-
racy = 94%

Dice Similarity Coefficient (DSC); Convolutional Neural Network (CNN); Volumetric Overlap Error (VOE)
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Data preparation

Patients

A total of 128 patients were included in the current study 
from the liver transplantation and general surgery wards of 
Imam Khomeini Hospital Complex (IKHC), affiliated to 
Tehran University of Medical Sciences, Tehran, Iran. Hold-
ing to the guidelines established by the Ethics Committee of 
Imam Khomeini Hospital, the anonymity of the images used 
in the current study was guaranteed. The MRI images of the 

livers were collected from the picture archiving and com-
munication system (PACS). Imaging was carried out using 
MAGNETOM Trio, which is a 3T total imaging matrix 
(Tim) eco system (Siemens, Germany), and GE Optima 
MR360 Advance 1.5T system (GE Healthcare, USA) with a 
standard imaging protocol including axial and coronal T2w, 
axial T1w images.

Out of 128 patients, 110 were randomly allocated to the 
model training data and 18 to the hold-out test group. In 
training data, 20% (n = 16) of the subjects were randomly 
allocated to the validation group, while the rest were 

Fig. 1 The visual representation of the method
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them for normalization of both training and test datasets. 
The outcome values were in the range of [-1, 1].

The common field of view of medical images contains 
a black area around the body contour. Initial experiments 
indicated that it would yield better results if the black parts 
of the images around the body are cropped. For the segmen-
tation of lesions, we opted not to use the segmented liver 
but rather the original cropped MRI images as the input for 
the deep learning model. This approach is consistent with 
the method we used for training the model in liver segmen-
tation. The reason is that if the liver masks were used for 
liver lesion segmentations, large liver lesions would not be 
extracted efficiently due to the position of tumor at the edge 
of image.

In the next step, data augmentation was performed. Gen-
erally, a network with a small training sample tends to over 
fit. Data augmentation was applied to avoid over fitting. 
Data augmentation was carried out in two parts: (1) real data 
augmentation of flip and 90-degree rotations, augmenting 
the original datasets (16 times), non-90-degree random rota-
tion, distort elastic, scale, and random noise; (2) the second 
part of data augmentation comprised data augmentation in 
an “on-the-fly” mode in the generator module to speed up 
the process and compensate for memory limitations.

Finally, we employed ‘white sampling’ a technique 
where the area of interest is specifically targeted for train-
ing, for lesion segmentation. In the process of liver segmen-
tation, most areas of the image show a mask value of one, 
illustrated as a white area, because the liver comprises the 
major part of trans-axial images. Therefore, the segmenta-
tion process was performed without the need for additional 
modification. In contrast to liver segmentation, in lesion seg-
mentation, only a small portion of the image is attributed to 
the lesion, and most of the image is black outside the lesion. 
Moreover, the position of lesions in the liver varies from 
one image to another. As a result, we used a method known 
as random white sampling for training, which focuses on 
the areas surrounding random values that are equal to one.

Model architecture

The TensorFlow library in Python v3.7 was used for this 
purpose. The employed DL model throughout this paper is 
the one developed by Isensee in 2017, which is referenced 
as “Isensee 2017.” This model is grounded in a U-Net-based 
architecture and was specifically designed and used for 
segmentation purposes. At its core, the network employs a 
convolutional neural network (CNN) framework, originally 
proposed for the brain tumor segmentation challenge known 
as BraTS [17]. The goal of BraTS is to develop a state-of-
the-art method for tumor segmentation by providing a large 
dataset of annotated low-grade gliomas and high-grade 

allocated to the training cohort. Liver segmentation was car-
ried out for 77 cases on both T1w and T2w sequences. Liver 
lesions were segmented in both T1w and T2w sequences 
across 75 cases, with 42 of these cases overlapping in both 
liver and lesion segmentation categories. The test group 
included 18 patients with 9 liver tumors and 9 patients with-
out liver tumors.

Segmentation

The segmentation of the liver and liver lesions was semi-
automatically carried out using a 3D Slicer v4.10.0 on 
T1w- and T2w MRI images, separately, to create the 
training ground truth. Masks for the images were created 
separately for both T1w and T2w sequences, for liver and 
tumor-labeled ground truths, and were saved as 3D NIfTI 
images. A value of 1 was assigned to the target regions of 
each image.

Pre-processing procedures

The variation in voxel sizes among MRI images necessitated 
the registration of voxel sizes for different images. To inte-
grate different voxel sizes, the geometry-based registration 
of 3D Slicer software was used to resize images, by chang-
ing the voxel size into a common voxel size of 1.48 mm, 
1.48 mm, 4 mm. The results ensure the input images are all 
of the same size, which is essential for deep learning models 
to function properly.

Normalization with the N4 bias field algorithm [12] was 
carried out in Python v3.7 to handle the heterogeneity of 
low-frequency data. Next, T1w and T2w images of the liver 
and lesion masks, with substantial misalignment of T1w 
and T2w images, were aligned by a Python code to match 
together. Liver ground truth masks were utilized separately 
for T1w and T2w images. To this end, it was crucial to 
identify the optimal shift to properly align these two sets 
of images. A score was established to gauge the degree of 
alignment between two shifted images. Various shift values 
were then explored to determine which one would maxi-
mize this alignment score. More precisely, the score is the 
result of “And” between two masks after shift. If two shifts 
yield the same score, the smaller of the two will be chosen 
for use. The final images are aligned by the best shift found. 
This process didn’t change the characteristics of the images.

Without normalization, the heterogeneity of MR data pre-
vents proper training, possibly due to the training from bias. 
The pre-processed data were loaded. The intensity of the 
voxels was normalized by subtracting data from the mean 
divided by the standard deviation. We computed a mean 
and standard deviation over all the training data and applied 
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Results

The code and weight of the trained network were uploaded 
to GitHub. Finally, the liver and lesion segmentations were 
tested on 18 cases. The average Dice coefficient for the 
binary average of T1w and T2w sequences was 88% for 
the liver and 53% for liver tumors. Diagnostic accuracy and 
statistics for the performance of the trained network for the 
test data is presented in Table 2. Nine patients without liver 
tumor were involved. However, since normal liver was not 
considered in the training, the results of segmentation were 
not optimal for them. Figures 2 and 3 illustrate loss-vali-
dation diagrams for liver and lesion segmentation training. 
Figures 4 and 5 present the segmentation results for the liver 
and liver tumors from T1w and T2w sequences, and Fig. 6 
presents the binary averages. Training with the mentioned 
specifications using the method described for either liver or 
lesion segmentation (except data preparation) continued for 
about three days. Segmentation of the liver or liver lesion 
for a never-seen-before T1w or T2w image took almost five 
minutes.

Discussion

The performance of the Isensee 2017 network for segmen-
tation of the liver was more effective than lesion segmenta-
tion. Visually, the majority of lesions were detected, despite 
failure to depict their shapes and boundaries. The roughly 
typical shape of the liver in different individuals, besides the 
large white portion of the liver on images due to the larger 
liver size compared to variable sized and shaped lesions, 
plausibly facilitates the detection of liver boundaries com-
pared to the liver lesions by the network.

Comparing other studies, the Dice score of the current 
U-net deep CNN is not optimal (88% vs. generally 94–97%; 
Table 1). The reasons for the difference can be listed as 
below:

(1) Segmentation with CT data which provides higher 
resolution is more accurate compared to segmentation using 
MRI data. Reasonably, the Dice similarity coefficients were 
higher in the studies cited in Table 1 which segmented CT 
images compared to the current study; (2) MRI data from 
low-noise public databases differ essentially from clinical 
MRI images with higher noise and uncontrolled clinical 
conditions including different image voxel sizes; and (3) 
the use of MRI and CT data together facilitates detection of 
the boundaries but reduces the clinical applicability because 
MRI and CT images are not usually available simultane-
ously. Plausibly, the study of Wang K et al. [11] employing 
both CT and MRI data had better result. The high-resolution 
CT data prevail the noisy MRI data to learn segmentation. 

glioblastomas. We employed parameters same as Isensee 
2017, and hyper parameters are as follows: optimizer: 
Adam; initial learning rate: 1e− 4; loss function: weighted 
Dice coefficient loss; activation function: sigmoid; dropout 
rate: 0.2; Batch size: 8; and number of epochs: 400. Patch 
size of 96 × 96 × 32 for liver and 64 × 64 × 32 for liver tumors 
were employed; moreover, 16 filters were implemented, the 
size of which varied across each layer. The network depth 
was set to 5; the “weighted Dice coefficient loss” was used 
as loss function.

In the final training effort, the network was trained with 
400 epochs for both liver and lesion datasets. T1w and T2w 
data of each patient were fed into the network via two chan-
nels. Training continued until the Dice coefficient calculated 
for the validation data remained constant with no increment. 
The Dice coefficient [18] was calculated based on the fol-
lowing equation:

Dice (YtrueYpred) =
2 (Ytrue ∩ Ypred)

|Ytrue| + |Ypred| + ε
 (1)

where Ytrue is the image annotation or ground truth, Ypred is 
the resulting mask (i.e., liver or lesion mask), ϵ is a small 
value added to prevent the denominator from being equal to 
zero, ∩ is an intersection, and| ⋅| determines the cardinality 
of its argument (i.e., number of non-zero elements in the 
mask). The T1 and T2 images were used via two different 
channels of CNN input to predict two different outputs: seg-
mentation for T1 images and T2 images. To quantify the 
final performance of the network, Dice coefficient for the 
hold-out test dataset was calculated using the binary aver-
age of T1w and T2w sequences.

Due to the limited size of our MRI dataset and the prefer-
ence to make the most of our labels, we adopted the strat-
egy of using the weights from liver segmentation training as 
the initial weights for tumor segmentation. This approach 
enables the model to continue learning from the point where 
it previously stopped.

The network was trained on a desktop PC (NVIDIA 2080 
Ti GPU, 32 GB RAM).

Table 2 Diagnostic accuracy and statistical analysis of the trained net-
work’s performance on the test data

Liver Liver lesions
Dice 88.0% 52.6%
Sensitivity 91.7% 55.6%
Specificity 66.7% 44.4%
PPV 84.6% 50.0%
NPV 80.0% 50.0%
Accuracy 83.3% 50.0%
PPV: Positive predictive value; NPV: Negative predictive value
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in online libraries, particularly for MRI images. The data 
of the current study could be used for this purpose in future 
studies. Furthermore, manual annotation of the liver and 
liver lesion slices is very cumbersome which was performed 
in the current work; and additionally, training, based on 3D 
datasets, requires advanced systems with more data process-
ing specifications. Essentially, comparison of the results of 
the training based on 3D MRI data with 2D datasets can-
not be performed robustly since the corresponding networks 
have a different number of parameters and a different num-
ber of convolutional layers.

A novel approach provided by the current study is that 
the original liver and lesion segmentation tasks on 3D MRI, 
applied simultaneously for T1w and T2w data, have not 
been reported for DL yet. The only available study using 
DL on MRI data for 3D liver and lesion segmentation was 
carried out by Christ et al. [19]. They reported Dice coeffi-
cients of 86% and 69% for the liver and liver lesions, respec-
tively, which are comparable with results of current study. 
While their cascaded fully convolutional neural networks 
(CFCNs) surpassed our current model in lesion detection, 
our method showed a slight advantage in liver segmenta-
tion performance. Since their CNN was trained with dif-
fusion-weighted MR (DW-MR), considering liver tumors 
better visualization in DW-MR compared to T1w and T2w 
images, their superior results is reasonable. It should be 
considered that Crist et al. trained their MRI model using a 
smaller dataset, consisting of only 31 cases.

In the current study, the Isensee 2017 network was opted 
because it is a pure 3D U-Net-based CNN, developed for 
segmentation. Comparing to the results obtained from 

(4) Few pieces of research reporting liver segmentation 
worked on a 3D MRI dataset using DL [8–11]. It should be 
noted that in real clinical scenarios, the whole (i.e. 3D) liver 
should be segmented and 2d segmentation would cause 
boundary indentations and final inaccuracies. If artificial 
intelligence is to segment the liver in real clinical applica-
tion, 3D segmentation should be targeted and the obstacles 
become solved. The reason why 2D datasets are more com-
monly employed is that the prepared 3D datasets are scant 

Fig. 3 Training loss and validation-loss of model training for liver 
lesion segmentation

 

Fig. 2 Training loss and 
validation-loss of model training 
for liver segmentation
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Fig. 5 A typical slice of original MRI (a & e), ground truth labels (b 
& f), and network-generated lesion segmentation (c & g); the upper 
row denotes T1w, and the lower row denotes T2w of same patient as 

in Fig. 3; d and h present the difference between the ground truth label 
and network prediction. The gray color (float number) in f is related to 
the registration process

 

Fig. 4 A typical slice of the original MRI (a & e), grand truth labels 
(b & f), and network-generated liver segmentation (c & g); the upper 
row denotes T1w, and the lower row denotes T2w of same patient; d 

and h present the difference between ground truth labels and network 
predictions. The gray color (float number) in f is related to the registra-
tion process
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lesion dosimetry, such a failure would negligibly change 
attenuation correction-based application for the proposed 
network.

A drawback to the current study is that the performance 
of the trained network for lesion detection on images with-
out liver lesion was ignored. In future assessments, the 
confusion of application of lesion detection algorithm to 
the images without lesion should be sought further. Further-
more, both T1w and T2w images were used; however, odds 
are that one may use one of these images, for example only 
T1w images, for the purpose of AI training. The comparison 
between the suggested applications of T1w and T2w images 
may provide further insights in future studies. Lastly, adding 
classifiers to find detection rate of tumor segmentation will 
lead to more insight on model performance.

Conclusion

In the current study, T1w and T2w 3D images were prepared 
and learned, via two channels, employing the Isensee 2017 
network. The results indicated the capability of DL to utilize 
T1w and T2w data simultaneously for each specific patient 
in order to segment the liver. Such a method can be applied 
to researches on MRI images, dosimetry, and attenuation 
correction in PET/MRI scanners in future studies.
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