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Abstract
Purpose This study aimed to assess the image characteristics of deep-learning-based image processing software (DLIP; FCT 
PixelShine, FUJIFILM, Tokyo, Japan) and compare it with filtered back projection (FBP), model-based iterative reconstruc-
tion (MBIR), and deep-learning-based reconstruction (DLR).
Methods This phantom study assessed the object-specific spatial resolution (task-based transfer function [TTF]), noise 
characteristics (noise power spectrum [NPS]), and low-contrast detectability (low-contrast object-specific contrast-to-noise 
ratio  [CNRLO]) at three different output doses (standard: 10 mGy; low: 3.9 mGy; ultralow: 2.0 mGy). The processing strength 
of  DLIPFBP with A1, A4, and A9 was compared with those of FBP, MBIR, and DLR.
Result The standard dose with high-contrast TTFs of  DLIPFBP exceeded that of FBP. Low-contrast TTFs were comparable 
to or lower than that of FBP. The NPS peak frequency (fP) of  DLIPFBP shifts to low spatial frequencies of up to 8.6% at 
ultralow doses compared to the standard FBP dose. MBIR shifted the most fP compared to FBP—a marked shift of up to 
49%.  DLIPFBP showed a  CNRLO equal to or greater than that of DLR in standard or low doses. In contrast, the  CNRLO of the 
 DLIPFBP was equal to or lower than that of the DLR in ultralow doses.
Conclusion DLIPFBP reduced image noise while maintaining a resolution similar to commercially available MBIR and DLR. 
The slight spatial frequency shift of fP in  DLIPFBP contributed to the noise texture degradation suppression. The NPS sup-
pression in the low spatial frequency range effectively improved the low-contrast detectability.
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Introduction

Owing to the increasing number of computed tomography 
(CT) units in each country and number of CT scans per unit 
population, reducing the radiation dose patients receive from 
these examinations is particularly important [1, 2]. How-
ever, reducing the radiation dose would reduce the number 
of photons reaching the detector, increase image noise, and 
consequently affect the diagnostic performance of CT [3, 

4]. Manufacturers have implemented many dose reduction 
techniques and solutions to curb the high exposure in CT [5, 
6]. For example, iterative reconstruction (IR) was developed 
to reduce the image noise while maintaining the spatial reso-
lution and contrast-to-noise ratio (CNR) [7–9].

IR is a statistical or algebraic reconstruction algorithm 
[10]. Model-based IR [MBIR] that modeled the object as 
well as the noise and scanner system in the projection data. 
Detailed principles of MBIR have been reported in previous 
studies [10, 11]. The data fidelity of MBIR is based on a for-
ward projection model that models scanner geometry, optics, 
and statistical noise characteristics [12]. However, the com-
mercial implementation of IR is not adopted by all medical 
institutions because it depends on the vendor and CT scanner 
generation. Additionally, MBIR remained installed on only 
a few machines.

Several third-party manufacturers released an image-
based universal IR system (image-based IR) that achieves 
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denoising by processing already reconstructed FBP images 
[13–15]. Image-based IR is a versatile technology that is 
independent of CT systems and vendors. Previous studies 
have shown that the image characteristics are comparable 
to hybrid IR in low-dose CT. A new deep learning-based 
universal image processing software (DLIP; FCT Pix-
elShine, FUJIFILM, Tokyo, Japan) is an image processing 
technique trained by deep learning to improve the image 
quality in low-dose CT. DLIP is as universal as image-based 
IR and is expected to denoise with natural textures because 
of deep-learning techniques. The DLIP uses deep learning 
techniques and ultralarge amounts of training pairs of noisy 
low- and high-dose images [16] and performs noise reduc-
tion on any input image regardless of the CT manufacturer. 
Other DLRs, such as AiCE and TrueFidelity (GE Health-
care, Waukesha, WI, USA) are noise reduction algorithms 
that respond to vendor-specific input images [17, 18]. DLIP 
software can be used by installing it on a three-dimensional 
image analysis workstation. It can be retrospectively applied 
to images reconstructed using any algorithm (filtered back 
projection: FBP, IR, and DLR). To the best of our knowl-
edge, no study has assessed the detailed image characteris-
tics of DLIP.

Therefore, this study aimed to assess the image charac-
teristics of DLIP and compare them with FBP, MBIR, and 
deep-learning-based reconstruction (DLR).

Methods

Phantoms

The American College of Radiology (ACR) phantom (model 
464, Gammex, Middleton Wi, USA) was placed at the center 
of gantry rotation to measure the object-specific spatial reso-
lution. The ACR phantom is 200 mm in diameter, and four 
different test object rods (bone, water, polyethylene, and 
acrylic) were embedded. Catphan 500 phantom (Phantom 
Laboratory, Salem NY, USA) with a uniform module (CTP 
486) and low-contrast module (CTP 515) was used to meas-
ure the image noise and low-contrast detectability.

Data acquisition and image reconstruction

An ultrahigh resolution CT scanner (Aquilion Precision, 
Canon Medical Systems, Tochigi, Japan) was used to 
acquire all data. Three different output dose (volume CT 
dose index  [CTDIvol]) settings were determined as 10.0, 3.9, 
and 2.0 mGy for assessing the image characteristics corre-
sponding to the image noise level. Thus, size-specific dose 
estimate according to the conversion formula from  CTDIvol 
reported by the American Association of Physicists in Med-
icine Task Group 220 [19] were 17.8, 6.9, and 3.6 mGy, 

respectively (conversion factor of 200 mm effective diameter 
of 1.78). These are referred to as standard, low, and ultralow. 
Other acquisition parameters were as follows: a tube voltage 
of 120 kV, rotation time of 0.5 s, detector configuration of 
160 × 0.25 mm, a pitch factor of 0.81, thickness of 0.25 mm, 
and an X-ray focus size of 0.6 × 0.6 mm. The field of view 
(FOV) was determined at 350 mm with 1024 × 1024 matrix. 
All images were reconstructed with FBP (FC13; standard 
soft kernel), MBIR (forward projected model-based Itera-
tive Reconstruction Solution: FIRST BODY standard), and 
DLR (Advanced Intelligent Clear-IQ Engine: AiCE BODY 
Standard). Moreover, FBP images were postprocessed with 
acquired DLIP  (DLIPFBP) The DLIP has variable processing 
strengths from A1 to A9 [20]. Here, “A” denotes “adaptive” 
and indicates a function of noise reduction strength, and 
 DLIPFBP strengths of 1, 4, and 9 were used in this study. 
It should be noted that the DLIP software used here was a 
prototype.

Object‑specific spatial resolution

The task-based transfer function (TTF) was calculated to 
measure the object-specific spatial resolution correspond-
ing to the contrast and image noise. A circular edge method 
was performed to acquire the TTF [21]. Two test rods were 
used with a CT number of approximately 955 HU (bone 
equivalent; high contrast) and 120 HU (acrylic; soft tissue 
contrast). Phantom images were prepared by subtracting the 
start image from the end image to perform an accurate align-
ment in a longitudinal direction, and it was confirmed with-
out misregistration. To ensure the accuracy of radial profile 
measurements, an accurate alignment is important for the 
circular edge method. A region of interest (ROI) was placed 
around the test rod as shown in Fig. 1. Radial profiles from 
the center coordinates of the square ROI were automatically 
acquired. A one-dimensional edge spread function from 
radial edges across a test rod was synthesized and differen-
tiated to obtain a line spread function. A total of 600 images 
(60 consecutive images × 10 times repeated acquisition) 
were acquired per scanning condition were acquired. These 
600 images were processed, and an averaged image for each 
condition was measured [22]. TTF was measured for bone 
and acrylic material using CTmeasure software [23].

Noise characteristics

The CTP 486 module (uniformity section of CATPHAN) 
was scanned to analyze the noise characteristics correspond-
ing to the spatial frequency, and the noise power spectrum 
(NPS) was calculated. A 128 × 128 square ROI was placed 
at the center of the acquired phantom images. The NPS was 
calculated using two-dimensional Fourier transform. Each 
dataset contained 60 consecutive uniform axial images 
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within the CTP486 module. The NPS was averaged from 
60 images for each dataset. The peak (fP; cycles/mm) and 
average (fA; cycles/mm) frequencies were calculated [24].

Low‑contrast detectability

Low-contrast detectability was evaluated with the CTP515 
module (low-contrast detectability section of Catphan) 
using a low-contrast object-specific contrast-to-noise ratio 
 (CNRLO) as an index that reflects the contrast of the lesion, 
noise characteristics, and the frequency components cor-
responding to the lesion size [25]. The  CNRLO could be 
calculated from the following equation, which incorpo-
rates the NPS:

where, ROIM and ROIB are CT values measured at the lesion 
and background ROI, respectively, and NPS (ū) is the NPS 
at the spatial frequency (ū). NPS (ū) represents the amount 
of noise at the spatial frequency that involves target lesion 
detection. The low-contrast signal (placed at ROIM) has a 
nominal contrast of 10 HU with a 5-mm diameter (Fig. 2). 
ū represents the spatial frequency that contributes most to 
detectability corresponding to the target lesion diameter. 
Then, NPS (ū) was calculated with a spatial frequency of 
0.105 cycles/mm obtained from the above section.

(1)CNR
LO

=
ROI

M
− ROI

B
√

NPS(u)
,

Fig. 1  Schema of the phantom image to perform the circular edge 
method. A region of interest (ROI) was arranged to acquire the edges 
of each rod. (Figure shows an ROI placed on an acrylic rod.)

Fig. 2  The low-contrast module (CTP 515) in Catphan phantom was 
used for measuring the low-contrast object-specific contrast-to-noise 
ratio. A low-contrast signal used in this study has a nominal contrast 

of ~ 10 HU (contrast level of 1.0%). The ROIs were placed at a 5 mm 
diameter object  (ROIM) and background  (ROIB)
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Subtraction image measurement for structural 
changes

Structural changes between the FBP and the corresponding 
 DLIPFBP were determined by subtracting the two images. 
Acquired ACR phantom images at the same slice location 
were subtracted between FBP and  DLIPFBP images of A1, 
A4, and A9, respectively. Subtraction images were cal-
culated from images scanned under low-dose conditions 
(3.9 mGy of  CTDIvol). The area of interest of 400   mm2 
(20 × 20 mm square) was placed at the four test rod materials 
(bone, air, polyethylene, and acrylic) enclosed in the ACR 
phantom to evaluate the slight change in CT value between 
FBP and  DLIPFBP, and the CT value was measured. CT val-
ues were measured on 10 consecutive subtraction slices at 
each DLIP strength.

Typical image processing run time

To compare the run time for image reconstruction or pro-
cessing, the times were measured for FBP, MBIR, DLR, and 
 DLIPFBP. The time was measured with a slice thickness of 
0.25 mm and FOV of 350 mm with 1,024 × 1,024 matrix. 

The run time of image processing was measured for 1000 
images for each reconstruction obtained by scanning with 
Catphan phantom. Time measurements were performed 
thrice for each method. The time of  DLIPFBP indicates the 
postprocessing only, and additional time is required to per-
form FBP reconstruction at a scanner console and transfer 
it to a workstation.

Results

Object‑specific spatial resolution

Figure 3 shows the TTF calculated using three different 
algorithms for high- and low-contrast objects. Tables 1 and 
2 summarizes the value of 50% TTF and 10% TTF. High-
contrast TTFs with the standard dose of all reconstruction 
algorithms exceeded that of FBP, with MBIR exhibiting the 
highest value. In particular, the 10% TTF of  DLIPFBP was 
improved by up to 71% compared to FBP under the ultralow-
dose condition. Low-contrast TTFs were comparable to or 
lower than that of FBP for all doses.

Fig. 3  Task transfer function (TTF) for high- and low-contrast objects (upper and lower column) with standard (a, d), low (b, e), and ultralow (c, 
f) doses, respectively. The TTF shows different trends depending on radiation dose and image reconstruction algorithms
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Noise characteristics

Figure 4 shows the NPS results, and Tables 3 and 4 shows 
the fP and fA for each reconstruction algorithm. Conspicuous 

rise-up of NPS curve were observed at low spatial frequen-
cies of < 0.1  mm−1 with  DLIPFBP in low- and ultralow-dose. 
It was thought to be due to the increase in noise from streak 
artifacts corresponding to dose reduction as described in 

Table 1  Task transfer function 
with high- and low-contrast 
objects for FBP, MBIR, and 
DLR

TTF task transfer function, FBP filtered back projection, MBIR model-based iterative reconstruction, DLR 
deep learning-based reconstruction

50% TTF, cycles/mm 10% TTF, cycles/mm

FBP MBIR DLR FBP MBIR DLR

High contrast
 Standard 0.52 0.74 0.71 1.15 1.41 1.26
 Low 0.51 0.7 0.7 1.12 1.36 1.18
 Ultra-low 0.51 0.64 0.64 1.11 1.32 1.12

Low contrast
 Standard 0.53 0.53 0.52 1.16 1.12 0.95
 Low 0.51 0.44 0.45 1.01 0.92 0.88
 Ultra-low 0.51 0.36 0.39 1.02 0.76 0.77

Table 2  Task transfer function 
with high- and low-contrast 
objects for  DLIPFBP

TTF task transfer function, A1, A4, and A9 were the processing strengths of a deep learning-based univer-
sal image processing software (FCT PixelShine, FUJIFILM, Tokyo, Japan)

50% TTF, cycles/mm 10% TTF, cycles/mm

DLIPFBP DLIPFBP

A1 A4 A9 A1 A4 A9

High contrast
 Standard 0.54 0.62 0.64 1.17 1.22 1.19
 Low 0.54 0.7 0.77 1.28 1.63 1.67
 Ultra-low 0.54 0.68 0.82 1.24 1.6 1.9

Low contrast
 Standard 0.52 0.5 0.49 1.15 1.17 1.18
 Low 0.52 0.5 0.49 1.08 1.04 1.05
 Ultra-low 0.53 0.5 0.48 1.02 0.97 0.98
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Fig. 4  Noise power spectrum (NPS) obtained by standard (a), low (b), and ultralow (c) dose settings. The height of the NPS curve with A4 and 
A9 showed lower than the standard DLR dose, and A4 showed higher than that of low and ultralow DLR doses
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previous study [26]. Therefore, we recorded the fP value for 
 DLIPFBP at the region of spatial frequency excluding rise-up. 
The fP and fA for  DLIPFBP exhibited a slight shift in spatial 
frequency.  DLIPFBP minimized the fP shift under all dose 
conditions; fP shifts toward lower spatial frequency were 
indicated up to 8.6% with an ultralow dose compared to the 
standard FBP dose. Most MBIR shifted in fP compared with 
FBP, with marked shifts of up to 49%. A structural change 
in the image texture is shown by the spatial frequency shift 
of fP and fA.  

Low‑contrast detectability

Figure 5 shows the  CNRLO for each reconstruction algorithm 
acquired from different dose levels. The  CNRLO improved 
in  DLIPFBP depending on the dose and strength. Overall, 
MBIR, DLR, and  DLIPFBP outperformed FBP in the same 
dose levels. A1 strength  DLIPFBP showed a  CNRLO equal to 
DLR in standard or low doses, whereas  CNRLO of A4 and 
A9 strength  DLIPFBP was greater than DLR. In contrast, the 
A1 and A4 strength of  DLIPFBP indicated a  CNRLO equal to 
or less than that of the DLR in ultralow doses.

Subtraction image measurement for structural 
changes

Figure 6 shows the images with FBP,  DLIPFBP with three 
strength settings, and the corresponding subtraction. The 
obtained subtraction image from A1 showed no edge struc-
ture but only noise. Conversely, the subtraction images 

of A4 and A9 showed edge structures at the rods and 
phantom boundaries. Additionally, a slight change in CT 
value was observed for the two lower attenuation test rods 
(polyethylene and acrylic). The fluctuation of CT value 
measured by the subtraction image occurred in two rods 
with low attenuation according to the  DLIPFBP strength, 
as shown in Fig. 7. Changes in CT values of the two rods 

Table 3  Peak and average 
spatial frequency of noise power 
spectrum obtained from three 
different dose levels with FBP, 
MBIR, and DLR

CTDIvol volume computed tomography dose index, FBP filtered back projection, MBIR model-based itera-
tive reconstruction, DLR deep learning-based reconstruction

CTDIvol (mGy) Peak spatial frequency (fP;  mm−1) Average spatial frequency (fA; 
 mm−1)

FBP MBIR DLR FBP MBIR DLR

Standard (10.0) 0.35 0.29 0.23 0.58 0.34 0.34
Low (3.9) 0.35 0.18 0.24 0.58 0.29 0.31
Ultra-low (2.0) 0.37 0.19 0.21 0.58 0.25 0.27

Table 4  Peak and average 
spatial frequency of noise 
power spectrum obtained from 
three different dose levels with 
 DLIPFBP

CTDIvol volume computed tomography dose index, A1, A4, and A9 were the processing strengths of a deep 
learning-based universal image processing software (FCT PixelShine, FUJIFILM, Tokyo, Japan)

CTDIvol (mGy) Peak spatial frequency (fP;  mm−1) Average spatial frequency (fA; 
 mm−1)

DLIPFBP DLIPFBP

A1 A4 A9 A1 A4 A9

Standard (10.0) 0.35 0.35 0.35 0.57 0.54 0.48
Low (3.9) 0.35 0.35 0.35 0.58 0.56 0.51
Ultra-low (2.0) 0.37 0.32 0.32 0.58 0.56 0.52

Fig. 5  A plot of  CNRLO acquired with each reconstruction algorithm. 
MBIR, DLR, and  DLIPFBP outperformed FBP at the same dose levels 
investigated
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exhibited a slight degradation in contrast. Contrast reduc-
tion was dependent on DLIP strength, with a maximum of 
5.3 and 6.1 HU for polyethylene and acrylic, respectively.

Typical run time of image processing

The mean reconstruction or processing times and their 
standard deviations for FBP, MBIR, DLR, and  DLIPFBP 
were 30 s ± 1 s, 19 min 47 ± 6 s, 2 min 33 ± 1 s, and 2 min 
32 ± 6 s, respectively, where the time of  DLIPFBP is for 
postprocessing only. Additional time is required to perform 
FBP reconstruction at a scanner console and transfer it to a 
workstation.

Discussion

To the best of our knowledge, this study is the first detailed 
assessment of the physical characteristics of a prototype 
DLIP software, FCT PixelShine.  DLIPFBP may show image 
quality improvements comparable to commercially available 
DLRs.

The TTF of  DLIPFBP showed different values depend-
ing on the radiation dose and contrast of the object. Non-
linear algorithms, such as MBIR and DLR, are known to 
exhibit different spatial resolution characteristics depend-
ing on the amount of noise and contrast [27, 28], and the 
object-specific task-based spatial resolution characteristics 
of  DLIPFBP are similar to those of existing nonlinear algo-
rithms. However, the 10% TTF of  DLIPFBP corresponding 
to low-contrast objects was comparable to that of DBP and 

Fig. 6  Images with FBP (a),  DLIPFBP-A1 (b), -A4 (c), -A9 (d), and 
the corresponding subtracted images (e–g). The subtracted image 
of A1 showed no edge structure (e), and A4 and A9 (f, g) showed 

the edge and rod structure (black and white arrowhead). All images 
were displayed with a window level and width of 50 HU and 300 HU, 
respectively

Fig. 7  Fluctuation of CT value measured by the subtraction images. 
The CT values of polyethylene and acrylic rods indicate a slight fluc-
tuation and contrast degradation
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MBIR in standard dose acquisition; it indicated a higher 
value than that of MBIR and DLR in low- and ultra-low-
dose acquisitions.

The NPS curve exhibited a dose-specific trend as shown 
in Fig. 4. The peaks of NPS curves with strengths A4 and 
A9 were lower than those of DLR at standard dose. Con-
versely, A4 was higher than that of DLR at low and ultralow 
doses. The fP or fA shift varied with dose and reconstruc-
tion algorithm and processing strength. fA shifts were up 
to 1.7%, 6.9%, 17.2%, 56.9%, and 53.4% for A1, A4, A9, 
MBIR, and DLR, respectively. The spatial frequency shift 
in fA would cause image texture changes relative to FBP. 
 DLIPFBP exhibited significantly less spatial frequency shift 
compared to MBIR and DLR, indicating the possibility of 
obtaining images with noise texture close to FBP. However, 
the evaluated DLR was an algorithm developed using the 
precise MBIR quality as a supervised image [29]. The fA 
shift of DLR to standard-dose MBIR was up to 20.6%, which 
should be compared with MBIR rather than with FBP.

CNRLO indicated as an index of low-contrast detectability 
for 5 mm diameter lesions. The low-contrast detectability 
of  DLIPFBP was comparable to or better than that of DLR at 
standard and low doses, but it was comparable to or lower 
than that of DLR at ultralow doses.  CNRLO is an index that 
reflects the noise power value at the spatial frequency corre-
sponding to the lesion diameter. Therefore, the detectability 
of  DLIPFBP was improved compared to that of conventional 
FBP. In particular, the acquired A4 and A9 detectability at 
low dose was comparable to that of FBP at a standard dose.

The edge signals observed in the subtraction images 
posed a problem in noise reduction and maintaining image 
quality for tissue and structure boundaries. The higher 
strength of  DLIPFBP at low doses may impair the image 
quality for diagnosis. Although the low-strength  DLIPFBP 
image did not depict the edge signal, there was a limited 
noise reduction. Signal value measurements of subtraction 
images revealed that  DLIPFBP slightly reduced the contrast 
of low attenuation objects. This tendency appeared at a low 
dose and higher strength settings in particular. The effect on 
clinical imaging is a topic for future study.

Our study has several limitations. First, this study con-
ducted phantom studies with only limited tasks (e.g., image 
noise, object diameter, contrast, and lesion diameter). We have 
not assessed the effect of complex anatomy or patient diam-
eter on image quality in vivo. Thus, in vivo clinical evaluation 
needs to be conducted in the future. Secondly,  DLIPFBP was 
applied only to FBP images in this study although DLIP is 
applicable to all CT images, including MBIR or DLR images. 
If the other reconstruction is obtained and applied to DLIP, it 
may show a different noise texture. Third, the determined slice 
thickness, matrix, and FOV for the phantom acquisitions were 
limited. Measurements with thicker slice thicknesses and/or 
fewer pixels may be necessary. Fourth, a subjective observer 

test would be necessary to confirm the  DLIPFBP performance. 
The quantitative evaluation results in this study would be pro-
vided as one of the pieces of evidence for those findings. Fifth, 
this study did not include the evaluation of artifacts because 
of low dose acquisition. At least, we did not observe any spe-
cific artifacts during the phantom experiments. However, the 
evaluation of artifacts may be required in the future. Finally, 
the  DLIPFBP used herein was a prototype; hence, the results 
might differ from those obtained using commercial versions 
of the software.

Conclusion

A prototype  DLIPFBP reduced the image noise while maintain-
ing the resolution for high-contrast objects similar to com-
mercially available MBIR and DLR. The significantly reduced 
spatial frequency shift of fA in  DLIPFBP compared to that in 
MBIR and DLR contributed to the suppression of noise texture 
changes. The NPS suppression in the low-spatial frequency 
range effectively improved the low-contrast detectability of 
 DLIPFBP compared to that of FBP. Evaluating the  DLIPFBP 
performance in vivo is a subject for future work.
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