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Abstract

Purpose This study aimed to assess the image characteristics of deep-learning-based image processing software (DLIP; FCT
PixelShine, FUJIFILM, Tokyo, Japan) and compare it with filtered back projection (FBP), model-based iterative reconstruc-
tion (MBIR), and deep-learning-based reconstruction (DLR).

Methods This phantom study assessed the object-specific spatial resolution (task-based transfer function [TTF]), noise
characteristics (noise power spectrum [NPS]), and low-contrast detectability (low-contrast object-specific contrast-to-noise
ratio [CNR| ,]) at three different output doses (standard: 10 mGy; low: 3.9 mGy; ultralow: 2.0 mGy). The processing strength
of DLIPpgp with Al, A4, and A9 was compared with those of FBP, MBIR, and DLR.

Result The standard dose with high-contrast TTFs of DLIPggp exceeded that of FBP. Low-contrast TTFs were comparable
to or lower than that of FBP. The NPS peak frequency (fp) of DLIPgp shifts to low spatial frequencies of up to 8.6% at
ultralow doses compared to the standard FBP dose. MBIR shifted the most f, compared to FBP—a marked shift of up to
49%. DLIPggp showed a CNR;  equal to or greater than that of DLR in standard or low doses. In contrast, the CNR| , of the
DLIPygp was equal to or lower than that of the DLR in ultralow doses.

Conclusion DLIPygp reduced image noise while maintaining a resolution similar to commercially available MBIR and DLR.
The slight spatial frequency shift of f, in DLIPggp contributed to the noise texture degradation suppression. The NPS sup-
pression in the low spatial frequency range effectively improved the low-contrast detectability.

Keywords Deep-learning image processing - Denoising - Computed tomography - NPS - TTF - CNR

Introduction 4]. Manufacturers have implemented many dose reduction

techniques and solutions to curb the high exposure in CT [5,

Owing to the increasing number of computed tomography
(CT) units in each country and number of CT scans per unit
population, reducing the radiation dose patients receive from
these examinations is particularly important [1, 2]. How-
ever, reducing the radiation dose would reduce the number
of photons reaching the detector, increase image noise, and
consequently affect the diagnostic performance of CT [3,
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6]. For example, iterative reconstruction (IR) was developed
to reduce the image noise while maintaining the spatial reso-
lution and contrast-to-noise ratio (CNR) [7-9].

IR is a statistical or algebraic reconstruction algorithm
[10]. Model-based IR [MBIR] that modeled the object as
well as the noise and scanner system in the projection data.
Detailed principles of MBIR have been reported in previous
studies [10, 11]. The data fidelity of MBIR is based on a for-
ward projection model that models scanner geometry, optics,
and statistical noise characteristics [12]. However, the com-
mercial implementation of IR is not adopted by all medical
institutions because it depends on the vendor and CT scanner
generation. Additionally, MBIR remained installed on only
a few machines.

Several third-party manufacturers released an image-
based universal IR system (image-based IR) that achieves
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denoising by processing already reconstructed FBP images
[13—15]. Image-based IR is a versatile technology that is
independent of CT systems and vendors. Previous studies
have shown that the image characteristics are comparable
to hybrid IR in low-dose CT. A new deep learning-based
universal image processing software (DLIP; FCT Pix-
elShine, FUJIFILM, Tokyo, Japan) is an image processing
technique trained by deep learning to improve the image
quality in low-dose CT. DLIP is as universal as image-based
IR and is expected to denoise with natural textures because
of deep-learning techniques. The DLIP uses deep learning
techniques and ultralarge amounts of training pairs of noisy
low- and high-dose images [16] and performs noise reduc-
tion on any input image regardless of the CT manufacturer.
Other DLRs, such as AiCE and TrueFidelity (GE Health-
care, Waukesha, WI, USA) are noise reduction algorithms
that respond to vendor-specific input images [17, 18]. DLIP
software can be used by installing it on a three-dimensional
image analysis workstation. It can be retrospectively applied
to images reconstructed using any algorithm (filtered back
projection: FBP, IR, and DLR). To the best of our knowl-
edge, no study has assessed the detailed image characteris-
tics of DLIP.

Therefore, this study aimed to assess the image charac-
teristics of DLIP and compare them with FBP, MBIR, and
deep-learning-based reconstruction (DLR).

Methods
Phantoms

The American College of Radiology (ACR) phantom (model
464, Gammex, Middleton Wi, USA) was placed at the center
of gantry rotation to measure the object-specific spatial reso-
lution. The ACR phantom is 200 mm in diameter, and four
different test object rods (bone, water, polyethylene, and
acrylic) were embedded. Catphan 500 phantom (Phantom
Laboratory, Salem NY, USA) with a uniform module (CTP
486) and low-contrast module (CTP 515) was used to meas-
ure the image noise and low-contrast detectability.

Data acquisition and image reconstruction

An ultrahigh resolution CT scanner (Aquilion Precision,
Canon Medical Systems, Tochigi, Japan) was used to
acquire all data. Three different output dose (volume CT
dose index [CTDI,]) settings were determined as 10.0, 3.9,
and 2.0 mGy for assessing the image characteristics corre-
sponding to the image noise level. Thus, size-specific dose
estimate according to the conversion formula from CTDI,
reported by the American Association of Physicists in Med-
icine Task Group 220 [19] were 17.8, 6.9, and 3.6 mGy,
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respectively (conversion factor of 200 mm effective diameter
of 1.78). These are referred to as standard, low, and ultralow.
Other acquisition parameters were as follows: a tube voltage
of 120 kV, rotation time of 0.5 s, detector configuration of
160 0.25 mm, a pitch factor of 0.81, thickness of 0.25 mm,
and an X-ray focus size of 0.6 0.6 mm. The field of view
(FOV) was determined at 350 mm with 1024 x 1024 matrix.
All images were reconstructed with FBP (FC13; standard
soft kernel), MBIR (forward projected model-based Itera-
tive Reconstruction Solution: FIRST BODY standard), and
DLR (Advanced Intelligent Clear-1Q Engine: AiCE BODY
Standard). Moreover, FBP images were postprocessed with
acquired DLIP (DLIPggp) The DLIP has variable processing
strengths from A1 to A9 [20]. Here, “A” denotes “adaptive”
and indicates a function of noise reduction strength, and
DLIPgp strengths of 1, 4, and 9 were used in this study.
It should be noted that the DLIP software used here was a
prototype.

Object-specific spatial resolution

The task-based transfer function (TTF) was calculated to
measure the object-specific spatial resolution correspond-
ing to the contrast and image noise. A circular edge method
was performed to acquire the TTF [21]. Two test rods were
used with a CT number of approximately 955 HU (bone
equivalent; high contrast) and 120 HU (acrylic; soft tissue
contrast). Phantom images were prepared by subtracting the
start image from the end image to perform an accurate align-
ment in a longitudinal direction, and it was confirmed with-
out misregistration. To ensure the accuracy of radial profile
measurements, an accurate alignment is important for the
circular edge method. A region of interest (ROI) was placed
around the test rod as shown in Fig. 1. Radial profiles from
the center coordinates of the square ROI were automatically
acquired. A one-dimensional edge spread function from
radial edges across a test rod was synthesized and differen-
tiated to obtain a line spread function. A total of 600 images
(60 consecutive images X 10 times repeated acquisition)
were acquired per scanning condition were acquired. These
600 images were processed, and an averaged image for each
condition was measured [22]. TTF was measured for bone
and acrylic material using CTmeasure software [23].

Noise characteristics

The CTP 486 module (uniformity section of CATPHAN)
was scanned to analyze the noise characteristics correspond-
ing to the spatial frequency, and the noise power spectrum
(NPS) was calculated. A 128 X 128 square ROI was placed
at the center of the acquired phantom images. The NPS was
calculated using two-dimensional Fourier transform. Each
dataset contained 60 consecutive uniform axial images
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Fig.1 Schema of the phantom image to perform the circular edge
method. A region of interest (ROI) was arranged to acquire the edges
of each rod. (Figure shows an ROI placed on an acrylic rod.)

within the CTP486 module. The NPS was averaged from
60 images for each dataset. The peak (fp; cycles/mm) and
average (f,; cycles/mm) frequencies were calculated [24].

Low-contrast detectability

Low-contrast detectability was evaluated with the CTP515
module (low-contrast detectability section of Catphan)
using a low-contrast object-specific contrast-to-noise ratio
(CNR; () as an index that reflects the contrast of the lesion,
noise characteristics, and the frequency components cor-
responding to the lesion size [25]. The CNR;  could be
calculated from the following equation, which incorpo-
rates the NPS:

ROI,, — ROI,
VNPSG) M

where, ROI); and ROI are CT values measured at the lesion
and background ROI, respectively, and NPS (i) is the NPS
at the spatial frequency (#). NPS (i) represents the amount
of noise at the spatial frequency that involves target lesion
detection. The low-contrast signal (placed at ROI,,) has a
nominal contrast of 10 HU with a 5-mm diameter (Fig. 2).
i represents the spatial frequency that contributes most to
detectability corresponding to the target lesion diameter.
Then, NPS (i7) was calculated with a spatial frequency of
0.105 cycles/mm obtained from the above section.

CNR,, =

Fig.2 The low-contrast module (CTP 515) in Catphan phantom was
used for measuring the low-contrast object-specific contrast-to-noise
ratio. A low-contrast signal used in this study has a nominal contrast

of ~10 HU (contrast level of 1.0%). The ROIs were placed at a 5 mm
diameter object (ROI,,) and background (ROIg)
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Subtraction image measurement for structural
changes

Structural changes between the FBP and the corresponding
DLIPggp were determined by subtracting the two images.
Acquired ACR phantom images at the same slice location
were subtracted between FBP and DLIPgpp images of Al,
A4, and A9, respectively. Subtraction images were cal-
culated from images scanned under low-dose conditions
(3.9 mGy of CTDI,,)). The area of interest of 400 mm?
(20x 20 mm square) was placed at the four test rod materials
(bone, air, polyethylene, and acrylic) enclosed in the ACR
phantom to evaluate the slight change in CT value between
FBP and DLIPggp, and the CT value was measured. CT val-
ues were measured on 10 consecutive subtraction slices at
each DLIP strength.

Typical image processing run time

To compare the run time for image reconstruction or pro-
cessing, the times were measured for FBP, MBIR, DLR, and
DLIPggp. The time was measured with a slice thickness of
0.25 mm and FOV of 350 mm with 1,024 x 1,024 matrix.

The run time of image processing was measured for 1000
images for each reconstruction obtained by scanning with
Catphan phantom. Time measurements were performed
thrice for each method. The time of DLIPggp indicates the
postprocessing only, and additional time is required to per-
form FBP reconstruction at a scanner console and transfer
it to a workstation.

Results
Object-specific spatial resolution

Figure 3 shows the TTF calculated using three different
algorithms for high- and low-contrast objects. Tables 1 and
2 summarizes the value of 50% TTF and 10% TTF. High-
contrast TTFs with the standard dose of all reconstruction
algorithms exceeded that of FBP, with MBIR exhibiting the
highest value. In particular, the 10% TTF of DLIPgg, was
improved by up to 71% compared to FBP under the ultralow-
dose condition. Low-contrast TTFs were comparable to or
lower than that of FBP for all doses.
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Fig.3 Task transfer function (TTF) for high- and low-contrast objects (upper and lower column) with standard (a, d), low (b, e), and ultralow (c,
f) doses, respectively. The TTF shows different trends depending on radiation dose and image reconstruction algorithms
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Noise characteristics

Figure 4 shows the NPS results, and Tables 3 and 4 shows
the fp and f, for each reconstruction algorithm. Conspicuous

Table 1 Task transfer function
with high- and low-contrast
objects for FBP, MBIR, and

DLR

Table 2 Task transfer function
with high- and low-contrast
objects for DLIPggp

4,500

4,000 |

3,500

Noise power spectrum (HUZmm?)

500

3,000

2,500 |

2,000

1,500

1,000 ¢

rise-up of NPS curve were observed at low spatial frequen-
cies of <0.1 mm™" with DLIPggp in low- and ultralow-dose.

It was thought to be due to the increase in noise from streak
artifacts corresponding to dose reduction as described in

50% TTEF, cycles/mm

10% TTF, cycles/mm

FBP MBIR DLR FBP MBIR DLR

High contrast
Standard 0.52 0.74 0.71 1.15 1.41 1.26
Low 0.51 0.7 0.7 1.12 1.36 1.18
Ultra-low 0.51 0.64 0.64 1.11 1.32 1.12

Low contrast
Standard 0.53 0.53 0.52 1.16 1.12 0.95
Low 0.51 0.44 0.45 1.01 0.92 0.88
Ultra-low 0.51 0.36 0.39 1.02 0.76 0.77

TTF task transfer function, FBP filtered back projection, MBIR model-based iterative reconstruction, DLR
deep learning-based reconstruction

50% TTF, cycles/mm

10% TTF, cycles/mm

DLIPggp DLIPggp
Al A4 A9 Al A4 A9
High contrast
Standard 0.54 0.62 0.64 1.17 1.22 1.19
Low 0.54 0.7 0.77 1.28 1.63 1.67
Ultra-low 0.54 0.68 0.82 1.24 1.6 1.9
Low contrast
Standard 0.52 0.5 0.49 1.15 1.17 1.18
Low 0.52 0.5 0.49 1.08 1.04 1.05
Ultra-low 0.53 0.5 0.48 1.02 0.97 0.98

TTF task transfer function, Al, A4, and A9 were the processing strengths of a deep learning-based univer-
sal image processing software (FCT PixelShine, FUJIFILM, Tokyo, Japan)
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Fig.4 Noise power spectrum (NPS) obtained by standard (a), low (b), and ultralow (c) dose settings. The height of the NPS curve with A4 and
A9 showed lower than the standard DLR dose, and A4 showed higher than that of low and ultralow DLR doses
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Table 3 Peak and average

. . CTDI,,; (mGy) Peak spatial frequency (fp; mm™") Average spatial frequency (f};

spatial frequency of noise power mm~")

spectrum obtained from three

different dose levels with FBP, FBP MBIR DLR FBP MBIR DLR

MBIR, and DLR
Standard (10.0) 0.35 0.29 0.23 0.58 0.34 0.34
Low (3.9) 0.35 0.18 0.24 0.58 0.29 0.31
Ultra-low (2.0) 0.37 0.19 0.21 0.58 0.25 0.27

CTDI,,, volume computed tomography dose index, FBP filtered back projection, MBIR model-based itera-
tive reconstruction, DLR deep learning-based reconstruction

Table 4 Peak and average

CTDI,,; (mG
spatial frequency of noise vo (MGY)

Peak spatial frequency (fp; mm™)

Average spatial frequency (f};

. mm™")

power spectrum obtained from

three different dose levels with DLIPggp DLIPggp

DLIPggp

Al A4 A9 Al A4 A9

Standard (10.0) 0.35 0.35 0.35 0.57 0.54 0.48
Low (3.9) 0.35 0.35 0.35 0.58 0.56 0.51
Ultra-low (2.0) 0.37 0.32 0.32 0.58 0.56 0.52

CTDI,,,; volume computed tomography dose index, Al, A4, and A9 were the processing strengths of a deep
learning-based universal image processing software (FCT PixelShine, FUJIFILM, Tokyo, Japan)

previous study [26]. Therefore, we recorded the f, value for
DLIPggp at the region of spatial frequency excluding rise-up.
The fp and f, for DLIPggp exhibited a slight shift in spatial
frequency. DLIPggp minimized the f, shift under all dose
conditions; fp shifts toward lower spatial frequency were
indicated up to 8.6% with an ultralow dose compared to the
standard FBP dose. Most MBIR shifted in f, compared with
FBP, with marked shifts of up to 49%. A structural change
in the image texture is shown by the spatial frequency shift

of fp and f,.

Low-contrast detectability

Figure 5 shows the CNR;  for each reconstruction algorithm
acquired from different dose levels. The CNR; o improved
in DLIPggp depending on the dose and strength. Overall,
MBIR, DLR, and DLIPggp outperformed FBP in the same
dose levels. Al strength DLIPggp showed a CNR;  equal to
DLR in standard or low doses, whereas CNR;  of A4 and
A9 strength DLIPgpp was greater than DLR. In contrast, the
Al and A4 strength of DLIPgp indicated a CNR  equal to
or less than that of the DLR in ultralow doses.

Subtraction image measurement for structural
changes

Figure 6 shows the images with FBP, DLIPggp with three
strength settings, and the corresponding subtraction. The
obtained subtraction image from A1 showed no edge struc-
ture but only noise. Conversely, the subtraction images
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Fig.5 A plot of CNR|  acquired with each reconstruction algorithm.
MBIR, DLR, and DLIPygp outperformed FBP at the same dose levels
investigated

of A4 and A9 showed edge structures at the rods and
phantom boundaries. Additionally, a slight change in CT
value was observed for the two lower attenuation test rods
(polyethylene and acrylic). The fluctuation of CT value
measured by the subtraction image occurred in two rods
with low attenuation according to the DLIPpgp strength,
as shown in Fig. 7. Changes in CT values of the two rods



Physical and Engineering Sciences in Medicine (2023) 46:1713-1721

1719

Fig.6 Images with FBP (a), DLIPgzp-Al (b), -A4 (c), -A9 (d), and
the corresponding subtracted images (e—g). The subtracted image
of Al showed no edge structure (e), and A4 and A9 (f, g) showed
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Fig. 7 Fluctuation of CT value measured by the subtraction images.
The CT values of polyethylene and acrylic rods indicate a slight fluc-
tuation and contrast degradation

exhibited a slight degradation in contrast. Contrast reduc-
tion was dependent on DLIP strength, with a maximum of
5.3 and 6.1 HU for polyethylene and acrylic, respectively.

the edge and rod structure (black and white arrowhead). All images
were displayed with a window level and width of 50 HU and 300 HU,
respectively

Typical run time of image processing

The mean reconstruction or processing times and their
standard deviations for FBP, MBIR, DLR, and DLIPggp
were 30 s+1s, 19 min 47+6s, 2 min 33+1 s, and 2 min
32+ 6 s, respectively, where the time of DLIPggp is for
postprocessing only. Additional time is required to perform
FBP reconstruction at a scanner console and transfer it to a
workstation.

Discussion

To the best of our knowledge, this study is the first detailed
assessment of the physical characteristics of a prototype
DLIP software, FCT PixelShine. DLIPgzp may show image
quality improvements comparable to commercially available
DLRs.

The TTF of DLIPgp showed different values depend-
ing on the radiation dose and contrast of the object. Non-
linear algorithms, such as MBIR and DLR, are known to
exhibit different spatial resolution characteristics depend-
ing on the amount of noise and contrast [27, 28], and the
object-specific task-based spatial resolution characteristics
of DLIPLgp are similar to those of existing nonlinear algo-
rithms. However, the 10% TTF of DLIPgp corresponding
to low-contrast objects was comparable to that of DBP and
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MBIR in standard dose acquisition; it indicated a higher
value than that of MBIR and DLR in low- and ultra-low-
dose acquisitions.

The NPS curve exhibited a dose-specific trend as shown
in Fig. 4. The peaks of NPS curves with strengths A4 and
A9 were lower than those of DLR at standard dose. Con-
versely, A4 was higher than that of DLR at low and ultralow
doses. The fp or f, shift varied with dose and reconstruc-
tion algorithm and processing strength. f, shifts were up
to 1.7%, 6.9%, 17.2%, 56.9%, and 53.4% for A1, A4, A9,
MBIR, and DLR, respectively. The spatial frequency shift
in f, would cause image texture changes relative to FBP.
DLIP5p exhibited significantly less spatial frequency shift
compared to MBIR and DLR, indicating the possibility of
obtaining images with noise texture close to FBP. However,
the evaluated DLR was an algorithm developed using the
precise MBIR quality as a supervised image [29]. The f,
shift of DLR to standard-dose MBIR was up to 20.6%, which
should be compared with MBIR rather than with FBP.

CNR; g indicated as an index of low-contrast detectability
for 5 mm diameter lesions. The low-contrast detectability
of DLIPygp was comparable to or better than that of DLR at
standard and low doses, but it was comparable to or lower
than that of DLR at ultralow doses. CNR; , is an index that
reflects the noise power value at the spatial frequency corre-
sponding to the lesion diameter. Therefore, the detectability
of DLIPggp, was improved compared to that of conventional
FBP. In particular, the acquired A4 and A9 detectability at
low dose was comparable to that of FBP at a standard dose.

The edge signals observed in the subtraction images
posed a problem in noise reduction and maintaining image
quality for tissue and structure boundaries. The higher
strength of DLIPygp at low doses may impair the image
quality for diagnosis. Although the low-strength DLIPpgp
image did not depict the edge signal, there was a limited
noise reduction. Signal value measurements of subtraction
images revealed that DLIPggp slightly reduced the contrast
of low attenuation objects. This tendency appeared at a low
dose and higher strength settings in particular. The effect on
clinical imaging is a topic for future study.

Our study has several limitations. First, this study con-
ducted phantom studies with only limited tasks (e.g., image
noise, object diameter, contrast, and lesion diameter). We have
not assessed the effect of complex anatomy or patient diam-
eter on image quality in vivo. Thus, in vivo clinical evaluation
needs to be conducted in the future. Secondly, DLIPggp was
applied only to FBP images in this study although DLIP is
applicable to all CT images, including MBIR or DLR images.
If the other reconstruction is obtained and applied to DLIP, it
may show a different noise texture. Third, the determined slice
thickness, matrix, and FOV for the phantom acquisitions were
limited. Measurements with thicker slice thicknesses and/or
fewer pixels may be necessary. Fourth, a subjective observer
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test would be necessary to confirm the DLIPgg, performance.
The quantitative evaluation results in this study would be pro-
vided as one of the pieces of evidence for those findings. Fifth,
this study did not include the evaluation of artifacts because
of low dose acquisition. At least, we did not observe any spe-
cific artifacts during the phantom experiments. However, the
evaluation of artifacts may be required in the future. Finally,
the DLIPpgp used herein was a prototype; hence, the results
might differ from those obtained using commercial versions
of the software.

Conclusion

A prototype DLIPgp reduced the image noise while maintain-
ing the resolution for high-contrast objects similar to com-
mercially available MBIR and DLR. The significantly reduced
spatial frequency shift of f; in DLIPpzp compared to that in
MBIR and DLR contributed to the suppression of noise texture
changes. The NPS suppression in the low-spatial frequency
range effectively improved the low-contrast detectability of
DLIPggp compared to that of FBP. Evaluating the DLIPggp
performance in vivo is a subject for future work.
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