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Abstract
Radiotherapy treatment planning based only on magnetic resonance imaging (MRI) has become clinically achievable. 
Though computed tomography (CT) is the gold standard for radiotherapy imaging, directly providing the electron density 
values needed for planning calculations, MRI has superior soft tissue visualisation to guide treatment planning decisions 
and optimisation. MRI-only planning removes the need for the CT scan, but requires generation of a substitute/synthetic/
pseudo CT (sCT) for electron density information. Shortening the MRI imaging time would improve patient comfort and 
reduce the likelihood of motion artefacts. A volunteer study was previously carried out to investigate and optimise faster 
MRI sequences for a hybrid atlas-voxel conversion to sCT for prostate treatment planning. The aim of this follow-on 
study was to clinically validate the performance of the new optimised sequence for sCT generation in a treated MRI-only 
prostate patient cohort. 10 patients undergoing MRI-only treatment were scanned on a Siemens Skyra 3T MRI as part of 
the MRI-only sub-study of the NINJA clinical trial (ACTRN12618001806257). Two sequences were used, the standard 
3D T2-weighted SPACE sequence used for sCT conversion which has been previously validated against CT, and a modi-
fied fast SPACE sequence, selected based on the volunteer study. Both were used to generate sCT scans. These were 
then compared to evaluate the fast sequence conversion for anatomical and dosimetric accuracy against the clinically 
approved treatment plans. The average Mean Absolute Error (MAE) for the body was 14.98 ± 2.35 HU, and for bone was 
40.77 ± 5.51 HU. The external volume contour comparison produced a Dice Similarity Coefficient (DSC) of at least 0.976, 
and an average of 0.985 ± 0.004, and the bony anatomy contour comparison a DSC of at least 0.907, and an average of 
0.950 ± 0.018. The fast SPACE sCT agreed with the gold standard sCT within an isocentre dose of -0.28% ± 0.16% and 
an average gamma pass rate of 99.66% ± 0.41% for a 1%/1 mm gamma tolerance. In this clinical validation study, the 
fast sequence, which reduced the required imaging time by approximately a factor of 4, produced an sCT with similar 
clinical dosimetric results compared to the standard sCT, demonstrating its potential for clinical use for treatment planning.
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Introduction

Radiotherapy treatment planning based only on magnetic 
resonance imaging (MRI), or MRI-only radiotherapy, has 
recently become clinically achievable [1–4]. Treatment 
planning requires electron density information for dose cal-
culation, which is conventionally acquired from computed 
tomography (CT), but which MRI scans do not provide 
directly. However, substitute, synthetic, or pseudo CT (sCT) 
scans generated from specific MRI sequences are able to 
provide electron density information [5–7]. These sCT 
scans are validated against CT scans and their use removes 
the need to acquire a pre-treatment CT scan.

There are various approaches which have been utilised for 
sCT generation, such as bulk density correction methods, atlas 
methods, deep learning algorithms or a combination of these 
approaches. Bulk density correction requires only segmenta-
tion of the MRI, with appropriate density values applied to 
these segmentations for dose calculation [8]. Atlas or multi 
atlas methodologies have been successfully utilised in the 
male pelvis [9, 10], where training sets of registered CT-MRI 
image pairs are used to produce an average CT-MRI atlas. The 
advantages of this method include a robustness to artefacts and 
intensity differences between images, and realistic anatomical 
deformation due to the use of prior training information, with 
the main disadvantage of the method being that images that 
fall outside the bounds of the atlas training data may be unable 
to be matched appropriately [11]. Commercially available 
sCT generation software has used a combination of atlas and 
bulk density assignment methods for prostate sCT generation 
[12–14]. Deep learning and artificial intelligence (AI) meth-
ods have also been utilised for prostate sCT generation, with 
these techniques able to be used in combination with others for 
image segmentation and tissue classification [15–19]; however 
they require a large amount of data and resources for training, 
but are much faster than the atlas method for sCT generation, 
taking typically in the order of seconds compared to minutes.

Within an MRI simulation session for MRI-only radio-
therapy treatment planning, various MRI sequences may be 
captured for specific visualisation, such as fiducial marker 
identification, or target and organ at risk delineation purposes 
in addition to any particular sequence or sequences required 
for specific sCT generation methods. The MR imaging por-
tion of the simulation session can take a significant amount 
of time [1, 14], especially when compared to a CT simula-
tion session in which only a single CT scan may be required 
for both anatomical information and treatment planning. 
Any reduction in MR imaging time for a sequence would 
reduce the overall simulation time, and reduce the potential 
for patient motion or organ variation, in particular prostate 
motion, bladder filling and rectal and bowel gas changes 
over the simulation session [20–22], as well as reduce patient 
discomfort and increase MRI scanner utilisation [23]. Time 

reduction in MRI sequences however could impact image 
quality, reducing signal to noise ratio, image contrast and res-
olution [24–28], the effect of which should be considered in 
the application of each particular sequence. Additionally, to 
improve online adaptation of treatment plans for patient treat-
ment on MRI linear accelerators, any time reduction which 
causes no change in treatment plan dosimetric quality would 
benefit the patient, reducing their treatment time and increas-
ing patient comfort and tolerance for treatment [29–31].

Previously, a volunteer study was conducted investigating 
the effects of MRI sequence time reduction on sCT generation 
for prostate MRI-only treatment planning and to determine a 
suitable sequence [32]. This follow-up study aims to clinically 
apply and validate the previously determined optimal fast 
MRI sequence with a prospective patient cohort undergoing 
MRI-only radiotherapy treatment planning. The sCT gener-
ated from the new fast MRI sequence with clinical patient data 
is evaluated by comparison both anatomically and dosimetri-
cally to the current established and validated sCT generation 
method utilising the standard MRI sequence. This study will 
determine whether the new fast sequence can be utilised clini-
cally in sCT generation for future MRI-only radiotherapy.

Method

Ten prostate radiotherapy patients were included in the 
study. These patients were recruited to the NINJA (Novel 
Integration of New prostate radiation therapy sched-
ules with adjuvant Androgen deprivation) clinical trial 
(ACTRN12618001806257) which had local ethics approval 
(HREC/18/LPOOL/420), investigating stereotactic radio-
therapy to the prostate comparing monotherapy against a 
virtual high dose rate brachytherapy boost regimen. This 
clinical trial also contains an MRI-only planning sub-study, 
demonstrating the ability to fully transition centres from CT- 
to MRI-based prostate radiotherapy planning, which these 
patients were enrolled into. Patients in this trial were pre-
scribed either 40 Gy in 5 fractions or a stereotactic boost 
of 20 Gy in 2 fractions followed by a standard 36 Gy in 12 
fractions, with treatment plans consisting of two VMAT arcs. 
The patients involved in the current study were part of the 
MRI-only planning sub-study, and scanned on a Siemens 
(Erlangen, Germany) Skyra 3T MRI with a flat radiotherapy 
couch and body coil mounted on coil mounts as per trial 
protocol. Patient age ranged from 60 to 72, and Body Mass 
Index (BMI) ranged from 23.1 to 32, with a mean of 27.1.

The standard planning MRI sequence as used for the clinical 
trial was a 3D T2-weighted isotropic SPACE (Sampling Per-
fection with Application optimised Contrasts using different flip 
angle Evolution) sequence which covered the entire pelvis, with 
scan limits from L5/S1 to the pubic symphysis. This sequence 
was previously validated against CT by Dowling et al. [11], and 
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has an average scan time of 5 min and 4 s. A time-reduced MRI 
sequence was achieved by varying a combination of repetition 
time (TR), turbo factor, partial Fourier acceleration and parallel 
imaging acceleration, following the findings from the volunteer 
study [21], reducing the average scan time to 1 min and 19 s. 
The sequence parameters are displayed in Table 1, with further 
detail available in Young et al. [32].

MRI sequences were converted to sCT using a hybrid 
atlas-voxel method as described in Dowling et al. [11], 
with the converted Fast SPACE (F-sCT) compared to the 
Standard SPACE (S-sCT) conversion. Mean Absolute Error 
(MAE) for HU for the entire body, along with tissue and 
bones only was calculated by comparing the F-sCT to the 
S-sCT with the auto-segmented body and bone masks from 
the S-sCT. An anatomical comparison of the body and bone 
volumes between the generated sCT was completed con-
sidering volume differences, mean Hausdorff distance and 
Dice Similarity Coefficient (DSC) comparison.

Treatment planning for these patients was completed on the 
S-sCT using the Pinnacle Treatment Planning System (v16.21; 
Philips Healthcare, Andover, MA) utilising the auto-planning 
module for beam optimisation. Patient treatment plans met all 

trial guidelines, with each treatment plan consisting of two 
full Volumetric Arc Therapy (VMAT) treatment beams. Each 
patient’s corresponding clinically approved treatment plan 
was copied to the F-sCT and recalculated for comparison of 
isocentre point dose, a 1%/1mm global gamma comparison 
and DVH analysis of the PTV, bladder and rectum.

Results

The Fast sequence scan was able to be completed on all 
patients with no modifications required by the system. This 
sequence was able to be converted to sCT as per Dowling 

Table 1 MRI sequence parameters which differed between the stan-
dard and fast T2 SPACE and the average scan time for each sequence
MRI Sequence Aver-

age 
TR 
(ms)

Turbo 
factor

Partial 
Fourier

iPAT 
Accel-
eration 
Factor

Average 
Scan 
Time 
(min:sec)

Standard T2 
SPACE

1700 80 7/8 4 5:04

Fast T2 SPACE 1200 120 6/8 6 1:19

Fig. 1 An example of the (a) standard MRI and (b) S-sCT and the (c) fast MRI and (d) F-sCT for the same corresponding slice for one patient. The 
body and bone masks are also displayed on the sCT slices in (b) and (d)
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volumes, with the body contour comparison producing a 
DSC of at least 0.976, and an average of 0.985 ± 0.004, and 
the bone contour producing a DSC of at least 0.907, and an 
average of 0.950 ± 0.018.

Table 3 shows dosimetric results. The isocentre point 
dose agreement for the clinical plan recalculated on the 
F-sCT was on average − 0.28% ± 0.16%, and within ± 0.5% 
of the S-sCT. The 1%/1 mm global Gamma pass rate was 
on average 99.66% ± 0.41%, with only one patient achiev-
ing below a 99% pass rate. The DVH dose differences are 
shown in Fig. 3. The PTV DVH statistics reported, on 
average, were within 0.5%, with an average difference of 
-0.27% ± 0.18%. The bladder and rectum D50 were within 
± 2% on average, with the rectum D50 average difference 
being − 0.08 ± 0.40%, and the bladder D50 average differ-
ence being 0.08% ± 1.10%.

et al. [11], with no additional artefacts seen in qualitative 
review of the fast MRI sequence scan or converted F-sCT. 
An example of the standard MRI and fast MRI, as well as 
the corresponding S-sCT and F-sCT can be seen in Fig. 1.

The mean absolute error (MAE) in HU over the ten 
patients for the F-sCT compared to the S-sCT with the body 
and bone masks from the S-sCT, in addition to tissue only, 
is shown in Fig. 2. The average MAE for the body was 
14.98 ± 2.35 HU, for tissue only was 12.68 ± 2.75 HU, and 
for the bone was 40.77 ± 5.51 HU.

The volume percentage difference, mean Hausdorff dis-
tance and DSC results for both the body and bone contour 
comparison can be seen in Table 2. The average body vol-
ume difference was 1.57% ± 1.65%, whilst the average bone 
volume difference was − 0.69% ± 2.42%. The mean Haus-
dorff value was less than 2 mm for both the body and bone 

Table 2 Volume percentage difference, mean Hausdorff distance and DSC results for automatic body and bone contours for the generated sCT for 
the fast MRI sequence compared to the standard sequence generated sCT for all patients
Patient Body Volume % 

Difference
Body Mean Hausdorff 
(mm)

Body DSC Bone Volume % 
Difference

Bone Mean Hausdorff 
(mm)

Bone 
DSC

1 -0.03% 0.76 0.990 -3.82% 0.71 0.948
2 3.99% 1.48 0.976 0.70% 1.29 0.907
3 2.26% 0.97 0.988 1.61% 0.43 0.967
4 1.13% 0.98 0.988 -0.25% 0.42 0.964
5 2.43% 1.24 0.986 -0.82% 0.71 0.937
6 0.22% 0.90 0.988 -5.23% 0.69 0.942
7 2.89% 1.24 0.984 0.98% 0.43 0.963
8 -1.17% 1.21 0.987 -2.65% 0.54 0.960
9 3.28% 1.47 0.982 1.79% 0.49 0.960
10 0.70% 1.65 0.981 0.74% 0.61 0.949

Fig. 2 Mean Absolute Error (MAE) of HU for the generated sCT from the fast MRI sequence compared to the sCT generated from the standard 
MRI sequence for all patients for the within-the-body contour, the automatic bone contour, and for tissue only
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reduction in TR will produce an image with increased con-
trast between water and fat, being more T1-weighted [25]. 
An increase in the echo train length, the turbo factor, may 
increase the potential for artefacts, reducing signal-to-noise 
and image contrast and causing blurring in the image [33]. 
Changes in the partial Fourier factor may produce a time 
reduction in the scan by reducing the amount of k-space 
data acquired in the phase encoding direction, producing an 
image with a reduced signal-to-noise ratio [28]. Increasing 
the imaging acceleration factor will also alter the k-space 
data acquired, which may produce aliasing artefacts and 
reduce signal-to-noise [26, 34, 35]. Qualitative comparison 
of the fast MRI and standard MRI patient images did show a 
decreased signal-to-noise and some blurring in the fast MRI 

images, as can be seen in the MRI images in Fig. 1. How-
ever, these issues did not significantly affect the generated 
sCT for this cohort of patients.

The clinical study results compare favourably with our 
previously reported volunteer study [32]. In that, the fast 
sequence achieved an average body MAE of 33.66 ± 22.04 
HU and an average bone MAE of 67.34 ± 34.84 HU. 
The body DSC was 0.980 ± 0.011 and the bone DSC was 
0.916 ± 0.065. In terms of the results for these same ana-
tomical regions, the current patient study resulted in an 
average MAE for the body of 14.98 ± 2.35 HU, and for the 
bone of 40.77 ± 5.51 HU, in addition to a body DSC result 
of 0.985 ± 0.004, and the bone contour producing a DSC 
result of 0.950 ± 0.018. These HU and anatomical results 
showed better agreement in the clinical patient study than 
those achieved in the volunteer study. This may be due 
to the fast sequence being captured immediately after the 

Discussion

This study demonstrates clinical application and valida-
tion of the results from the previous volunteer study. It 
provides clinical data, using a patient cohort, regarding a 
time-reduced MRI sequence for sCT generation for prostate 
MR-only treatment planning. In an MRI-only workflow, 
additional sequences may be required for volume defini-
tion as image contrast and resolution may be enhanced or 
targeted to the anatomy, or functional sequences may pro-
vide additional guidance. The time reduction and associated 
reduction in image quality for the sCT sequence may be 
appropriate if anatomical and dose differences in the gener-
ated sCT for treatment planning are considered acceptable.

The potential trade-offs between reducing MR imaging 
time and the effects on the MR image quality and subse-
quent sCT generation accuracy should be considered [32]. A 

Table 3 Dosimetric Results for all patient plan comparisons. The iso-
centre point dose was compared, as well as 1%/1 mm Global Gamma 
analysis for the clinical plan from the S-sCT recalculated on the F-sCT
Patient Isocentre Point Dose 1%1 mm 

Gamma
1 -0.20% 99.10
2 -0.23% 98.87
3 -0.35% 99.56
4 -0.17% 99.89
5 -0.43% 100.00
6 -0.45% 99.39
7 -0.27% 99.93
8 0.07% 100.00
9 -0.42% 100.00
10 -0.31% 99.89

Fig. 3 DVH comparison of PTV parameters and the rectum and bladder D50 for the recalculated treatment plans on the F-sCT compared to calcu-
lated on the S-sCT. This figure shows the percentage difference for each parameter for all patients
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Appendix

Standard SPACE Sequence parameters
Parameter Standard SPACE Sequence Setting
TE 103 ms
Flip Angle 120 deg
Bandwidth 781 Hz/Px
Field of view 420 – 500 mm
Matrix size 256 × 256
NSA 1.4
Slice thickness 1.6 – 2.0 mm
PAT mode GRAPPA
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