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Abstract
The early prediction of overall survival (OS) in patients with lung cancer brain metastases (BMs) after Gamma Knife 
radiosurgery (GKRS) can facilitate patient management and outcome improvement. However, the disease progression is 
influenced by multiple factors, such as patient characteristics and treatment strategies, and hence satisfactory performance of 
OS prediction remains challenging. Accordingly, we proposed a deep learning approach based on comprehensive predictors, 
including clinical, imaging, and genetic information, to accomplish reliable and personalized OS prediction in patients with 
BMs after receiving GKRS. Overall 1793 radiomic features extracted from pre-GKRS magnetic resonance images (MRI), 
clinical information, and epidermal growth factor receptor (EGFR) mutation status were retrospectively collected from 
237 BM patients who underwent GKRS. DeepSurv, a multi-layer perceptron model, with 4 different aggregation methods 
of radiomics was applied to predict personalized survival curves and survival status at 3, 6, 12, and 24 months. The model 
combining clinical features, EGFR status, and radiomics from the largest BM showed the best prediction performance with 
concordance index of 0.75 and achieved areas under the curve of 0.82, 0.80, 0.84, and 0.92 for predicting survival status at 
3, 6, 12, and 24 months, respectively. The DeepSurv model showed a significant improvement (p < 0.001) in concordance 
index compared to the validated lung cancer BM prognostic molecular markers. Furthermore, the model provided a novel 
estimate of the risk-of-death period for patients. The personalized survival curves generated by the DeepSurv model effec-
tively predicted the risk-of-death period which could facilitate personalized management of patients with lung cancer BMs.
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Introduction

Over 40% of patients with non-small cell lung cancer 
(NSCLC) develop brain metastases (BMs) during the 
course of the disease [1]. Patients with BMs often present 
with severe neurological symptoms and poor prognosis. 
Median overall survival (OS) of patients with NSCLC-
BMs without additional therapy is approximately one 
month [2, 3]. To alleviate neurological symptoms and 
improve OS, several treatment options are available for 
BM patients, including neurosurgery, chemotherapy, 
whole brain radiotherapy (WBRT), Gamma Knife radio-
surgery (GKRS), tyrosine kinase inhibitors (TKIs), and 
combinations of these. In particular, GKRS has become 
the most preferred treatment modality for BMs because 
of its minimal impact on cognitive impairment and over 
70% tumor control rate for a limited number of BMs [4, 
5]. The median OS for NSCLC-BM patients treated with 
first-line GKRS is expected to be approximately one year 
[6]. In addition, TKI drugs have shown promising results 
in treating NSCLC-BM patients with epidermal growth 
factor receptor (EGFR) mutations [7]. The EGFR is a pro-
tein involved in cell growth and division. The gene for the 
EGFR is located on the short arm of chromosome 7 and 
encodes a 170-kDa type I transmembrane growth factor 
receptor with tyrosine kinase activity. EGFR gene muta-
tions cause abnormal proliferation, angiogenesis, metas-
tasis, and decreased apoptosis, leading to cancer. The 
exon 19 deletions and exon 21 L858R mutations in EGFR 
gene are the most frequently detected oncogenic drivers 
in approximately 30–50% of NSCLC-BM patients. EGFR-
TKIs such as afatinib, erlotinib, and gefitinib inhibit the 
overexpression of EGFR genes and are widely used in the 
treatment of NSCLC-BM patients with EGFR mutations. 
Knowledge of the prevalence of EGFR mutations in differ-
ent patient subgroups can provide a reference for diagnosis 
and treatment strategies. The use of EGFR information and 
TKIs has been emphasized in the management of patients 
with BM [8, 9].

The combination of GKRS and other treatment modali-
ties significantly improves the tumor control rate and OS 
in patients with BM [3]. Previous studies have proposed 
several prognostic factors for patients with NSCLC-BMs, 
such as the volume and number of BMs, EGFR mutation 
status, and applied treatments [10, 11]. The management 
of patients is facilitated based on the association of these 
characteristics with prognosis. Nevertheless, tumor hetero-
geneity reduces the reliability of prognostic factors, and 
therefore prediction of OS in patients remains challenging. 
The characteristics of magnetic resonance imaging (MRI) 
can be quantified using radiomics analysis to estimate 
tumor heterogeneity [12–14]. Several studies have further 

suggested that combining radiomic features extracted from 
pre-GKRS MRI with clinical information and machine-
learning algorithms could improve the prediction of local 
tumor control in BM patients after GKRS [15, 16].

However, several challenges remain in predicting the OS 
after GKRS in patients with BM. First, OS can be influenced 
by various factors, including functional impairment, extrac-
ranial metastases, concurrent/subsequent treatments, and 
control of the primary tumor [11, 17]. These complicated 
factors reduce the prediction performance of conventional 
survival estimations [18]. Second, conventional survival 
estimations, such as the Cox proportional-hazards model 
and Kaplan–Meier estimator, may only consider linear rela-
tionships between predictors or perform a group analysis 
rather than a personalized prediction [19]. Finally, patients 
with BMs frequently present with more than one lesion, and 
previous studies have been inconclusive regarding feature-
extraction strategies for multiple lesions [15]. Accordingly, 
an advanced algorithm for personalized survival prediction 
based on comprehensive predictors and appropriate feature 
aggregation methods for multiple BM lesions is required to 
benefit management of BM patients with GKRS treatment.

The aim of this study was to develop a reliable and 
personalized approach to predict OS of patients with 
NSCLC-BM. This study contributed to the OS prediction 
of NSCLC-BM patients from three aspects. First, we applied 
a multi-layer perception neural network with imaging and 
clinical features as inputs to predict personalized survival 
curves. The deep learning architecture with nonlinear acti-
vation functions could better model the interaction of input 
covariates and provide a reliable estimate of personalized 
survival curve. Second, we compared four aggregation meth-
ods of radiomic features and identified the most suitable one 
for OS prediction in patients with multiple BM lesions. The 
image traits of multiple lesions might vary due to differ-
ences in origin and pathology type. Accordingly, adopting an 
appropriate aggregation strategy of radiomic features (either 
averaging across lesions or taking the representative lesion) 
could significantly influence the outcome prediction model. 
The third contribution of this study was the comprehensive 
investigation of prognostic factors in NSCLC-BM. Compre-
hensive clinical data, including the EGFR gene mutation, 
treatment strategies such as the dosage of GKRS, the use 
of TKI and chemotherapeutic drugs, and clinical staging of 
patients, were included and integrated with radiomic fea-
tures to achieve a superior OS prediction. Finally, we sug-
gested that the proposed deep learning model based on the 
comprehensive radiomic, clinical, and genetic features could 
effectively predict OS in NSCLC-BM patients.
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Materials and methods

Patient cohort and clinical characteristics

This study retrospectively included 237 NSCLC-BM 
patients treated with GKRS at Taipei Veteran General Hos-
pital between 2012 and 2017. The patient dataset was col-
lected in accordance with the following inclusion criteria: 
(1) identification of NSCLC by lung biopsy or open surgery, 
(2) presence of at least one visible BM on MRI, (3) treat-
ment of patients with GKRS, and (4) patients with com-
plete MRI and clinical follow-up information. This study 
was approved by the Institutional Review Board of Taipei 
Veterans General Hospital, which waived the requirement 
for informed consent.

In this study, most patients received other therapies for 
NSCLC-BM in addition to GKRS, including chemotherapy, 
WBRT, and TKI therapy. Chemotherapy was performed for 
systemic metastases. These treatments have been shown to 
be beneficial for NSCLC-BM patients [20–22]. Furthermore, 
clinical characteristics, such as the patient’s age, control 
of the primary lung cancer, presence of other metastases, 
number of BMs, Karnofsky performance status (KPS), 
EGFR mutation, and dose of GKRS, were recorded for OS 
prediction.

MRI data and image preprocessing

MRI data acquisition and subsequent treatment planning 
were performed prior to the implementation of GKRS. Pre-
GKRS MRIs, including pre-contrast T1-weighted (T1w; TR/
TE = 500/9 ms), contrast-enhanced T1-weighted (T1c; TR/
TE = 500/9 ms), and T2-weighted (T2w; TR/TE = 4000/109 
ms) images were acquired for each patient. Several preproc-
essing steps were applied to the acquired pre-GKRS MRIs 
before the subsequent radiomics analysis. First, the resolu-
tion of the MRI sequences was adjusted to the same dimen-
sion with a pixel size of 1 × 1 × 1 mm3. Second, a rigid-body 
image registration of T1w and T2w images to T1c images 
was performed using the mutual information algorithm. 
Finally, the image intensities were transformed into stand-
ardized ranges (Z-score transformations) based on the mean 
and standard deviation of the entire image for each MRI set.

Radiomic feature extraction and multi‑lesion 
aggregation

To delineate regions of interest (ROIs), a multidisciplinary 
team of experienced neurosurgeons and neuroradiolo-
gists reached a consensus on the BM contour for treatment 
planning. Wavelet decomposition was applied to obtain 

additional information regarding the frequency and loca-
tion of the images [23]. For each MRI sequence, low-pass 
(L) and high-pass (H) dimensional filtering (Morlet wavelet) 
were applied to the three image axes, resulting in eight wave-
let sets: LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH 
filtered images. Radiomic features, including histogram, 
geometry, and texture analysis (gray level co-occurrence 
matrix, GLCM; gray level run length matrix, GLRLM; local 
binary pattern, LBP) [24, 25], were then extracted from all 
image sets (eight wavelet-decomposed and original images 
of each MRI sequence). A total of 1763 radiomic features 
were generated for each lesion ROI. All wavelet filtering, 
image preprocessing procedures, and subsequent radiom-
ics analysis were performed using the previously published 
Multimodal Radiomics Platform (available online: http://​
cflu.​lab.​nycu.​edu.​tw/​MRP_​MLing​lioma.​html, accessed on 
18 August 2022) [15, 26] in compliance with the Image 
Biomarker Standardization Initiative (IBSI) [27, 28]. The 
formulae for the radiomics analysis are listed in supplemen-
tary Table S1.

For patients with more than one BM, the following fea-
ture aggregation methods were applied to integrate the radi-
omic features of multiple lesions for OS prediction [29–31]. 
Method I - average: the geometric features were summed, 
and other features were averaged across all BMs; Method II - 
weighted average: the geometric features were summed, and 
other features were averaged based on the volume of each 
BM; Method III - weighted average of three largest BMs: 
only the three largest BMs were considered in the weighted 
average calculation; Method IV – the largest BM: only the 
largest BM was considered. These aggregation methods 
were compared with regard to their prediction efficacy of 
patient OS.

Statistical analysis and prediction models

The hold-out method was performed to randomly split data-
set into training dataset (70% of the patients) and test dataset 
(the remaining 30% of patients). To identify key radiomic 
and clinical features and to reduce redundancy for OS pre-
diction, a two-step feature selection approach was applied 
to the training dataset. The initial statistical tests, includ-
ing univariate Cox proportional regression for continuous 
variables and chi-squared test for categorical variables, were 
followed by a sequential forward selection (SFS) algorithm 
[32]. To maintain the complexity of the deep learning model 
(i.e., sufficient number of input features), we applied a selec-
tion criterion of p < 0.1 in the first step (the Cox and Chi-
squared methods). The performance of the constructed OS 
prediction models was evaluated using the test dataset.

In this study, the DeepSurv survival model based on the 
Cox proportional hazards deep neural network was applied 
to evaluate the risk of death after GKRS [33]. In contrast to 

http://cflu.lab.nycu.edu.tw/MRP_MLinglioma.html
http://cflu.lab.nycu.edu.tw/MRP_MLinglioma.html
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the conventional Cox proportional hazard model, the Deep-
Surv approach uses a multi-layer perceptron to perform a 
non-linear simulation of the hazard function. Therefore, this 
model has potential to show superior performance on sur-
vival prediction by considering nonlinear effects of covari-
ates. The loss function of the DeepSurv model was defined 
as the average negative logarithmic partial likelihood ( l(�) , 
Eq. 1):

where x is the input features, NE=1 indicates the number 
of patients with an observable event, ĥ�(x) is estimated non-
linear Cox hazard function, R

(

Ti
)

 represents patients with 
survival longer than Ti , and � represents the model weights. 
Gradient descent optimization was applied to minimize l(�) 
to determine the prediction performance of the hazard func-
tion for mortality events.

Hyper-parameters of deep learning models control the 
learning process and may significantly influence the per-
formance. Some hyper-parameters are associated with the 
structure and complexity of the model, such as the number 
of hidden layers and nodes. Other hyper-parameters regulate 
the training process and the convergence speed of the model, 
such as the optimizer, learning rate, and dropout rate. The 
number of fully connected layers and nodes in each layer 
control the model capacity. The model with many nodes or 
layers has a great model capacity and thus can model com-
plex relations/interactions between input features. However, 
too large a capacity may cause overfitting, resulting in poor 
model generalization or failure to optimize mapping func-
tion. The learning rate is related to the weight update during 
model training. Too large a learning rate may result in the 
model not converging to an optimal solution, while too small 
a value may result in significant time costs or model con-
vergence to a local optimal solution. To stabilize the update 
of weights, the Adam optimizer was applied in our model. 
The Adam optimizer applies the momentum to adjust the 
value of learning rate during the training process so that the 
learning rate will be controlled in a defined range. Dropout 
and L2 regularization methods were also applied to avoid 
overfitting. The dropout is a regularization method that ran-
domly drops hidden layer nodes with a certain probability in 
each iteration, and the dropped nodes are not updated with 
their weights. A low dropout rate may result in overfitting, 
while a high rate may result in small node size for model 
training. L2 regularization is the addition of a penalty term 
based on Lagrange multipliers to the loss function to reduce 
overfitting.

Searching for appropriate hyper-parameters contributes 
to the prediction performance and is therefore an essential 
step in training the DeepSurv model. In this study, the grid 

(1)

l(�) = −
1

NE=1

∑

i∶Ei=1

(

ĥ�
(

xi
)

− log
∑

j∈R(Ti)
eĥ�(xj)

)

search strategy was applied to determine hyper-parameters 
[34]. Each combination of hyper-parameters was assessed 
by a k-fold (k = 3) cross validation in each training set, and 
the final setup of hyper-parameters was determined based on 
the average index of concordance (C-index) and time cost. 
The model performance associated with hyper-parameters is 
listed in supplementary Table S2. The final DeepSurv model 
applied consisted of an input layer (number of nodes equal 
to the number of selected features), three hidden layers (each 
containing eight nodes with rectified linear unit activation 
and batch normalization), and an output layer. An Adam 
optimizer with an initial learning rate of 0.01, a learning 
rate decay of 0.01, a dropout rate of 20%, and L2 regulariza-
tion was applied for the training process. In this study, four 
DeepSurv models were generated based on clinical features 
and four different aggregation methods of radiomic fea-
tures. Individual nonlinear logarithmic risk functions and 
corresponding personalized survival curves were generated 
using the DeepSurv models. The workflow of the radiomics 
analysis and deep learning is shown in Fig. 1. The feature 
selection and subsequent DeepSurv model training were per-
formed on R DeepSurv package (available online: https://​
rdrr.​io/​cran/​survi​valmo​dels/​src/R/​deeps​urv.R, accessed on 
18 August 2022).

A log-rank test was applied to evaluate the statistical 
difference in the average of personalized survival curves 
between the good survival (OS > median survival) and poor 
survival (OS < median survival) groups based on median 
OS (12.2 months) of included patients. The statistical power 
of log-rank test was calculated based on the α of 0.05, 
estimated hazard ratio, and sample size. Time-dependent 
receiver operating characteristic (ROC) curves, area under 
the ROC curve (AUC), C-index, sensitivity, and specific-
ity were estimated to assess the prediction performance of 
survival status at different time points (i.e., 3, 6, 12, and 24 
months). A bootstrap random sampling method [35] and the 
paired t-test were applied to statistically compare the pre-
diction efficacy of the four radiomic aggregation methods. 
The Shapiro-Wilk test was applied to each bootstrap dataset 
to check whether the dataset was normally distributed. The 
log-rank tests and paired t-tests were 2-sided, and statistical 
significance was set at 0.05 or less.

To construct a reference risk curve to intuitively repre-
sent individual death risk, we first determined the optimal 
thresholds based on time-dependent ROC curves for each 
of the four selected time points. Subsequently, the Weibull 
probability distribution function was applied for curve fit-
ting using four time-dependent thresholds as it was indicated 
to accurately model the time-to-failure of real-world events 
[36]. The area between the reference risk curve and person-
alized survival curve was used to assess the patients’ risk 
of death. A negative value of the area during the observed 
period indicated that the portion of the personalized survival 

https://rdrr.io/cran/survivalmodels/src/R/deepsurv.R
https://rdrr.io/cran/survivalmodels/src/R/deepsurv.R
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curve was lower than the reference risk curve, resulting in 
a high risk of death. A schematic representation of the risk-
of-death period is shown in supplementary Figure S1. All 
R language codes for training and validation of DeepSurv 
models were provided on Code Ocean (https://​codeo​cean.​
com/​capsu​le/​64511​55/​tree).

The Graded Prognostic Assessment for Lung Cancer 
Using Molecular Markers (lung-molGPA) is a validated 
prognostic tool for patients with BMs from lung cancer 
[11]. The scoring criteria of lung-molGPA are listed in sup-
plementary Table S3. The lung-molGPA was calculated for 
each patient and compared the prediction performance with 
DeepSurv models. However, we would like to emphasize 
that the lung-molGPA could not provide time-dependent 
survival prediction or the personalized survival curve.

Results

Clinical characteristics of recruited patients

All patients had a complete follow-up until death after 
GKRS, without any missing data or censoring during this 
period. Table 1 summarizes the clinical characteristics of the 
237 patients. The age of the patients varied from 22.6 to 91.3 
years (median = 60.8). The proportions of men (N = 115, 
48.5%) and women (N = 122, 51.5%) were comparable. 

Approximately 49.4% of patients had other metastases, 
45.6% of patients had good control of primary NSCLC, 
66.7% of patients presented with EGFR mutation, and 73.0% 
of patients had more than one BM. Most patients (98.4%) 
were histologically diagnosed with pure adenocarcinomas.

Selected features for OS prediction

The details of the selected features are listed in supplemen-
tary Table S4. In the clinical features, KPS, EGFR status 
and the use of TKIs were finally selected by the SFS algo-
rithm. In the radiomic features, 3, 1, 26, and 40 features were 
selected by the SFS algorithm for Methods I to IV, respec-
tively. These radiomic features included histogram describ-
ing variance of intensities and textural features describing 
low gray level regions in the T1w, T1c, and T2w images.

Performance of DeepSurv prediction models 
and lung‑molGPA scores

Figure 2 shows the distribution of personalized survival 
curves generated by the DeepSurv models based on the 
four aggregation methods. Our results showed that all 
four DeepSurv models presented significant differences 
between the two survival groups (p < 0.015), indicating 
their prediction efficacy in differentiating patient out-
comes. DeepSurv models based on Methods I, III, and IV 

Fig. 1     Workflow of data analysis. Axial T1w and T2w images are 
co-registered to the T1c images followed by the resolution adjustment 
and intensity normalization. The radiomic features, including histo-
gram, geometric, and texture features with the wavelet image decom-
position, are extracted from the tumor ROIs. A two-step feature selec-

tion is applied to identify key features and to reduce the redundancy 
for modeling. Finally, the identified features (clinical and radiomic 
features) are input to the DeepSurv model to generate personalized 
survival curves for the OS prediction

https://codeocean.com/capsule/6451155/tree
https://codeocean.com/capsule/6451155/tree
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achieved statistical powers larger than 0.84, and the model 
based on Method II achieved a statistical power of 0.75.

We estimated the prediction performance at four 
selected time points (3, 6, 12, and 24 months) using the 
test dataset. Table 2 lists the C-index, AUC, threshold, 
sensitivity, and specificity achieved using the four dif-
ferent aggregation methods. Among all the methods, the 
model based on Method IV achieved the best performance 
(C-index = 0.75) with the highest AUCs (0.82, 0.80, 0.84, 
and 0.92) sensitivities (75%, 73%, 75%, and 86%), and 
specificities (83%, 79%, 83%, and 90%) at 3, 6, 12, and 24 
months, respectively. The time-dependent ROC curves for 
each model are shown in supplementary Figure S2. Boot-
strap random sampling for 100 times was further applied 
for statistical comparisons between the different models. 
The results of the Shapiro-Wilk test showed that all the 
time-dependent AUCs estimated using the bootstrap ran-
dom sampling were normally distributed (p > 0.05). The 
model based on aggregation Method IV showed signifi-
cantly higher AUCs than the other models in predicting 
OS at 6, 12, and 24 months (Fig. 3).

Figure  4 illustrates the prediction of risk-of-death 
period for representative cases with short (0.9 months), 
moderate (9.9 months), and long OS (37.3 months), 
respectively. For the patient with a short OS (lung-mol-
GPA = 2.5, three BMs and wild-type EGFR, Fig. 4a), the 
prediction models based on aggregation Methods I, III, and 
IV correctly predicted a risk-of-death period of less than 
three months. For the patient with a moderate OS (lung-
molGPA = 4, two BMs and EGFR mutation, Fig.  4b), 
Methods II and IV correctly predicted OS with a risk-of-
death period between 6 and 12 months. For the patient 
with a long OS (lung-molGPA = 3, one BM and EGFR 
mutation, Fig. 4c), only Methods III and IV correctly pre-
dicted a risk-of-death period beyond 24 months. These 
results suggested that the aggregation approach based on 
the largest BM (Method IV) provided the most stable and 
accurate estimate of the risk-of-death period in patients 
with BM after GKRS.

Finally, the lung-molGPA score achieved a C-index of 
0.66 for the OS prediction in the test dataset. The gen-
eral performance of OS prediction using DeepSurv model 
(C-index of 0.75) significantly outperformed (p < 0.001) 
that using the lung-molGPA score (C-index of 0.66). More 
importantly, DeepSurv model could provide time-depend-
ent prediction and personalized survival curves.

The development and validation of DeepSurv models 
followed the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis (TRI-
POD) statement [37]. The items of the TRIPOD checklist 
are listed in supplementary Table S5.

Table 1   Characteristics of 237 recruited NSCLC patients with BMs

a  IQR interquartile range

Characteristics Value

Age, median(IQRa) 62.7(15.9)
Gender
 Female, N(%) 122(51.5)
 Male, N(%) 115(48.5)

Overall survival (months), median(IQR) 12.2(13.9)
Existence of other metastases
 Yes, N(%) 117(49.4)
 No, N(%) 120(50.6)

KPS
 ≥ 90, N(%) 164(69.2)
 < 90, N(%) 73(30.8)

Primary NSCLC control
 Good, N(%) 108(45.6)
 Poor, N(%) 129(54.4)

Number of BMs
 1, N(%) 64(27.0)
 2, N(%) 50(21.1)
 3, N(%) 29(12.2)
 4, N(%) 25(10.6)
 > 4, N(%) 69(29.1)

NSCLC histology
 Pure adenocarcinoma, N(%) 233(98.4)
 Adenocarcinoma and Large cell carcinoma, N(%) 1(0.4)
 Adenocarcinoma and Squamous cell carcinoma, N(%) 1(0.4)
 Undifferentiated NSCLC, N(%) 2(0.8)

Additional treatment options
 Whole-brain radiotherapy, N(%) 30(12.7)
 TKIs before GKRS, N(%) 155(65.4)
 TKIs after GKRS, N(%) 163(68.8)
 Chemotherapy, N(%) 137(57.8)

EGFR status
 Wild type, N(%) 74(31.2)
 Mutation, N(%) 158(66.7)
 Not available, N(%) 5(2.1)

GKRS dose (Gray)
 Tumor center, median(IQR) 28.6(6)
 Tumor periphery, median(IQR) 19(2)

Lung-molGPA
 0.5, N(%) 5(2.1)
 1, N(%) 8(3.4)
 1.5, N(%) 18(7.6)
 2, N(%) 27(11.4)
 2.5, N(%) 52(21.9)
 3, N(%) 67(28.3)
 3.5, N(%) 28(11.8)
 4, N(%) 32(13.5)
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Discussion

Several clinical and pretreatment imaging characteristics 
have been proposed for predicting OS in patients with BM 
from NSCLC [15, 38]. However, these studies have com-
bined radiomics with traditional machine learning methods, 
such as support vector machines and random forests, to pre-
dict patient survival at a single time point. Accordingly, the 
implementation of survival prediction in personalized medi-
cine remains challenging. This study proposed a deep learn-
ing approach based on radiomic features and EGFR status 
to estimate the personalized survival curve and improve the 

OS prediction after GKRS. The DeepSurv model has been 
shown to be more appropriate than traditional statistical and 
machine-learning algorithms for handling nonlinear interac-
tions between prognostic factors [33].

Currently, no standard rule defines the extraction of 
radiomic features from multiple lesions for survival predic-
tion. In this study, the DeepSurv model based on Method 
IV (the largest BM) achieved the best performance for OS 
prediction (Fig. 2) and significantly outperformed the other 
models in predicting survival status at 6, 12, and 24 months 
(Fig. 3). These findings could be attributed to several factors. 
First, metastatic cancers of the brain are usually small and 

Fig. 2     Distribution of person-
alized survival curves predicted 
by the DeepSurv models. The 
estimated personalized survival 
curves using training (left 
column) and testing set (middle 
column) based on aggregation 
Method I - average (a), Method 
II - weighted average (b), 
Method III - weighted average 
of three largest BMs (c), and 
Method IV – the largest BM 
(d). The red curves represent 
the patients with OS better than 
median OS (12.2 months), and 
blue curves indicate the patients 
with OS poorer than median 
OS. The personalized survival 
curves show significant differ-
ence (p < 0.05, log-rank test) 
between the good and poor OS 
groups in the testing set (right 
column)
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present as multiple lesions. Previous studies have suggested 
that small BMs have a limited diagnostic value in clinical 
practice [39]. Second, previous studies have shown that the 
presence of large BMs predisposes patients to poor OS and 
local tumor control after GKRS [40]. Therefore, the largest 

tumor may contain critical information for predicting OS. 
Finally, we found that the number of BMs was more impor-
tant for OS prediction than the radiomic features extracted 
from limited voxels of small lesions. Accordingly, we sug-
gested that the radiomic features extracted from the largest 

Table 2   Performance of 
DeepSurv models based on the 
test dataset

a  CI confidence interval estimated using bootstrap random sampling for 100 times

Estimate Prediction time points

3 months 6 months 12 months 24 months

Method I - average (C-index = 0.70)
 Threshold 87% 76% 50% 31%
 AUC (95% CI a) 0.75 (0.60–0.90) 0.74 (0.64–0.84) 0.76 (0.68–0.86) 0.77 (0.67–0.86)
 Sensitivity 72% 74% 64% 69%
 Specificity 75% 67% 72% 81%

Method II - weighted average (C-index = 0.67)
 Threshold 83% 73% 45% 27%
 AUC (95% CI) 0.83 (0.73–0.93) 0.73 (0.64–0.82) 0.75 (0.65–0.86) 0.77 (0.66–0.89)
 Sensitivity 84% 73% 74% 78%
 Specificity 73% 65% 70% 74%

Method III - weighted average of three largest BMs (C-index = 0.73)
 Threshold 83% 28% 50% 26%
 AUC (95% CI) 0.82 (0.71–0.93) 0.78 (0.72–0.84) 0.80 (0.71–0.88) 0.87 (0.78–0.95)
 Sensitivity 75% 74% 78% 85%
 Specificity 91% 79% 78% 81%

Method IV – the largest BM (C-index = 0.75)
 Threshold 84% 74% 52% 46%
 AUC (95% CI) 0.82 (0.71–0.90) 0.80 (0.72–0.88) 0.84 (0.74–0.90) 0.92 (0.86–0.98)
 Sensitivity 75% 73% 75% 86%
 Specificity 83% 79% 83% 90%

Fig. 3     Statistical comparisons of four radiomic aggregation methods. Statistical comparisons (paired t-test) of four aggregation methods are 
performed using bootstrap random resampling for 100 times in the testing set. Error bars: Standard deviations
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lesion were sufficient to predict OS after GKRS in patients 
with multiple BMs.

The lung-molGPA is a clinically available tool for the 
prognosis assessment in NSCLC-BM. However, the pre-
diction based on lung-molGPA only achieved a C-index of 
0.66 in our patient cohort. Based on the results of DeepSurv 
model, we suggested that MRI radiomics could provide valu-
able information to enhance the OS prediction. A previous 
study combined radiomic and clinical features with support 
vector machines to predict 12 months OS after GKRS in 237 
BM patients, achieving an AUC of 0.81 [15]. The DeepSurv 
model proposed in this study provided the time-dependent 
prediction at multiple time points, including 3, 6, 12, and 
24 months with superior performance (AUCs of 0.82, 0.80, 
0.84, and 0.92, respectively; C-index of 0.75). The pre-
diction performance of the lung-molGPA, support vector 
machine, and DeepSurv methods for the OS of these 237 

BM patients is compared in supplementary Table S6. This 
improvement in the prediction performance may be attrib-
uted to two possible reasons. First, the DeepSurv model 
can learn the effects of covariates and continuously update 
feature weights with multiple hidden layers and nonlinear 
activation functions. This model is appropriate for dealing 
with high-dimensional data because the weights of the key 
features gradually increase during the learning process. Sec-
ond, in addition to KPS, existence of extracranial metastases, 
and number of BMs, we further included EGFR gene status 
and target therapy as key clinical features for OS prediction. 
EGFR status is a known prognostic factor for NSCLC-BM, 
and TKI-targeted therapy with GKRS has been shown to be 
more effective than TKI alone [41]. Accordingly, compre-
hensive clinical data, including well-known clinical factors, 
gene status, and target therapy, may benefit OS prediction 
in NSCLC-BM patients after GKRS.

Fig. 4     Representative cases for OS prediction based on different 
aggregation methods. Figure shows MRIs and the predicted risk-of-
death period based on DeepSurv models in a a patient with poor OS 

(0.9 months), wild-type EGFR, and three BMs; b a patient with mod-
erate OS (9.9 months), mutant EGFR, and two BMs; c a patient with 
good OS (37.3 months), mutant EGFR, and one BM.
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Tuning of the hyper-parameters is an essential step in the 
DeepSurv model. The results of the grid search indicated 
that a small initial training rate (0.001) led to a reduction in 
prediction performance. This suggested that differences in 
the hazard function (i.e., survival status) between patients 
could not be effectively distinguished if a low initial learn-
ing rate and limited epochs were applied. The adjustment of 
other hyper-parameters, including number of hidden layers, 
number of nodes in each hidden layer, learning rate decay, 
and dropout rate, showed minor effects on the prediction 
performance. For example, a 263% change rate of node 
number in each hidden layer caused only a change in the 
C-index within 5.7% (see Table S2 for details). However, an 
appropriate selection of hyper-parameters largely reduced 
the model training time. For example, we selected three hid-
den layers as the final setup because it achieved the highest 
C-index (0.73) and a relatively low time cost (364 s). There-
fore, the combination of hyper-parameters with the lowest 
time cost was selected when the prediction performance was 
similar.

MRI radiomic features have been reported to be associ-
ated with tumor control and OS after GKRS in patients with 
NSCLC–BM. For the DeepSurv model based on Method IV, 
high values of variance, standard deviation, and mean abso-
lute deviation on T1w and T1c images indicated long patient 
OS. The high deviation in T1w and T1c intensities may 
indicate the presence of hypointensity components within 
the ROI, such as calcifications, cysts, and edema [42], in 
addition to contrast-enhanced (hyperintensity) tumor tissues. 
Furthermore, patients with long OS presented high values of 
two texture features, including the short run low gray-level 
emphasis and long run low gray-level emphasis, in T1w, 
T1c, and T2w images. Both features emphasize the spatial 
and intensity heterogeneity of the low-grayscale (hypoin-
tensity) components. This finding again supported that the 
presence and distribution of calcifications, cysts, and edema 
within the ROI may be useful imaging predictors of OS.

We proposed the application of the DeepSurv model to 
estimate the risk-of-death period. The estimated personal-
ized survival curves provided information on the survival 
probability at different times after treatment. The thresholds 
implemented in the time-dependent ROC curves were used 
to predict the patient survival status at each time point. The 
risk-of-death period was estimated by comparing the refer-
ence risk curve with personalized survival curves (supple-
mentary Figure S1). This approach provided a longitudinal 
description of patient survival. For patients with poor OS, 
most aggregation methods provided reliable estimates of the 
risk-of-death period. However, only aggregation Method IV 
provided an accurate estimate of the risk-of-death period in 
patients with moderate and good OS.

Several limitations of this study and further considera-
tions are discussed below. First, the cases were collected 

from a single institution in this study. An external validation 
dataset should be considered in future studies to validate 
the proposed model. Second, a multidisciplinary team of 
experienced neurosurgeons and neuroradiologists performed 
semi-automatic tumor segmentation on the MRIs. The devel-
opment of automated segmentation approaches could reduce 
the time and cost of treatment planning and improve the 
reproducibility of radiomic features. Finally, EGFR status 
and TKI therapy implementation were identified as key 
predictors of OS in patients with NSCLC-BM. Our results 
showed that patients with wild-type EGFR status had poorer 
OS. Further investigation of survival prediction could focus 
on patients with wild-type EGFR. This may facilitate the 
management of patients with BM who have a potentially 
poor prognosis.

Conclusion

NSCLC-BM patients with EGFR mutations, who were 
treated with TKI, exhibited good OS. This study showed 
that the combination of a deep neural network, MRI quan-
titative features, and EGFR genetic information provided 
promising results for OS prediction in patients with BM after 
GKRS. The personalized survival curve and reference risk 
curve generated by the DeepSurv model deliver an intuitive 
prognostic assessment. The DeepSurv model could benefit 
patient management and treatment strategies for BM treated 
with GKRS.
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