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Abstract
One of the most effective treatments for drug-resistant Major depressive disorder (MDD) patients is repetitive transcranial 
magnetic stimulation (rTMS). To improve treatment efficacy and reduce health care costs, it is necessary to predict the treat-
ment response. In this study, we intend to predict the rTMS treatment response in MDD patients from electroencephalogram 
(EEG) signals before starting the treatment using machine learning approaches. Effective brain connectivity of 19-channel 
EEG data of MDD patients was calculated by the direct directed transfer function (dDTF) method. Then, using three feature 
selection methods, the best features were selected and patients were classified as responders or non-responders to rTMS 
treatment by using the support vector machine (SVM). Results on the 34 MDD patients indicated that the Fp2 region in the 
delta and theta frequency bands has a significant difference between the two groups and can be used as a significant brain 
biomarker to assess the rTMS treatment response. Also, the highest accuracy (89.6%) using the SVM classifier for the best 
features of the dDTF method based on the area under the receiver operating characteristic curve (AUC-ROC) criteria was 
obtained by combining the delta and theta frequency bands. Consequently, the proposed method can accurately detect the 
rTMS treatment response in MDD patients before starting treatment on the EEG signal to avoid financial and time costs to 
patients and medical centers.

Keywords EEG · Effective connectivity · Major depressive disorder (MDD) · Repetitive transcranial magnetic stimulation 
(rTMS).

Introduction

Major depressive disorder (MDD) is a common mental dis-
order associated with significant personal, social, and eco-
nomic issues [1]. If a person has at least five symptoms for 
two weeks or more, such as low mood, decreased enjoyment 
of formerly pleasurable activities, sleep disturbance, fatigue, 

and loss of energy without significant activity, has a change 
in appetite, pessimism, guilt, and suicidal thoughts, consid-
ered as MDD patients and needs favorable treatment [2].

Medication is the first approach to treating MDD patients. 
However, approximately 30% of patients do not respond to 
this type of treatment, and these people are considered drug-
resistant patients [3]. Non-pharmacological treatments are 
used for patients who have drug-resistant depression. Elec-
troconvulsive therapy (ECT) is one of the non-pharmaco-
logical treatments for MDD patients. However, this method 
is associated with the risk of anesthesia, memory changes, 
and affecting cognitive symptoms and it is less commonly 
used [4]. Repetitive transcranial magnetic stimulation 
(rTMS) is another effective non-pharmacological treatment 
for MDD with no side effects compared with ECT and also 
improves cognitive symptoms [5]. This treatment is based 
on the principle of electromagnetic induction; a series of 
magnetic pulses at a specific frequency with an intensity 
less than the seizure threshold is applied to the cerebral 
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cortex for a certain period to regulate the neural activity 
of the target area [6]. According to the prefrontal cortex 
asymmetry theory in MDD patients—i.e., left hypoactivity 
and right hyperactivity of the dorsolateral prefrontal cortex 
(DLPFC)—rTMS stimulates the hypoactive area and inhibits 
the hyperactive area [7, 8]. If high-frequency rTMS (usu-
ally ≥ 10 Hz) is applied, it increases the brain activity and 
stimulates the target point, and if low-frequency rTMS (usu-
ally ≤ 1 Hz) is used, it reduces the brain activity and inhibits 
the target point [9]. Studies show that the response rate to 
rTMS treatment in drug-resistant MDD patients is 50–55% 
[10, 11]. Given that the total duration of treatment using this 
method is about 20 sessions, it is necessary to predict the 
rTMS treatment response. Lack of prediction increases the 
costs imposed on patients and medical centers, and wastes 
patients’ time in the disease condition [12, 13].

One of the methods to predict the rTMS treatment 
response in MDD patients is to use demographic and clini-
cal data. A study that used demographic, depressive charac-
teristics, psychiatric and pharmacological history as clinical 
predictors, showed that patients who are younger and less 
drug-resistant, respond better to rTMS treatment [14]. In 
another study, the effects of age, gender, menopausal status, 
and ovarian hormone levels on the effectiveness of rTMS 
in drug-resistant MDD patients were investigated. It was 
observed that there is no significant difference between 
male and premenopausal female patients in rTMS treat-
ment response, and menopausal status and ovarian ster-
oid levels are the determining factors in the effectiveness 
of rTMS treatment on women [15]. In other studies that 
used demographic characteristics, somatic symptoms and 
cognitive-emotion symptoms for predicting the rTMS treat-
ment response, it was concluded that age is the most critical 
predictor in all patients. Also, those who respond better to 
this treatment indicate better cognitive-emotion symptoms 
than somatic symptoms [16]. The use of demographic and 
clinical data is not highly discriminant due to differences 
in these patients’ characteristics and brain structure. There-
fore, the use of neuroimaging techniques based on EEG in 
predicting the rTMS treatment response in MDD patients is 
progressing. EEG is widely used in clinical decisions due to 
its high temporal resolution, non-invasiveness, cheapness, 
and availability [17–20].

Various linear and nonlinear features have been proposed 
to predict the rTMS treatment response in MDD patients 
using EEG data. In one study, using the absolute power of 
the alpha frequency band of EEG, patients were classified 
as responders and non-responders to rTMS treatment [21]. 
Nonlinear EEG criteria, including the Lempel Ziv complex-
ity and the Lyapunov exponent in the alpha frequency band, 
were used in another study. The results indicated that the 
non-responders showed a significant decrease in the Lempel 
Ziv complexity feature in the first minute than the second 

minute. In contrast, the responders showed an increase in 
the Lempel Ziv complexity feature [22]. Also, other stud-
ies have used different approaches such as functional con-
nectivity [23, 24], Katz fractal dimension, and Correlation 
dimension [25, 26] to predict the treatment response and 
classify the drug-resistant MDD patients into two groups of 
responders and non-responders. These methods investigate 
the complexity of EEG signals but have limitations such as 
not being suitable for analyzing non-stationary signals and 
inaccurate estimation of temporal patterns.

With the development of non-invasive neuroimaging 
techniques, researchers have found that heterogeneous 
patterns of brain connectivity describe the activity of the 
brain. A comprehensive map of these patterns leads to bet-
ter identification of cognitive functions and a wide range of 
behaviors [27]. Since brain connections’ network is involved 
in psychiatric disorders, single-channel EEG data analysis 
cannot propose a specific feature of these types of disor-
ders. Therefore, calculating the brain connectivity measures 
to obtain the intricate brain network patterns to predict the 
rTMS treatment outcome in drug-resistant MDD patients 
would greatly help and increase the treatment efficiency. 
Interactions between different areas of the brain can be 
analyzed in the form of functional and effective connectiv-
ity [28]. Functional connectivity evaluates the statistical 
dependence of time series, but effective connectivity quan-
tifies the time series’ causal and directional impact.

The innovations of the current study are the use of effec-
tive brain connectivity methods based on the direct directed 
transfer function (dDTF) method, which helps to identify 
the best brain patterns and significant biomarkers between 
two groups of responder and non-responder MDD patients 
to rTMS treatment. Also, the other novelty of this study is to 
find distinctive effective connectivity features from different 
frequency bands and develop a hierarchical feature selec-
tion and classification method to predict the rTMS treatment 
response in drug-resistant MDD patients by EEG signal 
before starting the treatment. These will lead to improve the 
effectiveness of the model and reduce the time and cost of 
the patients undergoing treatment.

Materials and methods

Participants and clinical assessment

Data were collected from 34 patients (mean age 37.1, stand-
ard deviation 13.4, 25 women) who had drug-resistant MDD 
and were referred to the Atieh clinical neuroscience center 
for rTMS treatment. One week before rTMS treatment, all 
patients underwent a baseline clinical evaluation, and an 
experienced psychiatrist made the diagnosis of MDD by 
using a structured clinical interview based on the diagnostic 
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and statistical manual of psychiatric disorders (DSM-IV) 
[29], and the beck depression inventory (BDI-II) score was 
recorded for each patient. Then, at the end of the rTMS treat-
ment period (after 20 sessions—3 times a week), the patients 
were re-evaluated by a psychiatrist, and the BDI-II score 
was recorded for each patient. If at least 50% of the BDI-
II score is reduced, the patient is defined as responding to 
rTMS treatment. The BDI-II is a 21-item questionnaire that 
assesses the feelings of a person over the past week. Written 
consent has been obtained from all participants in this study 
and has been approved by the ethics committee of Shahid 
Beheshti University of Medical Sciences. The demographic 
and clinical characteristics of the patients are summarized 
in Table 1.

rTMS treatment parameters

In order to choose the best rTMS protocol for the treat-
ment of MDD patients, the influence of the parameters that 
affect this treatment should be considered. These parameters 
include the selection of target point, frequency, intensity and 
number of magnetic pulses and number of treatment ses-
sions. According to the theory of prefrontal cortex asym-
metry in MDD patients, i.e. left hyperactivity and right 
hyperactivity of DLPFC, three types of treatment protocols 
can be used [7, 8]. One of these protocols stimulates the 
left DLPFC region with high frequency and increases the 
activity of the target point and the second protocol inhibits 
the right DLPFC region with low frequency and reduces 
the activity. The third protocol is used as a combination of 
the two previous protocols, namely stimulation of the left 
DLPFC region and inhibition of the right DLPFC region 
with high and low frequency, respectively. In this study, 
according to the existing protocols, we used low frequency 
to inhibit the right DLPFC region. A meta-analysis indi-
cated that there was no difference between the two protocols 
of high and low frequency stimulation by rTMS in MDD 
patients in the left and right DLPFC regions in terms of 
response rate of MDD patients, respectively, and these two 
protocols almost have the same effectiveness [30]. Another 
meta-analysis that examined the acceptability and effec-
tiveness of low frequency rTMS treatment indicated that by 
increasing the number of magnetic pulses applied in this pro-
tocol to more than 1200 pulses, the response rate to rTMS 
treatment in MDD patients increase [31]. According to the 

mentioned items, the selected rTMS protocol is considered 
a suitable treatment for MDD patients.

rTMS was applied using a Neuro MS device (Neurosoft, 
Russia) via a 70 mm 8-shaped stimulation coil (air mem-
brane coil) at the Atieh clinical neuroscience center. For 
obtaining the minimum motor stimulation threshold, the 
motor area of the abductor pollicis brevis muscle (APB) is 
stimulated 10 times. If it reacts at least five times, the stimu-
lation intensity is considered the minimum motor threshold. 
The coil position is 5 cm forward and along the parasagittal 
line from the optimal stimulation position of the APB mus-
cle. All patients underwent magnetic stimulation for 10 s 
under a specific protocol with a 120% stimulation threshold 
in the right DLPFC at a frequency of 1 Hz, and then rested 
for 2 s and this was repeated. Consequently, for 10 s, 10 
magnetic pulses were applied to the patients. In total, this 
procedure was performed 200 times (200 × 12 s) with 2000 
magnetic pulses in each session and as a result, 40,000 mag-
netic pulses were applied to patients during a period of 20 
sessions.

Pre‑treatment EEG acquisition

19-channel EEG data electrodes have been placed according 
to 10–20 standard (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, 
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2). Raw EEG data 
of patients at resting state with closed eyes before starting 
rTMS treatment have been recorded at Atieh Clinical Neuro-
science center for 5 min at 250 Hz sampling frequency rate 
with the Mitsar-EEG-201 amplifier and Ag/AgCl electrodes.

EEG preprocessing

Preprocessing of EEG data has been performed using the 
EEGLAB open-source toolbox [32] to remove environmen-
tal and motion artifacts. First, we have used a 1 Hz high-pass 
filter to remove baseline drift. The scalp potentials’ average 
is independent of the reference location and applied as a 
re-reference to the signals. The CleanLine [33] open-source 
plugin has been used in the EEGLAB toolbox to remove the 
line noise. Independent component analysis (ICA) has been 
used to remove artifacts such as blinking and head move-
ments. In the end, the EEG data were cleaned visually and 
we used the reject continuous data by eye due to the existing 
artifacts, and therefore the length of the data was reduced 

Table 1  Demographic and 
clinical characteristics of 
participants

Responder (n = 17) Non-responder (n = 17) Total (n = 34)

Gender(Female/Male) 14/3 11/6 25/9
Age 34.8 (± 12) 39.3 (± 14.7) 37.1 (± 13.4)
Pre-treatment BDI-II 31 (± 10.3) 31.2 (± 10.4) 31.1 (± 10.2)
Post-treatment BDI-II 9.4 (± 5.5) 23.2 (± 11.8) 16.3 (± 11.4)
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from 300 s. Finally, in order to unify the data, we hold the 
150 s of all subjects, continuously.

Feature extraction by effective connectivity

Effective brain connectivity as the extracted feature is a type 
of directional connectivity that tries to find causal relation-
ships between different brain areas. This brain connectivity 
presents a new brain network model [34]. The direct directed 
transfer function (dDTF) is one of the most important effec-
tive brain connectivity methods that is widely used. The 
dDTF method examines the time dependence amount of the 
two time-series using the model. The dDTF connectivity 
matrix is asymmetric and determines the directional connec-
tivity and its power. In this study, for feature extraction, the 
effective brain connectivity between 19 EEG signal chan-
nels was calculated using the dDTF method in different fre-
quency bands of the delta, theta, alpha, beta, and gamma. 
These extracted features are calculated using the SIFT in 
the EEGLAB toolbox. The EEG signal features are 361 
(19 × 19) per patient. To explain the dDTF method, we first 
describe the conditions for establishing the Auto-regressive 
(AR) equation and then explain how to attain this method. 
Suppose we have an M-channel EEG and X(t) is an M-chan-
nel vector at the time t.

We utilize the following equation to state the AR equa-
tion. In this equation, A(k) is a matrix of coefficients of 
orderM ×M , which indicate the dependence of variables 
on the delayk . p is the model order, k and (t − k) represent an 
example of multi-channel data in the past. Also E(t) shows 
the random noise.

The model order is usually determined by minimizing 
information criteria such as the Akaike Information Crite-
rion (AIC) [35]. In obtaining the AR equation, two assump-
tions must be considered; the data must be static (their mean 
and variance do not change over time), and the equation 
must be stable. Stability of an equation results in be static, 
so it is enough to consider only the second condition. In the 
AR equations, there is a condition for the minimum number 
of data, which is as follows:

In this equation, M is the number of variables (number 
of channels), p is the equation order, Ntr is the number of 
time series, and W  is the length of each time window. We 
need at least M2p independent samples to calculate the AR 
equations. Also, with increasing the model degree, more 

(1)X(t) =
[

X1(t),X2(t),… ,X
M
(t)
]t

(2)X(t) =
∑p

k=1
A(k)X(t − k) + E(t)

(3)M2p ≤ NtrW

data is required. In general, there are three different criteria 
for examining a fitted model: whiteness (if the model is well 
fitted, the error should be small and uncorrelated), consist-
ency (how much statistical properties (mean, variance, etc.) 
of the obtained model are consistent with the data), and sta-
bility (The obtained model has a limited output for limited 
input). In neuroscience, the desirable time series are often 
collected simultaneously and for each of these time series, 
an AR equation can be defined. Granger causality indicates 
that if the prediction of the future values of a time series in 
the presence of a second time series is improved, then the 
second time series is the cause of the first time series; To 
obtain the Granger causality in the frequency domain, we 
write Eq. 2 as follows:

In the above equation, H(f ) is the system transfer func-
tion and calculates the connectivity matrix in the frequency 
domain. The directed transfer function (DTF) and the par-
tial coherence function (pCoh) can be obtained by using 
the system transfer function. Finally, the dDTF method is 
obtained from multiplication (frequency domain) of pCoh 
in the DTF [36].

Feature selection

Reducing the features’ dimension can improve the interpret-
ability and efficiency of the model by using various feature 
selection methods. Also, we used feature selection methods 
to decrease the calculations complexity and classification 
parameters, and increase the computational rate [37]. In the 
following, we will explain three feature selection methods 
that have been used in this study. The first method is a for-
ward feature selection algorithm based on the area under the 
receiver operating characteristic curve (AUC-ROC). AUC-
ROC is used for the evaluation of the performance of binary 
classification algorithms based on given input features [38]. 
AUC tells how much the input features are capable of distin-
guishing between two classes and seeing the importance of 
given input features. The larger AUC-ROC for each feature 
indicates the higher relationship of that feature to the class 
label. The AUC-ROC value of features varies from 0 to 1 
and a high AUC-ROC value (equal or close to 1) means the 
ability of the feature to separate classes. Therefore, to select 
the best features, after calculating the AUC-ROC values of 
each feature, these features are arranged in descending order 
of AUC-ROC values [39]. After selecting the best features, 
the forward feature selection algorithm uses the learning 
method to evaluate the usefulness of each subset of these 
features and aims to find a subset of features with the least 
amount of classification error. First, all features are given 

(4)
A(f ) =

∑p

k=0
A(k)e−2�fk

X(f ) = A(f )−1E(f ) = H(f )E(f )
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to the classifier one by one, and the best feature is selected. 
Then the combination of the first selected feature and the 
other remaining features is given to the classifier, and the 
best double feature combination is determined. The frame-
work can be continued to identify informative feature groups 
of various sizes. Another feature selection method that was 
used in this study is the Relief-F. This method is a super-
vised method that evaluates the quality of the features. In 
this method, a sample is selected randomly from the samples 
in the data set at each step. If the same feature in the selected 
sample differs from the similar feature in the neighboring 
sample of the same class, this feature’s score reduces. On the 
other hand, if the same feature in the chosen sample differs 
from the similar feature in the opposite class’s neighboring 
sample, the score of this feature increases [37]. Finally, after 
calculating the score values of each feature, these features 
are arranged in descending order. The third feature selection 
method is the mRMR. This method evaluates the features 
based on the maximum relevance and minimum redundancy. 
For example, features have a maximum relevance that has 
the maximum amount of mutual information between fea-
tures and class labels. On the other hand, features with mini-
mum redundancy are identified based on the principle that if 
two features are interdependent and one of them is removed, 
the classification performance will not change much [40]. 
Accordingly, after calculating the maximum relevance and 
minimum redundancy of each feature, they are arranged in 
descending order to select the best features.

Classification

Classification methods have been successfully used to ana-
lyze complex patterns in neuroimaging data. In this study, 
two classification methods of linear discriminant analy-
sis (LDA) and support vector machine (SVM) have been 
used. LDA as a supervised method is used to find a linear 
hyperplane that best separates data from two classes [41] 
and SVM obtains a hyperplane with a maximum margin to 
separate the two classes. In the SVM method, if the data is 
not linearly separable, the data will be mapped to a larger 
space to be able to separate them in the new space. First, 
two boundary planes are created parallel to the classification 
plane. These two planes are so far apart that they collide 
with the data, in which case they are called support vectors. 
So, the best separator is created with the maximum distance 
from all data [42]. Different kinds of used kernel function for 
SVM classifier in this study are linear, quadratic, cubic, and 
Gaussian kernels such as radial basic function (RBF). The 
correct choice of kernels and parameters greatly affects the 
performance and final result. We have used the RBF kernel, 
which is the most common kernel based on the Euclidean 
Distance. Also, the RBF kernel has good performance due 
to the consideration of data distribution and finally has less 

complexity and less time than other kernel function such as 
polynomial kernel [42].

Statistical analysis

Due to the limited data set, k-fold cross-validation will be 
used. This method divides the data set into k sections with 
the same number of samples. The optimal value of k will be 
selected through trial and error by maximizing classifica-
tion performance and minimizing error. In each trial, the 
classification structure is constructed with the k−1 section 
of the data (for training and validation), and evaluated with 
the remaining data as test data. This process is repeated k 
times so that each data is used exactly once as test data. Per-
formance evaluation will be reported with the average k test 
results. In this study, the 10-fold cross-validation method has 
been used to evaluate the performance of the classifications. 
We evaluate our algorithms using four criteria: accuracy, 
sensitivity, specificity, and F1-score.

In this study, to evaluate the best features, the P-value 
of the Wilcoxon rank-sum test is used. The Wilcoxon rank-
sum test is a non-parametric test for two groups whose sam-
ples are independent of each other [43]. Another statistical 
method used to evaluate the power of feature separation is 
the use of the AUC-ROC values, which has also been used 
in this study.

Overview of the proposed method

Figure 1 shows the block diagram of the proposed method. 
First, the raw data obtained from the EEG were preprocessed 
with the EEGLAB open-source toolbox. Preprocessing steps 
include frequency filtering and line noise cancellation, arti-
facts removing, ICA, and time correction. Then, the effective 
brain connectivity between 19 EEG signal channels as the 
extracted feature was calculated using the dDTF method in 
different frequency bands of the delta, theta, alpha, beta, 
and gamma. The EEG signal features are 361 (19 × 19) per 
patient. For extraction of dDTF features, whiteness, con-
sistency, and stability of EEG signals are considered. In 
this study, the length of the signal window was considered 
10 s and considering 150 s for each patient, 15 connectivity 
19 × 19 matrix as the extracted feature has been calculated 
from each subject. These extracted features are calculated 
using the SIFT in the EEGLAB toolbox [44]. Then we seek 
to identify effective biomarkers that can be used to obtain 
rTMS treatment response in MDD patients. In the following, 
the best features were selected using forward feature selec-
tion algorithm based on AUC-ROC, Relief-F, and mRMR 
feature selection methods. Finally, the selected features were 
classified by SVM and LDA. All machine learning calcula-
tions are performed in MATLAB software.
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Results

After preprocessing the 19-channel EEG signal, effective 
brain connectivity has been calculated between different 
brain areas by the dDTF method in delta, theta, alpha, beta, 
and gamma frequency bands for all responder and non-
responder MDD patients to rTMS treatment, separately. As 
described in the previous section, the dDTF method exam-
ines the dependency degree of the brain signals by using an 
AR model that determines the power and direction between 
different brain regions. In this study, the length of the sig-
nal window was considered 10 s (The EEG signal length of 
each patient was 150 s and for each patient, 15 connectivity 
matrix has been calculated) and two criteria of stability and 
consistency with a model order of 12 were examined and 
approved. Effective brain connectivity between 19 channels 
of each patient was calculated using the dDTF method in 
different frequency bands as 361 (19 × 19) features. In Fig. 2, 
the mean values of the normalized effective brain connectiv-
ity matrices calculated by the dDTF method from EEG sig-
nals of responder and non-responder MDD patients to rTMS 
treatment in different frequency bands (delta, theta, alpha, 
beta, and gamma) have been shown. In these figures, the 
rows and columns represent 19 EEG signal electrodes, and 
the color values of the matrix indicate the amount of brain 
connectivity. Also, to better display these features, brain 
connectivity using the BrainNet toolbox [45] for responder 
and non-responder MDD patients is shown in Fig. 3 as graph 
representation. In this figure, the nodes represent the brain 
regions or EEG signal electrodes, and normalized mean val-
ues of the brain connectivity matrices determined by the 
dDTF method are defined as edges. We used the representa-
tion of the graph to visualize effective brain connectivity 
and find the best areas of difference between the two groups.

Statistical methods have been used to quantify the brain 
activation differences between the two groups of respond-
ers and non-responders. Thus, for each of the 361 features 
extracted between the two groups of responders (17 patients) 
and non-responders (17 patients), the Wilcoxon rank-sum 
test and the AUC-ROC value have been used. Statistically, 
the features that lead to P-value ≤ 0.001 and have a higher 
AUC-ROC value can distinguish between the two groups of 
responders and non-responders and indicate the difference 
in activity between the two groups. Figure 4 shows 30 fea-
tures of the best features selected by the AUC-ROC criterion 
in each frequency band. In this figure, the presence of the 
edges indicates the membership of the 30 best features in 
each frequency band, and the color of the edges indicates 
the AUC-ROC values. In the following, 30 best features of 
effective brain connectivity between different regions in all 
frequency bands between the two groups of responder and 
non-responder to rTMS treatment are ranked by the AUC-
ROC criterion and shown in Table 2.

  From another perspective, the advanced machine learn-
ing techniques’ power has been examined to detect the rTMS 
treatment response for drug-resistant MDD patients from 
pre-treatment EEG signals. The machine learning process 
consists of three main steps: feature extraction, feature 
dimension reduction or feature selection, and classification 
algorithm. At first, the effective brain connectivity between 
different brain channels using the dDTF method in the delta 
and theta frequency bands (other frequency bands were not 
calculated due to poor results in the previous section) are 
calculated and 361 different features from each patient are 
extracted. In the following, the best features combination 
that can be distinguished between the two groups has been 
estimated by using three mentioned feature selection meth-
ods named mRMR, Relief-F, and forward feature selection 

Fig. 1  Schematic diagram of 
the proposed method. First, the 
raw data of the collected EEG 
signals are pre-processed, and 
then, using the dDTF method, 
the brain connectivity matrix is 
calculated. In the following, by 
using the feature selection, the 
best features are obtained, and 
finally, the classification of the 
two classes is done

Raw EEG data Preprocessing

Extracting connectivity matrices 
using dDTF method 

Feature selectionClassification
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Fig. 2  The normalized values 
of the brain connectivity matrix 
calculated by the dDTF method 
from EEG signals in responder 
and non-responder MDD 
patients to rTMS treatment in 
the delta, theta, alpha, beta, 
and gamma frequency bands. 
The color values of the matrix 
indicate the amount of brain 
connectivity
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algorithm based on AUC-ROC. In Tables 2, 3, 4 and 30 
best features of effective brain connectivity between the 
two groups of responder and non-responder to rTMS treat-
ment by the AUC-ROC, Relief-F and mRMR are ranked 
and shown, respectively. In the end, we have classified 
the responder and non-responder MDD patients using the 
selected features and LDA and SVM classifiers. The ‘RBF’ 
kernel has been considered as kernel function in the SVM 
classifier. In this study, the 10-fold cross-validation method 
has been used to evaluate the classifier performance.

In Tables 5 and 6, the classification results of respond-
ers and non-responders MDD patients to rTMS treatment 

Fig. 3  The values of brain connectivity in responderand non-
responder MDD patients as the graph representation in each fre-
quency band. Thenodes represent the brain regions or EEG signal 
electrodes, and the normalizedmean values of the brain connectivity 
matrices are defined as edges

Fig. 4  30 features of the best features selected by theAUC-ROC 
criterion in each frequency band between two groups of responder 
andnon-responder to rTMS treatment. In this figure, the presence of 
the edgesindicates the membership of the 30 best features in each fre-
quency band, andthe color of the edges indicates the AUC-ROC val-
ues. The prefrontal regions(Fp1 and Fp2), especially Fp2 in the delta 
and theta frequency bands, have thehighest AUC-ROC values
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are shown separately by using all 30 best features, feature 
selection of forward selection based on AUC-ROC ranked, 
mRMR, and Relief-F and two classification methods in the 
delta and theta frequency bands in terms of the accuracy, 
sensitivity, specificity, and F1-score, respectively. The delta 
and theta frequency bands features are combined to improve 
the classification performance. In Table 7, the results of 
combined features in the delta and theta frequency bands 
have been shown. In this case, the highest accuracy, sensi-
tivity, and specificity values for the forward selection based 
on AUC-ROC ranked and SVM classifier equal to 89.6%, 
84.5%, and 94.7% have reached, respectively. Figure 5 shows 

the accuracy diagram for the SVM classifier with forward 
selection based on AUC-ROC ranked, according to the num-
ber of features in the delta, theta, and combination of the 
two frequency bands. With increasing the number of fea-
tures, the classification accuracy reaches its maximum value 
and then decreases. Also, when the delta and theta bands 
are combined, the classification accuracy is increased. The 
finally selected features for the best results using forward 
selection based on AUC-ROC ranked and SVM classifier 
are: P7 ⇒ Fp2 (Delta), Fp2 ⇒ P3 (Delta), Fp1 ⇒ T7 (Delta), 
O2 ⇒ T8 (Theta), Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 (Delta). In 
Table 8, in accordance with Fig. 5 in combined delta and 
theta frequency bands, the best two, three, four, five and 
six selected features with their classification accuracy by 
forward feature selection algorithm and SVM classification 
are shown.

Table 2  Rank of the 30 best features of effective brain connectiv-
ity between different regions in all frequency bands between the 
responder and non-responder MDD patients to rTMS treatment by the 
AUC-ROC criterion. The prefrontal area (Fp1 and Fp2), especially 
Fp2 has the highest AUC-ROC values than other areas of the brain. 
Delta and theta frequency bands also have higher AUC-ROC values 
than other frequency bands

EEG electrode 
names

Frequency band AUC-values P-values

1 Fp2 ⇒ T7 Delta 0.850 > 0.001
2 Fp2 ⇒ F7 Delta 0.829 > 0.001
3 Fp2 ⇒ T7 Theta 0.816 > 0.001
4 Fp2 ⇒ P4 Delta 0.797 > 0.001
5 Fp2 ⇒ Fp1 Delta 0.790 > 0.001
6 Fp2 ⇒ C3 Delta 0.787 > 0.001
7 Fp2 ⇒ F7 Theta 0.787 > 0.001
8 Fp2 ⇒ Pz Delta 0.780 > 0.001
9 Fp2 ⇒ P3 Delta 0.779 > 0.001
10 Fp2 ⇒ F8 Delta 0.778 > 0.001
11 Fp2 ⇒ C4 Theta 0.778 > 0.001
12 Fp2 ⇒ F4 Delta 0.777 > 0.001
13 Fp2 ⇒ C4 Delta 0.775 > 0.001
14 Fp2 ⇒ T8 Theta 0.769 > 0.001
15 Fp2 ⇒ F8 Theta 0.766 > 0.001
16 Fp2 ⇒ P4 Theta 0.761 > 0.001
17 Fp2 ⇒ Cz Delta 0.758 > 0.001
18 Fp2 ⇒ P7 Delta 0.758 > 0.001
19 Fp2 ⇒ Cz Theta 0.756 > 0.001
20 Fp2 ⇒ C3 Theta 0.756 > 0.001
21 Fz⇒ T7 Delta 0.755 > 0.001
22 P7 ⇒ T7 Delta 0.755 > 0.001
23 P8 ⇒ T7 Delta 0.753 > 0.001
24 Fp2 ⇒ O1 Delta 0.753 > 0.001
25 Fp2 ⇒ Pz Theta 0.752 > 0.001
26 Fp2 ⇒ P8 Delta 0.751 > 0.001
27 Fp1 ⇒ T7 Delta 0.749 > 0.001
28 Fp2 ⇒ T8 Delta 0.746 > 0.001
29 Fp2 ⇒ O2 Delta 0.746 > 0.001
30 Fz ⇒ C3 Delta 0.743 > 0.001

Table 3  Rank of the 30 best features of effective brain connectiv-
ity between different regions in all frequency bands between the 
responder and non-responder MDD patients to rTMS treatment by the 
Relief-F method

EEG electrode names Frequency band

1 P7 ⇒ P8 Gamma
2 P8 ⇒ Fp2 Gamma
3 Cz ⇒ O2 Gamma
4 P4 ⇒ Fp2 Beta
5 C4 ⇒ P8 Gamma
6 P4 ⇒ Fp2 Gamma
7 C4 ⇒ Fp2 Beta
8 Fp2 ⇒ T7 Delta
9 P3 ⇒ Fp2 Gamma
10 F3 ⇒ Fp2 Beta
11 T8 ⇒ Fp2 Gamma
12 Fp2 = > P8 Gamma
13 P7 = > T7 Delta
14 O2 ⇒ P7 Gamma
15 T7 ⇒ Fp2 Gamma
16 Pz ⇒ Fp2 Gamma
17 C3 ⇒ O1 Alpha
18 P8 ⇒ F7 Gamma
19 Cz ⇒ F4 Beta
20 C4 ⇒ T7 Beta
21 Cz ⇒ P8 Gamma
22 C4 ⇒ Fp2 Alpha
23 F7 ⇒ Fp2 Beta
24 C3 ⇒ P8 Theta
25 C3 ⇒ F7 Beta
26 P3 ⇒ O1 Gamma
27 C3 ⇒ O1 Beta
28 O2 ⇒ O1 Gamma
29 T8 ⇒ O2 Gamma
30 Cz ⇒ T8 Gamma
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Discussion

In this study, the effective brain connectivity based on 
the dDTF method was calculated between two groups of 
responder and non-responder MDD patients to rTMS treat-
ment. Results indicated that the prefrontal regions, specifi-
cally the Fp2 region in the two delta and theta frequency 
bands have significant differences between the two groups. 
Also, as results indicate, it can be used as a remarkable brain 
pattern or valuable brain biomarker to assess the treatment 
response in MDD patients by EEG signal before starting 
the treatment and avoid financial and time costs to patients 
and medical centers. Moreover, the machine learning per-
formance through feature selection methods and classifica-
tion algorithms has been estimated. The results have shown 
that the SVM classifier accuracy by combining the delta 
and theta frequency bands using forward feature selection 
algorithm based on the AUC-ROC has reached the highest 
value of 89.6%. In Table 9, a list of existing works to pre-
diction of rTMS treatment response in MDD patients are 
presented. As it is observed, the accuracy achieved in this 
study by applying the effective connectivity method with 
dDTF as the features and selected biomarkers through the 
AUC-ROC feature selection and SVM classifier is higher 
than those studies. It proves the preference of the proposed 
method. Evaluation of the active areas determined that the 
prefrontal regions (especially the Fp2 region) played the 
most critical role in selecting the best features to classify 
the MDD patients in detecting the rTMS treatment response. 
Finally, our proposed method, compared to deep learning 
methods, has less processing time. Feature selection and 
machine learning time is on average less than 2 min, which 
is less than deep learning methods that take at least a few 
hours to process.

In the prefrontal cortex, the activity of responder and non-
responder MDD patients is different (Figs. 3, 4 and 5). So 
that responders show more activity in these areas. It happens 

Table 4  Rank of the 30 best features of effective brain connectiv-
ity between different regions in all frequency bands between the 
responder and non-responder MDD patients to rTMS treatment by the 
mRMR method

EEG electrode names Frequency band

1 Fp2 ⇒ T7 Delta
2 Fp2 ⇒ T8 Theta
3 Fz ⇒ F8 Delta
4 C3 ⇒ Pz Gamma
5 Fz ⇒ C4 Delta
6 T8 ⇒ C4 Alpha
7 O1 ⇒ P8 Gamma
8 P8 ⇒ C4 Theta
9 P7 ⇒ Fz Alpha
10 F8 ⇒ T8 Theta
11 Fp2 ⇒ P4 Alpha
12 P3 ⇒ Fp2 Delta
13 Fp2 ⇒ C4 Delta
14 Cz ⇒ Fp2 Alpha
15 C3 ⇒ Fp2 Gamma
16 Fp2 ⇒ T8 Alpha
17 P3 ⇒ T8 Theta
18 Fp2 ⇒ F8 Theta
19 T8 ⇒ Fp2 Alpha
20 F8 ⇒ Fp2 Delta
21 Fz ⇒ Fp2 Delta
22 Fp2 ⇒ F7 Delta
23 T8 ⇒ P7 Gamma
24 Fp2 ⇒ T7 Theta
25 F8 ⇒ T7 Delta
26 Fz ⇒ Cz Delta
27 Fp2 ⇒ Pz Theta
28 Fp2 ⇒ T8 Beta
29 Fz ⇒ F3 Theta
30 Fp2 ⇒ O2 Theta

Table 5  Results of classification of responder and non-responder 
MDD patients to rTMS treatment using effective brain connectivity 
method and all 30 best features, feature selection of forward selection 

based on AUC-ROC ranked, mRMR, and Relief-F by the LDA and 
SVM classification methods in delta frequency band

Classifier Feature selection Classification performance

Accuracy Sensitivity Specificity F-Measure

SVM AUC ranked and forward selection 87.8% (± 0.8) 76% (± 1.2) 99.6% (± 0.8) 86% (± 0.2)
mRMR 81.4% (± 0.7) 73.1% (± 1.8) 89.8% (± 0.8) 80% (± 0.3)
Relief-F 80.2% (± 1.3) 90.3% (± 1.4) 70.1% (± 2.2) 82% (± 0.2)
All 30 best features 70.1% (± 1.4) 67.1% (± 1.4) 72% (± 2.3) 69.3% (± 0.5)

LDA AUC ranked and forward selection 77.7% (± 0.6) 78.4% (± 0) 77% (± 1.3) 77.9% (± 0.1)
mRMR 78.7% (± 0.9) 77.8% (± 0.9) 79.6% (± 1.6) 78.5% (± 0.1)
Relief-F 75% (± 1.8) 72.1% (± 1.8) 78% (± 2.8) 74.3% (± 0.6)
All 30 best features 66.3% (± 1.6) 63.2% (± 1.7) 68% (± 2.5) 65.2% (± 0.6)
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in the prefrontal areas (Fp1 and Fp2), especially in the delta 
and theta frequency bands. As shown in Table 2 and these 
Figures, the prefrontal regions (Fp1 and Fp2), especially 
Fp2, have higher AUC-ROC values than other areas of the 
brain. Delta and theta frequency bands also have higher 
AUC-ROC values than other frequency bands. Therefore, 
after calculating and examining the effective brain con-
nectivity matrices according to the dDTF method between 
the two groups of responder and non-responder to rTMS 
treatment, the Fp2 region in the delta and theta frequency 
bands has the highest activity difference between these two 
groups and has the highest AUC-ROC values in compari-
son to other brain regions and other frequency bands. This 
result can be a significant brain pattern or brain biomarker 
to classify the responders and non-responders before starting 
the rTMS treatment. In other words, the Fp2 region in the 
delta and theta frequency bands play the most critical role 
in predicting the rTMS treatment response in drug-resistant 
MDD patients.

The dDTF method provides one of the best effective 
brain connectivity measures. Unlike the Granger-Geweke 

causality (based on Granger causality), only direct directed 
connectivities calculated, and the indirect and fake connec-
tivities excluded from the connectivity matrix. The dDTF 
method is one of the multivariate methods based on multi-
channel AR models that can identify the causal relationships 
between signals and determine the direct flow of signals’ 
activations. Frequency dependence is one of the important 
features of the dDTF method because different rhythms of 
EEG signals have different roles in information flow process-
ing. Since the DTF method is based on the phase difference 
between the channels, so it is insensitive to the volume con-
ductance effect and robust to the noise. Due to the mentioned 
advantages of the dDTF method, it can be concluded that the 
dDTF method provides the best effective brain connectivity.

We have used three known feature selection algorithms 
named, mRMR, Relief-F, and forward feature selection 
algorithm based on AUC-ROC for selecting the best fea-
tures (Tables 2, 3 and 4). The results displayed that the for-
ward feature selection algorithm based on the AUC-ROC 
method which uses a classifier during the feature selection 
phase and also uses its predictive performance to evaluate 

Table 6  Results of classification of responder and non-responder 
MDD patients to rTMS treatment using effective brain connectivity 
method and all 30 best features, feature selection of forward selection 

based on AUC-ROC ranked, mRMR, and Relief-F by the LDA and 
SVM classification methods in theta frequency band

Classifier Feature selection Classification performance

Accuracy Sensitivity Specificity F-Measure

SVM AUC ranked and forward selection 86.3% (± 1.4) 83.3% (± 2.1) 89.4% (± 1.3) 85.4% (± 0.4)
mRMR 78.9% (± 1) 75.2% (± 1.8) 82.5% (± 1.1) 78% (± 0.2)
Relief-F 81.1% (± 2.1) 80% (± 3) 82.3% (± 3.8) 81.1% (± 0.5)
All 30 best features 59.2% (± 1.1) 56.4% (± 1.2) 61% (± 2.3) 58.4% (± 0.5)

LDA AUC ranked and forward selection 83.8% (± 0.6) 84.3% (± 0.9) 83.3% (± 1.3) 83.9% (± 0.2)
mRMR 77.9% (± 0.6) 81.9% (± 1.2) 73.9% (± 1.3) 79.1% (± 0.4)
Relief-F 73.8% (± 2) 68.4% (± 2.6) 79.2% (± 3.4) 71.8% (± 1)
All 30 best features 57.1% (± 1.2) 55.3% (± 1.4) 59.2% (± 2.1) 56.3% (± 0.5)

Table 7  Results of classification of responder and non-responder 
MDD patients to rTMS treatment using effective brain connectivity 
method and all 30 best features, feature selection of forward selection 

based on AUC-ROC ranked, mRMR, and Relief-F by the LDA and 
SVM classification methods in a combination of delta and theta fre-
quency bands

Classifier Feature selection Classification performance

Accuracy Sensitivity Specificity F-Measure

SVM AUC ranked and forward selection 89.6% (± 1) 84.5% (± 1.9) 94.7% (± 0.9) 88.5% (± 0.2) 
mRMR 82.1% (± 1.7) 79.2% (± 2.8) 85% (± 1) 80.9% (± 1.4)
Relief-F 76.4% (± 1.3) 70.7% (± 1.1) 82.1% (± 1.9) 74.9% (± 0.3)
All 30 best features 75.2% (± 1.5) 72.1% (± 1.5) 78% (± 2.5) 74.3% (± 0.5)

LDA AUC ranked and forward selection 86.9% (± 0.6) 88.2% (± 0) 85.6% (± 1.3) 87.1% (± 0.1)
mRMR 82.5% (± 0.6) 78.2% (± 1.1) 86.8% (± 0.9) 81.5% (± 0.2)
Relief-F 76.2% (± 1.7) 71.5% (± 1) 80.9% (± 3.2) 74.9% (± 0.4)
All 30 best features 72.2% (± 1.5) 67.5% (± 0.9) 76.9% (± 3.1) 70.9% (± 0.3)
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the usefulness of an input feature yielded better classifica-
tion results (Tables 5, 6 and 7). On the other hand, Relieff 
and mRMR, only rely on the importance of the general fea-
tures and consider the relevance of features with dependent 

classes using statistical measures. Therefore, the results 
revealed that the forward feature selection algorithm based 
on the AUC-ROC selection led to better performance results 
compared with Relieff and mRMR methods, which can be 

Fig. 5  Accuracy of SVM classi-
fication as a function of thenum-
ber of features using forward 
selection based on AUC-ROC 
in the delta (top),theta (middle), 
and combination of delta and 
theta (bottom) bands
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seen from the results of the classifiers they have not selected 
appropriate features.

Results of this study using the extracted features from 
the dDTF method showed that the delta and theta frequency 
bands have higher efficiency compared with other frequency 
bands for discrimination of the responder and non-responder 
MDD patients to rTMS treatment. According to Table 2, 
based on the value of AUC-ROC, 30 of the best features 
are plotted in all frequency bands and indicate that the delta 
and theta bands have a higher separability than other fre-
quency bands. Also, according to Figs. 3 and 4, which indi-
cate normalized connectivity matrices of all five frequency 
bands of responders and non-responders, the delta and 
theta bands have significant values compared to the other 
frequency bands, especially for the Fp1 and Fp2 channels. 
Finally, these results are consistent with previous studies 
[39, 48, 49], based on the higher performance of features in 
the delta and theta bands than in other frequency bands for 
the two groups classification. Therefore, in machine learn-
ing calculation to increase accuracy and speed of classifica-
tion, only the delta and theta frequency bands are considered 
and other frequency bands were not calculated due to poor 
results in the previous section. From a neurobiological point 
of view, the discrimination of the delta and theta bands in the 
frontal cortex can be explained using theta current density, 
localized by LORETA in the rostral anterior cingulate cor-
tex (rACC) in MDD patients [50, 51]. This region is related 
to the response to different types of antidepressants during 
depression. The rACC is involved in self-focused processing 

and is known as the main hub in the brain’s default net-
work. Besides, increasing the resting-state activity in rACC 
is associated with rumination, remembering, and planning 
[52]. Rumination is a mechanism for responding to distress 
and consists of two components: reflective pondering and 
brooding. Increased rACC activity may lead to treatment 
response due to adaptive self-referential functions such as 
mindfulness through reflective pondering and less brooding 
or less self-focused. Cognitive problem solving is accom-
plished through reflective pondering. While brooding is 
like self-focused processing, which is ultimately destructive 
because it worsens depressive symptoms. Also, the discrimi-
nant power of the functional connectivity of the rACC has 
been demonstrated in MRI data in depressed patients [53].

In addition to the classification accuracy of respond-
ers and non-responders to rTMS treatment, sensitivity and 
specificity are considerable. The more sensitivity, would be 
deprived the fewer patients of treatment, and on the other 
hand, the more specificity, would be prevented from wasting 
time, money and stimulation of the non-responder patients. 
In general, it can be asserted that both specificity and sen-
sitivity parameters have approximately equal importance.

For future work, it is suggested to calculate the effec-
tive brain connectivity in brain source localization of EEG 
signals with more channels, and then discuss the features 
and classification methods. In this study, effective brain con-
nectivity features were calculated from 19 channels of EEG 
signals, while another way to calculate effective brain con-
nectivity is through the brain source localization of the EEG 

Table 8  The selected features by forward feature selection⇒ algorithm and SVM classification in combined delta and theta frequency bands 
between the responder and non-responder MDD patients to rTMS treatment with their classification accuracy

EEG electrode names Classification accuracy

1 Fp2 ⇒ T7 (Delta) 77.15 ± 1.03
2 Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 (Delta) 81.17 ± 1.20
3 O2 ⇒ T8 (Theta), Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 (Delta) 84.80 ± 1.40
4 Fp1 ⇒ T7 (Delta), O2 ⇒ T8 (Theta), Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 (Delta) 87.05 ± 2.34
5 Fp2 ⇒ P3 (Delta), Fp1 ⇒ T7 (Delta), O2 ⇒ T8 (Theta), Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 (Delta) 89.31 ± 0.72
6 P7 ⇒ Fp2 (Delta), Fp2 ⇒ P3 (Delta), Fp1 ⇒ T7 (Delta), O2 ⇒ T8 (Theta), Fp2 ⇒ F7 (Theta), Fp2 ⇒ T7 

(Delta)
89.60 ± 1.05

Table 9   A list of existing work to prediction of rTMS treatment response in MDD patients

Authors Year Feature Classifier Accuracy

Shalbaf, et al.[12] 2018 Non-linear entropy LR 80%
He R., et al. [46] 2019 Combined EEG and mood measures Linear SVM 86%
Hasanzadeh F., et al. [25] 2019 Katz fractal dimension, and Correlation dimension k-nearest neighbors 91.3%
Ebrahimzadeh E., et al. [47] 2021 Absolute powers, band powers, and theta and beta band 

entropies
SVM 82.43%

Proposed method 2021 Direct directed transfer function SVM 89.6%
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signals. Also, it is suggested that other feature extraction 
methods, including functional connectivity and also neural 
network-based algorithms such as deep learning, utilize to 
predict the rTMS treatment response in drug-resistant MDD 
patients.

Conclusion

Results of the effective brain connectivity based on the 
dDTF method indicated that the prefrontal region and spe-
cifically the Fp2 region in the delta and theta frequency 
bands could be used as a valuable brain biomarker to assess 
the treatment response in drug-resistant MDD patients by 
EEG signal before starting the treatment. Also, the results 
have shown that the accuracy of the SVM classifier in the 
combination of the delta and theta frequency bands using the 
forward feature selection algorithm based on AUC-ROC has 
reached the highest value of 89.6%.
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