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Abstract
Lung and colon cancers lead to a significant portion of deaths. Their simultaneous occurrence is uncommon, however, in the 
absence of early diagnosis, the metastasis of cancer cells is very high between these two organs. Currently, histopathological 
diagnosis and appropriate treatment are the only way to improve the chances of survival and reduce cancer mortality. Using 
artificial intelligence in the histopathological diagnosis of colon and lung cancer can provide significant help to specialists in 
identifying cases of colon and lung cancers with less effort, time and cost. The objective of this study is to set up a computer-
aided diagnostic system that can accurately classify five types of colon and lung tissues (two classes for colon cancer and 
three classes for lung cancer) by analyzing their histopathological images. Using machine learning, features engineering 
and image processing techniques, the six models XGBoost, SVM, RF, LDA, MLP and LightGBM were used to perform the 
classification of histopathological images of lung and colon cancers that were acquired from the LC25000 dataset. The main 
advantage of using machine learning models is that they allow a better interpretability of the classification model since they 
are based on feature engineering; however, deep learning models are black box networks whose working is very difficult to 
understand due to the complex network design. The acquired experimental results show that machine learning models give 
satisfactory results and are very precise in identifying classes of lung and colon cancer subtypes. The XGBoost model gave 
the best performance with an accuracy of 99% and a F1-score of 98.8%. The implementation and the development of this 
model will help healthcare specialists identify types of colon and lung cancers. The code will be available upon request.

Keywords Lung and colon cancer · Histopathological images · Machine learning · Feature engineering · Image processing · 
Image classification

Introduction

According to the World Health Organization, cancer is con-
sidered one of the most common causes of mortality in the 
world. Cancer cells acquire autonomous growth, genetic 
instability and significant metastatic power. Among the most 
frequently affected organs, colon and lung cancers account 
for the highest number of deaths. Lung cancer accounts for 
18.4% of cancer-related deaths, while colon cancer accounts 
for 9.2% of all cancer-related deaths worldwide [1, 2]. The 
rate of simultaneous occurrence of lung and colon cancer 
is approximately 17%. Although this frequency is unlikely, 
but in the absence of an early diagnosis, cancer cells metas-
tasis is very high between these two organs [3]. Currently, 
appropriate treatment and early diagnosis are the only way 
to reduce cancer mortality [4]. Indeed, the earlier a person 
is diagnosed, the better the management and the greater the 
chance of recovery and survival of the patient are.
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Various tests such as imaging sets (x-ray, CT scan), Spu-
tum cytology, and tissue sampling (biopsy) are done to look 
for cancer cells and exclude other possible conditions. While 
performing the biopsy, evaluation of the microscopic histo-
pathology slides by experienced pathologists is essential to 
establish the diagnosis [5] and defines the types and subtypes 
of cancers [6]. To automatically diagnose colon and lung 
cancers, this study relies solely on histopathological images. 
Histopathological images are widely used by health special-
ists for diagnosis, and they are very important in predicting 
patients’ chances of survival. Traditionally, in order to diag-
nose cancer by examining histopathological images, health 
specialists have to go through a long process; however, it is 
now possible to perform this process in less time and effort 
with the available technological tools [3]. Recently, artificial 
intelligence technologies have been known for their ability 
to examine data faster and make decisions.

Machine learning (ML) is a subfield of artificial intel-
ligence (AI) that allows machines to learn a specific task 
through experience with the datasets to which they are 
exposed, without explicit programming [7]. ML algorithms 
are used in biomedical applications for the prediction and 
classification of several types of signals and images. Deep 
learning (DL) algorithms have been developed to enable 
machines to handle large-dimensional data like multidimen-
sional anatomical images, and videos. DL is a subfield of 
ML that structures algorithms in layers to create an “artifi-
cial neural network”, based on the structure and function of 
the human brain [8].

In previous research articles, most of the authors consid-
ered using DL to classify colon and lung cancer images at 
the same time. Some authors have focused on lung cancer 
classification, while others have concentrated entirely on the 
classification of colon cancer.

There are few works for the classification of colon can-
cer. For instance, Bukhari et al. [9] used three convolutional 
neural networks architectures: ResNet-18, ResNet-30, and 
ResNet50. ResNet-50 achieved the highest accuracy of 
93.91%, followed by ResNet-30 and ResNet-18 with an 
accuracy of 93.04% each.

To classify histopathological images of lung cancer into 
three classes, Hatuwal et al. [10] used Convolution Neu-
ral Network (CNN). The classification result obtained 
was 97.2%. Nishio et al. [11] used homology-based tech-
nique and machine learning methods to classify lung tissue 
images into three classes. The overall classification accuracy 
obtained was 99.43%.

Masud et al. [12] classify colon and lung histopatho-
logical images using a deep learning-based method. They 
used domain transformations of two types to extract four 
feature sets for image classification. Then they combined 
the features of the two categories to arrive at the final 
classification results. They have achieved an accuracy of 

96.33%. Mangal et al. [13] made a classification of colon 
and lung cancers based on histopathological images by 
applying a shallow neural network architecture. They 
achieve an accuracy of 97% and 96% in classifying lung 
and colon cancers, respectively. Toǧaçar [3] performed the 
classification of colon and lung cancers’ histopathological 
images by training the images with the Darknet-19 model 
and then obtain the feature sets, to which two optimization 
algorithms were applied to select the inefficient features. 
Then, the efficient feature sets, that have been created for 
each of the two optimization algorithms by distinguishing 
the ineffective features from the rest of the features in the 
set, were combined and classified using SVM classifier. He 
has obtained an overall accuracy of 99.69%.

The main limitation of conventional ML is that it 
requires pertinent features and more ongoing human inter-
vention to get results. DL is more complex to set up but 
requires minimal intervention.

However, the use of ML has many advantages. The main 
advantage of conventional ML models over DL models is 
that ML models allow better interpretability of the classi-
fication model since they are based on feature engineering. 
The computed features have an interpretable mathematical 
meaning and then help us to better understand our model 
and to increase its predictive power. Indeed, in the medi-
cal and diagnostic field, feature engineering is crucial for 
doctors to make life-changing decisions because it allows 
them to know the importance and impact of each feature 
on the classification of cancer subtypes; unlike DL models 
which are black box networks that their working is very 
difficult to understand and interpret because of complex 
network design [14]. Indeed, DL models take automatic 
decisions without us being able to interpret what is going 
on inside the model.

Also, there are many more parameters and hyperparam-
eters that can be learned in DL models than in ML models, 
and so a DL system can take a long time to train. While fea-
ture engineering-based, ML takes comparatively much less 
time to train, ranging from a few seconds to a few hours [14].

Additionally, ML algorithms are less complex than DL 
algorithms and can often run on conventional computers, 
while DL systems require much more powerful hardware 
and resources with very high performance due to the amount 
of data processed and the complexity of the mathematical 
calculations involved in the algorithms used. This need for 
power has led to increased use of graphics processing units 
(GPU) which are very expensive.

The purpose of this study is to propose a medical diag-
nostic support system for lung and colon imaging. In other 
words, it is to set up an automated system that can accu-
rately classify the subtypes of colon and lung cancer from 
histopathological images using ML, and to show that with 
feature engineering we can find powerful accuracy results.
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Our contributions are summarized as follows:

• We proposed feature engineering based machine learn-
ing models for the classification of histopathological 
images of colon and lung cancers into five classes 
(three malignant and two benign).

• We used the SHAP method to explain the output of 
our models and evaluate how the contribution of each 
feature affects our best model.

• We present an experiment on the LC25000 dataset. 
The experiment results demonstrate that our method 
achieves high performance compared to state-of-the-art 
approaches that use DL.

Material and methods

Lung and colon cancer dataset

Lung and Colon Cancer Histopathological Image Dataset, 
published in 2020, is known as LC25000 dataset [15]. The 
LC25000 dataset images were collected at James A. Haley 
Veterans’ Hospital located in Tampa, Florida. The images 
are categorized, labeled, and augmented with rotation and 
flips by the authors. LC25000 dataset contains 25,000 
RGB histopathology images stained with hematoxylin 
and eosin, of five classes of colon and lung tissues, 5,000 
images of each class [16]. Images are 768 × 768 pixels 
in size and are in JPEG file format. All images are de-
identified, Health Insurance Portability and Accountability 
Act (HIPAA) compliant, validated and freely available for 
download to AI researchers. The five classes are Colon 
Adenocarcinoma, Benign Colonic tissue, Lung Adeno-
carcinoma, Benign Lung tissue, and Lung Squamous cell 
Carcinoma.

The most frequent type of colon cancer is Colon Adeno-
carcinoma, which accounts for over 95% of all cases of 
colon cancer. It is produced when an adenoma - a type 
of polyp - develops within the large intestine and eventu-
ally turning into cancer. Lung Adenocarcinoma, a type of 
cancer cells that represents for around 60% of all cases of 
lung cancers, usually grows in the glandular cells located 
in the outer part of the lung and then spreads to the alveoli 
within the lung. Lung Squamous Cell Carcinoma, which is 
the second most frequent type of lung cancer, develops in 
the airways or bronchi of the lungs and represents around 
30% of all cases.

Sample of histopathological images of these five classes 
of colon and lung tissues that are collected from the 
LC25000 dataset are illustrated in Fig. 1.

Overview of the methodology

Figure 2 shows an overview of the methodology used for 
classifying colon and lung cancer subtypes on the basis of 
histopathological images. The RGB images of lung and 
colon cancer were fed into the system. 2500 images were 
used at all stages of our study, 500 images from each class. 
Images were resized to 200 × 200 pixels. Two preprocess-
ing methods were tested: the Unsharp Masking and Stain 
Normalization. Then the images were transformed to gray-
scale and the features were extracted. The Recursive Feature 
Elimination, which is a feature selection method, is used in 
order to select the most efficient features. Then, a machine 
learning algorithm classified the image on the basis of the 
selected features. 20% of the dataset was used as test data 
and 80% was devoted to training the data (randomly chosen). 
The machine learning algorithm is trained using the images 
features of the training set. Finally, image features of the 
testing set are used for assessing the performance of the 
model. The programming language used is Python with the 
implementation of the following libraries: numpy, pandas, 
matplotlib, tensorflow, scikit-learn, scikit-image, staintools 
and xgboost.

Image preprocessing

After image acquisition, the images must be preprocessed. 
Indeed, image preprocessing is essential to improve image 
quality and extract important information from the images to 
make them more adequate for the learning algorithm. In this 
study, two preprocessing methods were tested: the Unsharp 
Masking and Stain Normalization.

Unsharp masking

The contrast of each image is enhanced using the Unsharp 
Masking (UM) which is an image sharpening method. 
Unsharp Masking enhances the contrast, and thus sharpens 
the original image, which can help emphasize texture and 
detail. The basic idea of the UM method is to subtract the 
original image by a blurred version of the image itself, thus 
resulting in only the blurred edges. The typical formula used 
for unsharp masking is as follows:

The outcome of the Unsharp Masking is conditioned by the 
radius and amount parameters. The blurring step could use 
any image filter method, but traditionally a Gaussian fil-
ter is used. The radius parameter in the unsharp masking 
filter refers to the sigma parameter of the Gaussian filter. 
The radius controls the degree of blurring of the original 

(1)Sharpened = original + (original − blurred) × amount
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image, and therefore the dimension of the area encircling the 
edges that is concerned by the sharpening. The value of the 
enhancement effect is determined by the amount parameter, 
which is the value of contrast added to the edges.

In our case, in order to choose the best parameters for the 
unsharp masking method, we carried out a sensitivity study 
on the parameters: We have tested radius values from 1 to 5, 
and amount values from 1 to 20. We have obtained that the 
best values of the radius and amount parameters are 2 and 
5 respectively, since the models gave the best performance 
using these values. Therefore, these values are used in the 
rest of our study. Figure 3 represents the result of enhanc-
ing a histopathological image using the Unsharp Masking 
method under the indicated conditions.

Stain normalization

Stain normalization is one of the preprocessing steps used 
by many deep learning-based algorithms to support pathol-
ogy diagnoses with whole-slide images. This task reduces 
the color and intensity variations present in stained images, 
especially when they are obtained from different hospitals 

or laboratories or scanners, which can adversely affect the 
performance and accuracy of CAD systems. Stain normali-
zation methods aim to assist CAD systems by generating 
images with a standardized appearance of different stains 
[17].

In the literature, many methods have been proposed 
to normalize the colors of hematoxylin and eosin stained 
images. The frequently used color normalization methods 
are Macenko [18] and Vahadane [19]. Previous state-of-the-
art studies, such as Ciompi et al. [20], have shown that the 
classification accuracy of a machine learning-based histo-
pathology system is improved when using stain-normalized 
images. When the variability between images is low, like 
when they belong to the same dataset from the same hospi-
tal, stain normalization can have a small impact on the ML 
pipeline, as also shown by Lafarge et al. [21].

In this study, we use the Vahadane method for stain nor-
malization. The idea of Vahadane method is to first decom-
pose the images in an unsupervised manner into sparse and 
non-negative stain density maps. For a given image, its stain 
density maps are combined with stain color basis of a tar-
get image, thus changing only its color while preserving its 

Fig. 1  Sample images of: a Colon Benign tissue, b Colon Adenocarcinoma, c Lung Benign tissue, d Lung Adenocarcinoma, and e Lung Squa-
mous cell Carcinoma collected from the LC25000 dataset
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Fig. 2  Overall flowchart of the methodology used for the classification of cancer subtypes from histopathological images
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structure described by the maps. Figure 4 presents original 
and normalized images and shows how spot normalization 
reduces stain variability across images within the dataset.

Feature extraction

Features are measured values that can be informative for a 
predictive analysis to classify the attribute. Features con-
tained in histopathological images are essential for the 
diagnosis of the disease, and efficient features extraction 
is of high importance to improve the diagnostic accuracy 
and assist in cancer classification [22]. In this paper, we 
extracted 37 features, including first order statistics, GLCM 
and the Hu invariant moments. The computed features for 
each method are shown in Table 1.

First order statistics

The features obtained from the first-order statistics provide 
information about the distribution of brightness in the image. 
The first-order statistics used are: mean, standard deviation, 
median, percentile 25%, percentile 50% and percentile 75%.

GLCM

In biological imaging, the Gray Level Co-occurrence 
Matrix (GLCM) is a widely used method for texture 
analysis due to its ability to capture the spatial depend-
ence of gray level values inside an image since the pix-
els are considered in pairs. The co-occurrence matrix is a 
second-order statistical characteristics of the changes in 

Fig. 3  A sample of colon cancer 
image: a original image and b 
sharpened image using Unsharp 
Masking

Fig. 4  Original images (a–e) and their normalized versions (f–j) after applying Vahadane stain normalization method
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image brightness. It gives a description of the gray level 
variations between each pixel in the texture of the image 
and its neighboring pixels. Indeed, it is a tabulation of the 
frequency of different combinations of pixels brightness 
values (gray tone) which occur within an image [23].

The co-occurrence matrix is a function of two param-
eters: the distance (d) that is measured in number of pixels 
and their orientation ( � ). The orientation � takes the values 
0◦ , 45◦ , 90◦ , and 135◦ , which represent the four directions 
: the horizontal, diagonal, vertical, and anti-diagonal, 
respectively. The occurrence of a gray level pattern can 
be represented by a relative frequency matrix, P�,d(I1, I2) 
which describes the frequency of appearance of two gray 
level pixels I1, I2 in the window that are separated by a 
distance d in the � direction [24]. The computed features 
are: contrast, dissimilarity, homogeneity, energy, angular 
second moment (ASM) and correlation, of which a group 
of four features is calculated for each.

The contrast is a feature that measures the local level varia-
tions, and it takes high values for high contrast images. The 
dissimilarity provides a measure of the randomness of pixels 
and takes low values if we have the same pixel pairs. Homo-
geneity is a measure that takes high values if we have similar 
pairs of pixels. The ASM is used to measure the smooth-
ness of an image and takes a low value if the region is less 

(2)Contrast =
∑

I1,I2

∣ I1 − I2 ∣
2P(I1, I2)

(3)Dissimilarity =
∑

I1,I2

P(I1, I2) ∣ I1 − I2 ∣

(4)Homogeneity =
∑

I1,I2

P(I1, I2)

1+ ∣ I1 − I2 ∣
2

(5)Energy =
∑

I1,I2

P(I1, I2)
2

(6)Correlation =
∑

I1,I2

(I1 − �1)(I2 − �2)P(I1, I2)

�1�2

smooth. Correlation measures the correlation between pixels 
in two different directions. Since these features depend on d 
and � , then their values differ if the image is returned. Thus, 
we will have features that are invariant to rotation.

Hu invariant moments

The moment feature generally describes the geometric char-
acteristics in the image area. Hu invariant moments are a set 
of seven numbers calculated using central moments that are 
invariant to image transformations. Due to the invariance 
to translation, rotation and scaling, Hu invariant moments 
are largely used in the field of image pattern recognition, 
classification, and target recognition [25]. Therefore, in this 
paper, we used the Hu invariant moments to represent the 
characteristics of histopathological images of colon and lung 
cancers.

Feature selection

Recursive feature elimination (RFE) is a feature selection 
method that eliminates the least important features, as well 
as dependencies and collinearity that may exist in the model, 
until the desired number of features is reached. RFE is popu-
lar because it is easy to implement, and it is effective in 
selecting features from a training data set that are more rel-
evant to predict the target variable.

Features are ranked using the feature_importances_ 
attributes of the model. RFE requires that a specified number 
of features be retained, but since the number of valid features 
is not known in advance, then to find the optimal number of 
features, cross validation is used with RFE to evaluate sev-
eral subsets of features and select the best. RFECV performs 
RFE in a cross-validation loop to find the optimal number 
of features. The purpose of recursive feature elimination is 
to select features by considering recursively smaller fea-
ture sets. First, the classifier is trained on the initial feature 
set and the importance of each feature is obtained based 
on its contribution to the classification. Then, the features 
were sorted from high to low according to their importance, 
which results in a feature ranking. Lastly, the features that 
are least important are eliminated from the actual feature 
set. And then the updated features are used to re-train the 

Table 1  Computed features for each feature extraction method

Feature extraction methods Computed features
First order statistical features Mean, Standard deviation, Median, Percentile 25%, Percentile 50%, Percentile 75%.
GLCM Contrast1, Contrast2, Contrast3, Contrast4, Dissimilarity1, Dissimilarity2, Dis-

similarity3, Dissimilarity4, Homogeneity1, Homogeneity2, Homogeneity3, 
Homogeneity4, Energy1, Energy2, Energy3, Energy4, asm1, asm2, asm3, asm4, 
Correlation1, Correlation2, Correlation3, Correlation4.

Hu invariant moments h1, h2, h3, h4, h5, h6, h7.
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model, and we obtained the classification performance using 
the new feature set. This process is repeated recursively on 
the reduced set until the desired number of features to be 
selected is reached. RFE needs several parameters such as 
estimator and scoring. A scoring function is a metric to 
evaluate the performance of the model such as accuracy, 
f1-weighted, mean squared error; in our study, accuracy is 
the metric used.

In this study, RFE tells us to keep only 12 of the 37 fea-
tures. So, the models are trained only on these 12 features. 
We compared the feature non-selection and RFE method to 
look at the performance. The analysis performed with the 
two methods resulted in not using the RFE method and not 
reducing the feature vector, since the classification system 
was more efficient with the use of all features.

Classification

The features extracted from the 2500 images were used in all 
stages of our study. 20% of the dataset was used as test data 
and 80% was devoted to training the data (randomly chosen).

The features that are extracted from the images were fed 
into machine learning algorithms. The machine learning 
algorithms used are: support vector machine (SVM), Ran-
dom Forest (RF), Extreme gradient boosting (XGBoost), 
Light gradient boosting machine (LightGBM), Linear 
Discriminant Analysis (LDA), and Multilayer Perceptron 
(MLP). These machine learning algorithms were trained 
using the image features of the training set.

In this study, the SVM hyperparameters were tested to 
select those that performed best with the experiment data-
base; The SVM kernels:[’linear’, ’rbf’] and C: [1, 10, 100, 
1000] were tested. We obtained that the best values of the 
SVM hyperparameters are a linear kernel and a regulariza-
tion parameter C of 100, which were selected automatically 
by the model as they performed best, and a one-versus-one 
multi-class method was used.

The hyperparameters of the RF model were also tested; 
The n_estimators: [10, 50, 100, 300], and criterion: [’gini’, 
’entropy’] were tested. The best values of the RF hyperpa-
rameters that were selected are 300 trees and a gini criterion.

The default hyperparameters for the XGBoost algorithm 
are provided by the implementation of xgboost. The tree-
based models (gbtree) which is the type of model to run 
at each iteration, is the general parameter selected for the 
XGBoost model. The maximum depth of a tree is 6.

The default hyperparameters for the LightGBM algo-
rithm are provided by the implementation of lightgbm. 
Traditional Gradient Boosting Decision Tree (gbdt) is the 
selected boosting type. The maximum number of leaves per 
tree is 31.

Also, the default hyperparameters of the LDA algo-
rithm are provided by the implementation of sklearn.

discriminant_analysis. The svd (Singular value decomposi-
tion) solver is used since it does not compute the covari-
ance matrix, so it is recommended for data with numerous 
features.

The MLP classifier is composed of three hidden layers 
with 150, 100 and 50 neurons in each layer, using a ’relu’ 
activation function. The ’Softmax’ activation function is 
used in the last layer of the network. The solver for weight 
optimization used is ’adam’. The other parameters for the 
MLP model, such as number of epoch value of 300, and 
minibatch value of 200 were selected.

Support vector machine (SVM)

Support vector machine (SVM) is a parametric discrimi-
nant classifier that establishes a maximum margin separator 
hyperplane, known as decision boundary, between repre-
sentative examples of each of the training data classes. It 
can carry out binary or multiple classification processes. 
The behavior of SVMs may differ depending on various 
mathematical functions which are known as the “kernel”. 
Popular kernel functions used in SVM classifier are linear, 
radial basis function (RBF), sigmoid, etc. In multi-class, the 
SVM method carries out a vote for the features that are in 
the positive or negative side of the hyperplane. Following 
the voting, each feature is assigned to the class in which it 
obtained the most votes [26]. The general equations used in 
the classification process are specified in Eqs. 7–10.

The separating hyperplane (H) with parameters (w,w0) 
has the equation:

where w is a weight vector and w0 a scalar.
The objective of an SVM is to determine the parameters 

w and w0 of the hyperplane that maximize the minimum 
distance between the observations xk and the hyperplane, i.e:

where h is the projection function on (H), ‖.‖ being the 
Euclidean norm.

After normalization, this problem is equivalent to a mini-
mization problem of an objective function J defined by:

under the constraints:

(7)h(x) = 0 where h(x) = wt.x + w0

(8)argmax
ww0

�
min
k

∣ h(xk) ∣

‖w‖

�

(9)J(w) =
1

2
‖w‖2

(10)
ui.h(xi) ≥ 1, i = 1, ..., n, ui ∈ {−1, 1} being the class of xi
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Random forest (RF)

A random forest classifier is a supervised machine learning 
algorithm which is recognized as an ensemble classification 
technique. It uses a “parallel assembling” that constructs mul-
tiple decision tree classifiers in parallel on various subsamples 
of datasets and takes their majority vote for classification.

Each tree in a random forest randomly samples subsets of 
the training data in a process known as bootstrap aggregating 
(bagging). The model is fit to these smaller data sets and the 
predictions are aggregated. The final prediction is an average 
of all of the decision tree predictions. Thus, it increases the 
accuracy of the prediction and minimizes the overfitting prob-
lem. Therefore, a random forest learning model with several 
decision trees is generally more efficient than a model based 
on a single decision tree [26].

Extreme gradient boosting (XGBoost)

Gradient boosting is an ensemble learning algorithm that pro-
duces a final model from a series of single models, usually 
decision trees. The gradient allows minimizing the loss func-
tion, in the same way that neural networks optimize weights 
by using gradient descent. The algorithm is based on the idea 
of “boosting” which combined all the predictions of a set of 
“weak” learners for developing a “strong” learner through 
additive training strategies. It iteratively train an ensemble 
of shallow decision trees, with each iteration using the error 
residuals of the previous model to fit the next model. At any 
instant t, the model outcomes are weighed based on the out-
comes of previous instant t-1. The outcomes predicted cor-
rectly are given a lower weight and the ones miss-classified 
are weighted higher. The final prediction is a weighted sum of 
all of the tree predictions.

Extreme Gradient Boosting (XGBoost) is a type of gradi-
ent boosting that minimizes the loss by computing the second 
order gradients of the loss function, which improves model 
generalization and performance, and reduces overfitting [26]. 
XGBoost approaches the process of sequential tree building 
using parallelized implementation. It is quick to integrate, and 
it can manage large datasets. The additive learning process in 
XGBoost is explained below. The first learner is fitted to the 
input dataset, and then a second model is fitted to these residu-
als to overcome the drawbacks of a weak learner. This fitting 
process is repeated several times. The final model prediction 
is obtained by the sum of the predictions of each learner. The 
general function for the prediction at step t is presented as 
follows:

(11)f
(t)

i
=

t∑

k=1

fk(xi) = f
(t−1)

i
+ ft(xi)

where ft(xi) is the learner at step t, f (t)
i

 and f (t−1)
i

 are the 
predictions at steps t and (t - 1) respectively, and xi is the 
input variable.

Performance evaluation

In our study, we used several metrics to evaluate ML models 
like the confusion matrix and associated metric parameters, 
such as: Accuracy, Precision, Recall, F1-score and AUC.

• Accuracy is a measure of the classifier’s ability to accu-
rately predict cases into their correct category. It is the 
proportion of valid results obtained or correctly classified 
samples from total samples. 

 Where TP, TN, FP and FN represent the True Positive, 
True Negative, False Positive and False negative values, 
respectively. True Positive (TP) indicates real disease, 
which means that the real value is positive, and it is clas-
sified positively i.e., that the person has the disease, and 
the test is positive. False negative (FN) indicates no dis-
ease while it exists, which means the actual value is posi-
tive while it is classified negatively, i.e., that the person 
has the disease, and the test is negative. False positive 
(PF) indicates a disease when it does not exist, which 
means that the true value is negative when it is classified 
positively. True Negative (TN) indicates the absence of 
the disease, which means that the true value is negative, 
and it is classified as negative, i.e., that the person is 
healthy, and the test is negative.

• Precision is defined as the ratio of correctly detected sam-
ples (true positives) to samples that have been detected 
as positive. 

• Recall, also called sensitivity, is the percentage of posi-
tive instances of a particular class that are correctly 
detected. It is defined as the ratio of true positive samples 
to the total number of positive samples. 

• F1-score is defined as the harmonic average of the preci-
sion and the recall. 

• Area Under the Curve (AUC): AUC measures the area 
under the curve that is obtained by plotting the True Posi-

(12)Accuracy =
TP + TN

TP + FP + TN + FN

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)

F1_score = 2 × Precision × Recall
Precision + Recall

= 2 × TP
2 × TP + FP + FN
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tive rate (TPR) compared to the False Positive rate (FPR) 
at numerous threshold points. In the area of machine 
learning, the True Positive rate is also recognized as 
recall or sensitivity. Similarly, the False Positive rate is 
the fraction of negatives that are incorrectly detected. It 
indicates how much the model is able to distinguish 
between classes.

Results

This section presents the acquired results of the six classi-
fiers that are being investigated in this paper. Indeed, the 
models were evaluated on the test data to determine their 
performance. The 2500 RGB images, including 500 images 
of each class, were fed into the system. To choose the most 
appropriate preprocessing method, we tested the Unsharp 
Masking and Stain Normalization methods and compared 
the performance of the models using these two methods. 
Table 2 presents the accuracy results for the different mod-
els with the use of each preprocessing method for the same 
training and test dataset.

Then, we compared the performance of the models with 
the use of different feature extraction methods and their 
combinations to select the most efficient methods. Table 3 
presents the accuracy results for the different models and 
groups of characteristics, for the same training and test 
database.

The performance of the classification models on the same 
test data using the best feature extraction methods is pre-
sented in the table is shown in Table 4.

The confusion matrix for each technique and for the 
same dataset is shown in Fig. 5. The confusion matrix 
represents the true label versus the predicted label of 

the images for the test data in given labeled categories. 
Table 5 shows the precision, recall and F1-score of the 
XGBoost model for the different categories of histopatho-
logical images on the test data.

To be able to compare our model with existing mod-
els in the literature, we did the same work with the same 
steps but using the 25,000 images of colon and lung can-
cer from the LC25000 database. Tables 6 with 70% for 
training and 30% for testing, Tables 7 and 8 with 90% for 
training and 10% for testing, present a comparison of our 
achieved results of the classification of colon and lung 
cancer subtypes, colon cancer classification and lung can-
cer classification respectively with other methods of the 
literature using the same dataset.

In Figs. 6 and 7, we present the confusion matrix and 
the Receiver Operating Characteristic (ROC) curves of 
the classification on the testing subset using the XGBoost 
model.

Precision, recall and F1-score of the XGBoost model 
for the different classes of colon and lung cancer with 
70% for training and 30% for testing are shown in Table 9. 
Tables 10 and 11 present the precision, recall and f1-score 

Table 2  Comparison of the 
accuracy results for the different 
models and each preprocessing 
method

XGBoost (%) SVM (%) RF (%) LDA (%) MLP (%) LightGBM (%)

Unsharp masking 95.6 95 94.6 91 92.2 93.4
Stain normalization 90.4 91.2 87.6 88 90 90.8

Table 3  Comparison of the accuracy results for the different models and groups of characteristics

XGBoost (%) SVM (%) RF (%) LDA (%) MLP (%) LightGBM (%)

Statistical features 87.8 83.6 87.2 77.2 87.4 85.4
GLCM 86.8 90 86.8 87.4 90.4 84.6
Hu invariant moments 65.8 62 69.2 62 60.2 65.6
Statistical features + GLCM 94.8 91.6 94.2 89% 93.4 92.2
Statistical features + Hu invariant moments 91.6 87 90.2 82.2 85.6 90.8
GLCM + Hu invariant moments 90.2 89 88 85.8 84.4 88.6
Statistical features + GLCM + Hu invariant moments 95.6 95 94.6 91 92.2 93.4

Table 4  Precision, Recall, F1 score and overall accuracy of classifica-
tion models on the same dataset of 2500 images

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

XGBoost 95.6 95.8 96 95.9
SVM 95 95 95.2 95.1
RF 94.6 94.8 95 94.9
LDA 91 91.2 91 91
MLP 92.2 92.6 92.4 92.5
LightGBM 93.4 93.4 93.6 93.5
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Fig. 5  Confusion matrix of Colon and Lung cancer classification with different models: (1) XGBoost, (2) SVM, (3) RF, (4) LDA, (5) MLP, and 
(6) LightGBM
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of the XGBoost model for the different classes of colon 
cancer and lung cancer respectively with 10% for testing.

Discussion

After introducing the images in the system, we compared 
the performances of the models using the Unsharp Mask-
ing and Stain Normalization preprocessing methods to 
choose the most appropriate one. From Table 2, we notice 
that all models gave better accuracy with the use of the 

Table 5  Precision, Recall, F1 score and overall accuracy of the 
XGBoost model for the different classes of colon and lung cancer 
using 2500 images with 20% for testing

Class Precision (%) Recall (%) F1-score (%) Accuracy (%)

Colon_Ad 95 ± 2 92 ± 3 93 ± 2 93.8 ± 2

Colon_Be 93 ± 3 96 ± 2 95 ± 2

Lung_Ad 91 ± 5 90 ± 4 90 ± 4

Lung_Be 97 ± 2 98 ± 1 97 ± 1

Lung_Sc 93 ± 4 93 ± 3 93 ± 3

Table 6  Comparison of the achieved results with other methods using the same dataset of colon and lung cancer

References Cancer type Classifier Test rate (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)

[3] Lung and colon DarkNet-19 + SVM 30 99.69 – – –
[12] Lung and colon CNN 30 96.33 96.39 96.37 96.38
Proposed model Lung and colon XGBoost 30 99 98.6 99 98.8

Table 7  Comparison of the achieved results with other methods using the same dataset of colon cancer

References Cancer type Classifier Test rate (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)

[13] Colon CNN 10 96.61 – – –
Proposed model Colon XGBoost 10 99.3 99.5 99.5 99.5

Table 8  Comparison of the achieved results with other methods using the same dataset of lung cancer

References Cancer type Classifier Test rate (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)

[10] Lung CNN 10 97.2 97.33 97.33 97.33
[13] Lung CNN 10 97.89 – – –
Proposed model Lung XGBoost 10 99.53 99.33 99.33 99.33

Fig. 6  Confusion matrix of: a Colon and Lung cancer classification, b Lung cancer classification, and c Colon cancer classification, using all the 
images of the LC25000 dataset and with the XGBoost model
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Unsharp Masking method than with the stain normaliza-
tion method. Stain normalization method does not have 
much impact on the accuracy of the classification models, 
this might be because all histopathological images used 
in our study belong to the same dataset which comes from 
the same hospital or scanners. Unsharp masking enhances 

the contrast, and therefore the sharpness of the original 
image, which can help emphasize texture and detail. So in 
the rest of the study, the Unsharp Masking method is used 
as image preprocessing method.

After preprocessing, the enhanced images were trans-
formed to grayscale, and three texture extraction methods 
including first-order statistical features, GLCM and invari-
ant Hu moments were used for feature extraction. In order 
to design the most efficient feature extraction methods, we 
compared the performance of the models with the use of 
these different methods and their combinations. According 
to Table 3, the analysis performed with the different methods 
resulted in using a combination of the three feature extrac-
tion methods: statistical features, GLCM and Hu invari-
ant moments, since the most efficient model is obtained 
with these three combined feature extraction methods. An 
accuracy of 95.6%, 95%, 94.6%, 91%, 92.2% and 93.4% is 
obtained respectively with the classifiers XGBoost, SVM, 
RF, LDA, MLP and LightGBM on the test data, using a 
combination of the three feature extraction methods. Indeed, 
we notice that by calculating the statistical characteristics 
with the XGBoost model, we have 87.8% of classifica-
tion accuracy. By calculating the GLCMs, we have 86.8% 
classification accuracy. By combining these two groups of 
features, we obtain 94.8% of accuracy. And by adding the 
features of Hu invariant moments, we get 95.6% of accuracy 
classification. Hence, the interest of using the three com-
bined feature extraction methods. Therefore, a concatenation 
of the feature vectors extracted from these three methods 
resulted in the combined feature set with 37 features, which 
are the samples of the dataset in the training and classifica-
tion steps.

The features extracted from the images were fed into the 
machine learning algorithms. 80% of the features (randomly 
chosen) are used to train the machine learning algorithm 
and the rest 20% are used as test data to evaluate the system 
performance. The acquired results show that ML models 

Fig. 7  ROC curve of: a Colon and Lung cancer classification, b Lung 
cancer classification, and c Colon cancer classification, using all the 
images of the LC25000 dataset and with the XGBoost classifier. The 

classes 0, 1, 2, 3 and 4 in a represent the classes Colon_Ad, Colon_
Be, Lung_Ad, Lung_Be and Lung_Sc respectively. In b the classes 0, 
1 and 2 represent Lung_Ad, Lung_Be and Lung_Sc respectively

Table 9  Precision, recall, F1 score and overall accuracy of the 
XGBoost model for the different classes of colon and lung cancer 
using 25,000 images with 30% for testing

Class Precision (%) Recall (%) F1-score (%) Accuracy (%)

Colon_Ad 99 98 99 99
Colon_Be 98 100 99
Lung_Ad 99 98 99
Lung_Be 99 100 100
Lung_Sc 98 99 99

Table 10  Precision, recall, F1 score and overall accuracy of the 
XGBoost model for colon cancer with 10% for testing

Class Precision (%) Recall (%) F1-score (%) Accuracy (%)

Colon_Ad 100 99 99 99
Colon_Be 99 100 99

Table 11  Precision, recall, F1 score and overall accuracy of the 
XGBoost model for the different classes of lung cancer with 10% for 
testing

Class Precision (%) Recall (%) F1-score (%) Accuracy (%)

Lung_Ad 99 99 99 100
Lung_Be 100 100 100
Lung_Sc 99 99 99
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perform satisfactorily and are highly accurate in identify-
ing lung and colon cancer subtypes. As shown in Table 4, 
the XGBoost model has the best accuracy of 95.6% and a 
F1-score of 96%. As shown in the confusion matrix in Fig. 5, 
only 22 samples out of 500 images have been incorrectly 
classified with the XGBoost classifier. The Lun_Be class 
achieved the greatest classification result, while the Col_Ad 
class got the highest misclassification result.

Overall, the results of this study indicate that the ML 
models, especially the XGBoost model, followed by the 
SVM and RF models, are very accurate in identifying 
classes of lung and colon cancer subtypes, although there is 
a remaining room for improvement. Therefore, the obtained 
results show that ML models can be used to classify histo-
pathological images of colon and lung cancers with high 
reliability and precision.

The XGBoost model showed the best performance. 
Indeed, the SVM is simply a linear separator. However, 
XGBoost is an ensemble tree-based method that uses mul-
tiple trees to take a decision. It can capture dependencies 
among features and build rules based on the values of these 
features, whereas linear models cannot.

Random Forest simply creates a large number of trees in 
which each tree gives a prediction, and takes their majority 
vote for classification. Unlike XGBoost which is based on 
the idea of boosting where the objective is to minimize the 
loss function of the model by adding weak learners using 
gradient descent. Boosting is an iterative learning, which 
means that the model will predict something initially and 
self analyzes its errors as a predictive tutor and gives more 
weight to the data points in which it made a wrong predic-
tion in the next iteration.

Both XGBoost and LightGBM are ensemble tree methods 
that apply the principle of weak learner reinforcement using 
the gradient descent architecture. In contrast to the level-
wise growth of XGBoost, LightGBM performs leaf-wise 
growth, which can lead to overfitting as it produces very 
complex trees. Therefore, XGBoost is able to build more 
robust models than LightGBM.

Therefore, the XGBoost model is highly recommended 
for classifying colon and lung cancer subtypes from histo-
pathological images.

According to Tables 6, 7 and 8, we notice that our model 
XGBoost achieves superior performance over the state-of-
the-art approaches that use DL. For the classification of 
colon and lung cancer subtypes, our model achieves an accu-
racy of 99%, while reference [12] which used a CNN model 
had an accuracy of 96.33%. Similarly, for the classification 
of colon cancer and lung cancer, our model achieves an 
accuracy of 99.3% and 99.53% respectively, which is higher 
than the approaches in the literature [13]-[10] that use the 
CNN model, which have obtained an accuracy of 96.61% 
and 97.2% respectively.

As seen from the confusion matrix (a) in Fig. 6, only 90 
samples out of 7500 images were misclassified. The class 
Lun_Be had the best classification outcome; whereas, the 
class Lun_Ad has the highest misclassification rate. These 
outcomes are also apparent in the ROC curves in Fig. 7. 
The curves are almost touching the top-left corner, as the 
classifier was very successful at distinguishing their sam-
ples. Lun_Be class has the highest AUC of 99.86%. Also, 
we notice from the confusion matrix (b) and (c) that only 
13 and 7 samples out of 1500 and 1000 images were mis-
classified, respectively. And the curves are almost touching 
the top-left corner with AUC above 99%. Overall, we can 
say that the Xgboost model is very accurate in identifying 
the different classes of lung and colon cancer. Also, from 
Tables 5, 9, 10 and 11, we can see that the XGBoost model 
works well in identifying different classes of colon and lung 
cancer subtypes.

In most recently published research articles, the authors 
have used DL to classify colon and lung cancers’ histopatho-
logical images. Indeed, these previous studies used DL, 
while our study used ML. Our study has proved that with 
feature engineering we can find results that are competi-
tive with DL approaches. XGBoost achieved an accuracy of 
99% for the classification of colon and lung cancer subtypes, 
99.3% for the classification of colon cancer, and 99.53% for 
the classification of lung cancer subtypes. We notice that 
the model for each type of organs are more efficient. In fact, 
our objective is not to compete with existing models, but 
to show the interest of ML and feature engineering models 
and to show that it is possible to find better results using 
ML models.

The main advantage of using conventional machine learn-
ing models is that they allow a better interpretability of the 
classification model since the computed features have an 
interpretable mathematical meaning, which is not the case 
for deep learning. Indeed, in the medical and diagnostic 
field, feature engineering is crucial for doctors because it 
allows them to know the importance and impact of each 
feature on the classification and identification of cancer 
subtypes, unlike deep learning models which are black box 
networks.

Model explainability with SHAP

The SHAP method is used to explain the output of a machine 
learning model by computing the contribution of each fea-
ture to the prediction. Therefore, it allows evaluating how the 
contribution of each feature affects the model [27].

The importance of SHAP features is calculated as the 
average of the absolute Shapley values. The idea of SHAP 
feature importance is that important features are those with 
great absolute Shapley values. Figure 8 illustrates the most 
important features that are selected and ordered according to 
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their importance using the SHAP method for the previously 
trained random forest model for colon cancer prediction. The 
first order statistical features are the most relevant, followed 
by second order features such as correlation. Percentile 50% 
was the most relevant feature, which modified the absolute 
probability of predicted cancer by an average of 8 percentage 
points. Thus, on the medical side, specialists and doctors can 
interpret the variables and know which features are more 
important in identifying and classifying cancer subtypes.

The SHAP Summary Plot shown in Fig. 9 combines the 
importance of features with their effects. Each point on 
the graph represents a Shapley value for a feature and an 
instance. The x-axis position is determined by the Shapley 
value. The horizontal location shows whether the effect of 
that value caused a higher or lower prediction. The features 
on the y-axis are ordered according to their importance. 
Each line (y-axis) on the graph points to the feature on the 
left and is colored according to the value of the feature - high 
values for that feature are red, and low values for that feature 
are blue. Values to the right have a “positive” impact on the 
output, and the values to the left have a “negative” impact 
on the output. Note that positive and negative refer to the 

direction in which the output of the model is impacted, it 
has no guidance on the performance.

This plot allows us to visualize the impact of the fea-
ture, as well as how the impact of the feature varies with 
lower or higher values. For example, a large value of 
mean increases the risk of predicted colon cancer and a 
small value reduces the risk. The features presented such 
as mean, correlation1 and Percentile 25% have negative 
impacts for low values and positive impacts for high val-
ues. So, medically, specialists can understand the variables 
and know how the values of each characteristic impact the 
identification of colon cancer subtypes.

Figure 10 presents the SHAP force_plot output for two 
patients from the colon cancer dataset. The prediction 
begins from the base value. The base value for the Shapley 
values is the mean of all predictions. Then the prediction 
is modified accordingly based on the value of each feature. 
Feature values that increase predictions are in red, and 
their visual size shows the magnitude of the feature effect. 
Feature values that decrease predictions are in blue.

The first patient has a high risk prediction of 0.86 
of having colon cancer. Median, Mean, Percentile 25% 
increase his predicted risk of cancer. The greatest impact 

Fig. 8  SHAP feature impor-
tance measured as the mean of 
the absolute Shapley values. 
Colors represent the groups of 
features. Percentile 50% is the 
most essential feature, modify-
ing the absolute probability of 
predicted cancer by an average 
of 8 percentage points (0.08 on 
x-axis)
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comes from the median feature. Although energy1 has a 
significant effect on decreasing the prediction. The sec-
ond patient has a low predicted risk of 0.27. Features that 

increase risk are compensated by features that decrease 
risk, such as homogeneity1.

Fig. 9  SHAP summary plot. 
High values for the feature are 
red, and low values for that 
feature are blue. Values to the 
right have a positive impact on 
the output, and the values to the 
left have a negative impact

Fig. 10  SHAP force_plot to provide an explanation of the predicted colon cancer probabilities for two patients. Each feature value is a force that 
decreases or increases the prediction
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Thus, having a justification for the prediction of a model 
would give specialists confidence regarding the validity of 
the model’s decision. Indeed, in the medical field, decision-
making processes must be transparent, and then it is impor-
tant to explain the model predictions in order to support the 
specialists’ decision-making processes.

Conclusion

In this paper, we presented machine learning models that 
are based on feature engineering for the classification of his-
topathological images of colon and lung cancers into five 
classes (three malignant and two benign).

We preprocessed the dataset using an image enhancement 
method known as unsharp masking. Three feature sets were 
extracted for the classification of images. The resulting fea-
tures were then concatenated to create a combined feature 
set that was fed into the machine learning algorithms. The 
XGBoost model has the best classification performance in 
terms of accuracy, precision, recall and F1-score for distin-
guishing lung and colon cancer subtypes. XGBoost achieved 
an accuracy of 99% and a F1-score of 98.8%. SHAP method 
is used to provide an explanation of the output of a ML 
model and to evaluate how the contribution of each feature 
affects the model. Using this method, specialists can then 
understand which features of the histopathological image 
contributed to its classification as cancer. Unlike previous 
papers where the authors used DL which is a black box 
network, very difficult to interpret and in the medical field 
specialists cannot understand what is happening inside the 
model.

Thus, the use of computer programs that are based on 
machine learning and feature engineering to analyze data 
and extract important information could be a very useful and 
crucial tool in the medical field for the immediate and accu-
rate diagnosis of malignant tumors. Indeed, these programs 
will be able to provide significant help to specialists to better 
interpret features and know the importance and impact of 
each on the identification of colon and lung cancer subtypes.

In the future, it is planned to explore other feature extrac-
tion techniques that provide relevant features for the iden-
tification of colon and lung cancer subtypes from histo-
pathological sections to improve model performance. It is 
also planned to evaluate the performance of our proposed 
approach on other histopathological images of colon and 
lung cancer to evaluate its efficacy.
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