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Abstract
In recent decades, the World Health Organization has found an increase in the death rate due to cardiovascular disease. 
Calcifications of the coronary arteries are the main sign of any cardiovascular event. Each individual’s calcium score helps 
estimate the severity of the disease. However, the score for each artery is more significant. This study aims to research the 
segmentation, the labeling, and then the complete and partial quantification of calcium using only native coronary computed 
tomography with the help of machine-learning algorithms. Our semi-automatic system limited the region of interest by 
applying a defined preprocessing step. We then implemented two random forest classifiers; the first separated true coronary 
artery calcification (CAC) from the noise, and the second labeled CAC into the right coronary artery, left coronary artery, 
left anterior descending artery, and left circumflex artery using specific features. Agatston score and volume score of each 
CAC, each artery, and all of the arteries were calculated. This method gave promising results, comparable to those found in 
the literature, with the accuracy of 99.98% and 100% for CAC detection and labeling respectively.
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Introduction

The heart is one of the main muscles in the body. It ensures 
blood flow by coordinating contractions. the coronary arter-
ies supply the heart with oxygen and nutrients. According to 
the World Health Organization [1], coronary vascular dis-
ease (CVD) is considered to have the highest death rate in 
the world. Coronary artery calcification (CAC) is one of the 
lesions that affect the heart gradually, without symptoms. 
Preventive detection and the associated demand for strati-
fication of individual cardiovascular disease risks depend 
largely on the accuracy and amount of information acquired. 
New coronary imaging techniques allow more accurate 
prediction of cardiovascular risk [2] and provide additional 
information on a patient’s health.

Frequently, CAC is caused by the buildup of calcium, 
fats, cholesterol, and other substances in the inner wall of the 
arteries. This buildup hardens over time, eventually leading 
to blocked vessels [3]. Calcium scoring can be performed 

particularly in coronary computed tomography (CCT) with-
out enhanced contrast. CCT is a non-invasive technology 
that detects and quantifies calcified lesions. CAC score is 
a powerful marker and an independent predictor of the car-
diovascular event in a patient [4]. It was first reported by 
Agatston et al. [5]. The Agatston score (AS) is defined as 
a summary measure based on the total volume and density 
of the pericardial coronary calcification. It can be used to 
stratify patients into four risk categories, which range from 0 
to 10 (minimal calcifications), 11 to 100 (moderate calcifica-
tions), 101 to 399 (modest calcifications), and 400 to several 
thousands (severe calcifications), indicating extensive coro-
nary atherosclerosis.

Several recent studies aim to treat CAC and stop its pro-
gression. Doctors use numerous treatment strategies such as 
medications, balloon angioplasty, stenting, and bypass graft-
ing in patients with advanced stages of CAC. The location 
and types of plaques (soft, mixed, and calcified calcification) 
contain key information about the stiffness of the injured 
area. Therefore, more meaningful information can help to 
improve treatment outcomes.

Doctors can benefit from visual information and 
other interesting data available in images (size, posi-
tion, and shape), as well as a deeper understanding of the 
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characteristics of lesions. Labeling the coronary arteries by 
their standard anatomical names provides more detail and 
speeds up the analysis process [6].

CAC exclusively resides in the walls of the coronary tree 
[7], which is a passage on the heart surface (epicardium). 
Exploiting this prior knowledge, researchers make efforts to 
crop a specific region of interest (ROI) focused on the heart 
and coronary artery region.

Several studies have used 2D segmentation to detect 
and quantify CAC [8–12]. These studies did not take into 
account the thickness between the volume sections, Thus 
losing key information. However, the volume and density 
of the coronary tree calcium, each separately, provide addi-
tional information regarding subsequent risk of clinical 
events.

The CAC segmentation is still a challenging task due 
to the distinction between true candidates and other dense 
objects (bone, calcified tissue, metal stents). Additionally, 
calcification produces blooming that may cause the erro-
neous enlargement of the appearance of calcification and 
prevent accurate evaluation [13]. Furthermore, the time 
required for manual segmentation and scoring of calcium 
makes the process prohibitive. In these cases, fully auto-
matic or even semi-automatic methods are preferred to 
facilitate the workflow.

Various methods have been proposed for calcium scor-
ing in non-contrast-enhanced CCT during the last decade. 
It started with rule-based approaches of mathematic mor-
phology, threshold, and region and grew to the better-per-
forming conventional machine learning (ML) approaches 
[14], finally arriving at the more sophisticated approaches 
of deep learning [2, 15, 16]. The first work that presented an 
automatic method of CAC detection and scoring to assign 
a risk category to a subject was performed by Išgum et al. 
[17]. Kurkure et al. [18] isolated the heart region based on 
anatomical markers; subsequently, the calcifications were 
segmented with a bone threshold and classified. The classi-
fier’s role is to eliminate false candidates.

Xie et al. [19] limited the heart region by removing the 
lungs, bones, aorta, and adipose tissue. Then, they applied 
3 × 3 × 3 medium filters and identified the CACs using the 
bone segmentation threshold. The CAC is considered a con-
nected group of more than five voxels. Wolterink et al. [20] 
created an atlas to segment the midline of the coronaries and 
identified true calcifications by using random forest (RF). 
The work was finalized by a score calculation method pro-
posed by Agatston. Wolterink et al. [21] used supervised 
learning by ConvNet to directly identify and quantify the 
CAC using the three planes: axial, sagittal, and coronal.

Yang et al. [10] generated a patient-specific ROI using 
the coronary computed tomography angiography (CCTA) 
contrast images. They extracted the heart and coronary 
vascular tree segmentation from the same patient. ROI 

eliminated false calcifications localized in the surround-
ing tissues. The authors applied a support vector machine 
(SVM) classifier to discriminate the coronary calculations 
from image noise. Lessmann et al. [22] used two convolu-
tional neural networks (CNN) without extracting ROI. The 
first network, which was a wide receptive field, allowed labe-
ling the candidates according to their anatomical location; 
the second network identified the real calcifications among 
the candidates detected. Santini et al. [8] created the heart 
atlas. They applied a threshold of 130 Hounsfield units (HU) 
to extract CAC, valves, and aortic calcifications as well as 
noise. ConvNet was designed to detect real cardiac calci-
fications. Shadmi et al. [23] used the fully convolutional 
neural network (FCNN) approach to segment coronary cal-
cium and predict the AS. Šprem et al. [24] used the expec-
tation-maximization algorithm to separate true CAC from 
its background. Zreik et al. [25] segmented the midline of 
the coronary artery with the CNN method. Then, to address 
the task of analyzing plaque and stenosis of the coronary 
artery, they used 3D CNN associated with a recurrent neural 
network (RNN).

Zreik et al. [26] extracted image features from a volume 
centered around each centerline point of the arterial wall. 
Subsequently, they analyzed the features extracted from the 
sequence of analyzed volumes.

First, a 3D CNN detected coronary plaque and charac-
terized the type of plaque detected (no plaque, uncalcified, 
mixed, calcified). Thus, it detected stenosis of the coronary 
artery and determined its anatomical significance (no ste-
nosis, non-significant, significant). Second, an RNN was 
deployed to analyze and accumulate the characteristics 
extracted by the CNN. It arranged all the voxels in a single 
vector for classification. In a recent work [27], the authors 
created an automatic 3D deep learning regression network 
to perform direct regression of the AS by skipping the seg-
mentation step.

The ML is used to solve segmentation and classification 
problems that are too difficult to distinguish. ML meth-
ods used in [9–12] provided high accuracy (Table 4). The 
model uses a maximum number of features to distinguish 
between true and false candidates. Qian et al. [28] extracted 
the morphological and geometric statistics of each calcify-
ing lesion. They estimated the probability of risk caused 
by each injury by using a naïve Bayesian technique. Išgum 
et al. [29] created a multi-atlas probabilistic map to segment 
CAC. In addition, a statistical shape recognition system was 
designed to identify coronary calcifications by texture, size, 
and spatial characteristics. To achieve this, a classification 
of a mixture of classifiers (k-nearest neighbors [KNN] and 
SVM) was proposed in this work. Lessmann et al. [9] esti-
mated the position of the heart using three deep CNNs in 
the axial, coronal, and sagittal sections of the image vol-
ume. A 130 HU threshold and an analysis of the connected 
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components were applied to identify the CACs. The authors 
considered that the components less than 1.5 mm3 or greater 
than 5000 mm3 are probably the noise or bone structures. de 
Vos et al. [12] proposed a calculation method that uses two 
ConvNets; the first performed a recording to align the fields 
of vision of the input CCTs, and the second performed a 
direct regression of the calcium score.

The automatic methods speed up the process and make 
the software easier to use for medical personnel, but their 
results are not always accurate [30]. Unlike manual methods, 
their results were more reliable but more difficult to manipu-
late. Therefore, semi-automatic methods brought enormous 
benefits and balance between execution time, result, and 
manual work [31, 32].

Using methods on large datasets is time consuming and 
requires a dedicated workstation. To reduce the calculation 
costs, we proposed a preprocessing step to eliminate the vox-
els that surround our volume of interest (VOI) but contain 
no relevant information.

Most of the mentioned approaches for the detection and 
labeling of CAC depend on CCTA and CCT scans as clinical 
data. Likewise, they identify the severity stage of the lesion 
using a total AS of the coronary tree. Performances of these 
approaches are limited and require more data for labeling. 
Moreover, they fail to adequately identify the precision of 
the diagnostic.

The main contribution of this work is the segmentation 
and labeling of CACs using only native computed tomogra-
phy. For good segmentation and labeling, the choice of the 
features of the RF classification algorithm is essential. The 
scoring of each candidate, for each artery and then for the 
entire volume, gives more details on the lesion and guidance 
for a correct diagnosis. In this paper, CCT volumes were first 
pre-processed for removing unnecessary regions by using 
segmentation techniques, such as lungs and ribcage. The 
CAC segmentation was done followed by statistical analysis 
to detect the most-significant features that will character-
ize the true CAC. Two successive classification steps were 
devoted to detecting and labeling CAC lesions.

Materials and methods

Data and materials

The experiments were implemented using a PC with Intel 
Core i7 − 5500U CPU (4 × 2.40 GHz) , 8 GByte of RAM, 
and the computations were performed on MATLAB 9.6 
(R2019a), under Windows 10 operating system. The orCaS-
core framework provided the data used for classifying the 
CAC and evaluating the classifier, which consisted both of 
CCT and CCTA data of 72 patients from four different hos-
pitals and four different vendors. The CCTs were acquired 

with a tube voltage of 120 kV, an in-plane resolution rang-
ing from 0.4 mm × 0.4 mm to 0.5 mm × 0.5 mm , and a 
thickness of 2.5 mm (GE), 3 mm (Philips, SIEMENS, and 
TOSHIBA). The images were reconstructed into a resolu-
tion of 512 × 512 matrices and a 16-bit Hounsfield scaling. 
The slices included the entire heart volume from the level 
of the tracheal bifurcation to the base of the heart ( 56 ± 9 
slices per patient). The dataset contained volumetric images: 
There were 32 ground truth images, one per patient, in the 
form of segmented and artery-specific labeled CAC and a set 
of 40 patient’s images without accompanying ground truth. 
All of the data was labeled manually by two experienced 
cardiologists (with 2 and 6 years of experience in cardiac 
CT imaging) using a special customized calculation software 
(CardIQ Xpress 2.0, AW workstation, GE Healthcare); the 
data were classified as belonging to the right coronary artery 
(RCA) calcification, left coronary artery (LCA) calcifica-
tion, left anterior descending (LAD) artery calcification, or 
left circumflex (LCX) artery calcification.

The dataset was divided into 32 scans for training and 
40 scans for testing and final evaluation. The training set 
contained 17 coronary calcifications and 15 non-coronary 
calcifications. The test set contained 26 coronary calcifica-
tions and 14 non-coronary calcifications. In this study, we 
used only the CCT sequences.

Methodology

In the first step, the pericardium was segmented by applying 
a series of treatments to the original volumes (pericardium 
segmentation, 3D heart segmentation and bounding box 
creation). This was used to reduce our CAC search space 
and avoid a maximum of false positives later in the classifi-
cation step. The bone threshold was a standard way of iden-
tifying candidates for vascular calcification in CCT images. 
The minimum HU threshold to identify potentially calci-
fied volumes was predefined at 130 HU. The 3D connected 
component analysis (26 connectivity) [33] was performed 
on the threshold image to obtain a set of candidate calcifica-
tions. According to Lessmann et al. [9], the candidates with 
a volume of less than 1.5 mm3 or greater than 1500 mm3 were 
considered as noise or metal implants, respectively; hence, 
they were rejected. However, some non-CAC lesions (valvu-
lar and aortic calcifications) in this VOI were included and 
still represented noisy objects. In this case, an ML approach 
plays the role of eliminating false positives and only rep-
resents the true CAC lesions. The resulting calcifications 
assigned different labels according to their corresponding 
coronary branches so that they are then subjected to multi-
class classification. To distinguish among the candidates, it 
was imperative to study their different characteristics. For 
this, each candidate was described with a set of parameters. 
The input of the first RF classifier [34] contained the features 
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vectors of all the objects resulting from our segmentation. 
The feature vector used for classification comprised of the 
features listed in Table 1. The output of the classifier was the 
result of CAC detection. A second RF classifier was used for 
CAC labeling. For this, new feature extraction was based on 
the CAC anatomical location and the voxel information that 
was cited at the CAC labeling stage (see Fig. 1).

Preprocessing

The main objective of the preprocessing was to create vol-
umes in a form suitable for further processing. This was 
accomplished by removing the unwanted parts in the back-
ground. Initially, the VOI was delimited, and the unneces-
sary structures were extracted. Next, the pericardium seg-
mentation procedure itself, which used the data obtained in 
the previous step.

Pericardium segmentation  The black space surround-
ing the body in the CT image and organs close to the heart 
do not transmit any diagnostic information. The idea was 
to isolate the pericardium and remove all the unnecessary 

structures (lung, bone, and anterior chest wall muscle). 
Therefore, the volumes were pretreated and cropped before 
being used in the experiments. This VOI cannot only high-
light the coronary calcifications but also label the calcifica-
tions belonging to the different main coronary arteries. 

1.	 Volume of interest (VOI) limitation: The operator manu-
ally selected one of the slices that preceded the bifurca-
tion of the coronary arteries in such a way that all the 
arteries were included in the VOI. Anatomically, the 
length of a healthy patient’s heart is equal to 120 mm 
[35]. From the first slice, the program calculated the 
number of slices that cover the whole heart using the 
thickness information of each vendor, using Eq. 1. 

2.	 3D Ribcage segmentation: After the VOI determination, 
we removed the ribcage and the lungs. The ribcage was 
segmented with a bone threshold ( > 130 HU and greater 
than 1500 mm3 ) followed by 3D connected component 
[33]. The 3D dilatation operation, in which the kernel 
size was 5 × 5 × 10 and kernel (1 ∶ 3 , ∶ , ∶ ) = 1 , 
was applied to close the holes between the ribs. Here, 
the chest wall muscle was almost separated from the 
pericardium.

3.	 3D lung segmentation: The lung region segmentation 
was achieved through the following steps. We applied 
an optimal threshold as suggested by Sonka et al. [36] 
to extract the initial pulmonary mask. The lung area 
was an uninteresting region and had low density, which 
ranged from −100 HU to − 500 HU . The interesting 
area contained the surroundings of lung lobes. Since 
the lungs were placed in an uninteresting area, we ini-
tially selected a threshold value of T0 = −500 HU and 
then used the optimal thresholding technique to find the 
optimal threshold Top . The optimal threshold was finally 
used to obtain the initial segmentation of the lungs. 

 Here, the x and y indices represent the slice coordinates 
and z indicates the slice number. The volume consisted 
of the total number of z slices, and each slice had a 
dimension of x × y pixels [36]. After that, the connected 
components labeling method was applied to eliminate all 
structures other than the pulmonary region. Morphologi-
cal filling of the holes was used to fill and suppress the 
holes in the region obtained.

3D heart segmentation and bounding box creation  Since 
the heart is positioned between the two lobes of the lungs, 
we constructed a convex hull of the pulmonary lobes. Then, 
we extracted the inner region, that is, the pericardium. A 

(1)Number of slices = 120 mm∕thickness

(2)f (x;y;z) =

{

0 f (x;y;z) ≥ Top,

1 f (x;y;z) ≤ Top

Fig. 1   Flowchart visualizing the proposed semi-automatic CAC 
detection and labeling method
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3D bounding box around the heart structure was detected. It 
was automatically determined using the algorithm described 
by de Vos et al. [37]. The volume around the bounding box 
was cropped out.

CAC segmentation

According to the orCaScore challenge, a bone threshold 
that included the voxels with an attenuation value > 130 
HU threshold was applied to form CAC lesion candidates. 
Then, the 3D connected component tool (3D 26 connectiv-
ity) [33] was used to merge the voxels of the threshold image 
into singular lesions. The candidates with a volume between 
1.5 mm3 and 1500 mm3 were considered as CAC. The result-
ing volume still included the non-CACs such as valvular and 
aortic calcifications. At this point, the role of ML classifi-
cation was to eliminate non-candidates by calculating and 
learning their characteristics (see Fig. 2).

CAC classification

In this phase, we tried two different classifiers for compari-
son. RF [34] and AdaBoost [38] classifiers were trained with 

an ensemble of 100 trees to distinguish between true positive 
and false positive CACs.

RF and Adaboost were both ML classifiers. The differ-
ence between them is that RF uses parallel and independent 
decision trees, while Adaboost uses sequential trees. The 
motivation for using RF in this work is based on its advan-
tages of the low chance of overfitting due to sufficient trees 
in the algorithm, good precision despite missing datasets, 
and fast convergence.

Feature extraction  Feature extraction is a well-known 
method of giving a physician the ability to locate specific 
lesions. The goal was to find the most-discriminating and 
significant features that can differentiate between CAC and 
non-CAC objects. The classification, in this case, was done 
object by object. The following are the descriptions of the 
features used in this work:

–	 2D features: For each object, the largest slice of the 
object volume was chosen to calculate features men-
tioned in Table 1.

–	 3D features: In this case, we focused on the volumetric 
characteristics of objects. Features included size, posi-
tion, shape, and appearance information of candidates 
and their surroundings. The statistical Haralick features 

Fig. 2   The flowchart of CAC segmentation and labeling of the proposed method

Table 1   Important extracted 2D and 3D features used in the binary classification

2D/3D Number of 
features

Features Notes

2D 7 Perimeter, circularity, equivalent diameter, eccentricity, extrema, elongation, roundness The largest 
slice of the 
object

12 3D Haralick features: energy, entropy, correlation, contrast, variance, sum mean, inertia, clus-
ter shade, cluster tendency, homogeneity, max probability, inverse variance

3D 3 Invariant HU moment according to X/Y/Z
5 The maximum intensity of Gaussian kernel with sigma = 0.5,1,2,3,4.
7 The entropy of the 3D wavelet decomposition volumes of “Haar” level 2
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were calculated across the image/volume. It was based 
on the gray level co-occurrence matrix. These measures 
were used to describe the overall texture of the image/
volume using entropy and the sum of the variance [39]. 
Other calculated and selected features are listed in 
Table 1.

Powerful features selection for CAC classification:  The 
features selection for classification is a tool that aims to 
reduce the dimensionality in datasets. It removes redun-
dant information by performing information filtering. 
Thus, it can improve the efficiency of classification meth-
ods and reduce execution time. In this paper, we used the 
Relief-F function [40] for features selection. The Relief-
F function ranks the importance of predictors. For each 
candidate, 35 features were calculated. A comparative 
study between the two classifiers is presented in “Results” 
section.

CAC labeling

The purpose of this part was to label CAC according to its 
location: RCA, LCA, LAD, and LCX. A complicated CAC 
was placed next to the separation of two main coronary 
arteries. We, therefore, could not consider it as a single 
CAC, but as two CACs glued together (bifurcation CAC; 
Fig. 3). Our system considered each voxel of a CAC to be 
an independent candidate. An RF classifier was trained to 
divide the calcifications based on their arterial bed.

Voxel-by-voxel CACs labeling  Based on cardiovascular 
anatomy [6] and following the short-axis view of the heart, 
we created a map that allowed us to locate and label CACs 
without segmenting the coronary arteries. Some specific 
features were extracted and mentioned later to label CACs. 
To carry out this process, we followed these four steps:

–	 Aorta center was automatically defined: The aorta is an 
anatomical landmark found in the early sections of the 
heart (in the first slice manually chosen). The aorta, in 
this case, appeared circular. The Hough transform was 
applied to extract the ascending aorta [10].

–	 Volume Was divided into 32 fragments: Our idea Was 
inspired by the bull’s eye plot [41]. We schematized a 
map to extract a location parameter that assists the clas-
sifier in correctly labeling CACs. The idea was to create 
two circles with the same center A and different diame-
ters AB and AC. A was located in the center of the aorta, 
B was located at the point of bifurcation of the LCA into 
two coronaries; LCX and LAD. C was located outside 
of the heart with AB < AC . The circle was divided into 
16 triangular fragments. We thus obtained 32 fragments 
numbered from 1 to 32. The schematic map was applied 
to the axial images of the volume (Fig. 4). Anatomically, 
AB ≃ 30 mm and the radius of the heart was almost equal 
to 60 mm in the axial view. Since the resolution of the 
image changes from one provider to another, we auto-
matically calculated the distance AB according to the 
following equation: 

 and 

 where EsX is the element spacing of X.
–	 Voxel parameters were calculated: intensity, distance 

from the voxel-aorta center, the segment that contains 
the CAC, voxel position (x,  y,  z).

–	 Classification was done: CACs were labeled as RCA, 
LCA, LCX, and LAD.

The output of this classification was the result of labeled 
coronary calcifications. SVM and RF classifiers are pre-
sented in Table 3

Partial and total patient CAC scoring

In clinical practice, the AS [5] and volume score (VS) [42] 
are the most used indexes for coronary calcium quantifica-
tion. In this study, the AS was calculated as the product of 
the lesion area A and a weighting factor W, which depends 
on peak lesion density. The total AS of each patient was 
calculated by summing the scores of every calcified focus 
across all volume bands (see Eq. 5).

(3)AB = 30∕EsX

(4)AC = 60∕EsX

(5)Agatston score =

N
∑

i=1

(Ai × Wi)

Fig. 3   Example of bifurcation CAC. a, b Represent the segmentation 
and labeling of a bifurcation CAC respectively. The red and the yel-
low colors represent the LCA and LCX calcifications respectively
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Calcium VS was calculated based on the volume and inten-
sity of the voxel. This method is robust and applicable. The 
voxel volume was calculated using Eq. 6. Following the 
work of McCollough et al. [42], we calculated the calcifica-
tion VS according to Eqs. 7–9.

(6)Voxeli =EsXi × EsYi × Thikness Zi

(7)CAC score =

M
∑

i=1

(Voxeli × Wi)

(8)Artery score =

M
∑

i=1

(CAC scorei)

(9)Total score =

N
∑

i=1

(Artery scorei)

where EsXi , EsYi are the pixel sizes, and N and M are 
the number of pixels and voxels in the evaluated lesion, 
respectively.

Moreover, the weights (W) are represented as follows:

In previous works, the AS, total VS, and partial scores were 
obtained for the four main coronary arteries [20]. However, 
in this study, we were motivated to find out whether volume, 
density, and position of each CAC can explain the severity 
of the risk and give more clarification of the extent of the 
lesion. Figure 5 shows an example taken from two different 
patients.

Rumberger et al. [43] initially proposed the conven-
tional categories for the CAC notation according to AS/
VS value.

130 − 199 HU ⇒ W = 1

200 − 299 HU ⇒ W = 2

300 − 399 HU ⇒ W = 3

≥ 400 HU ⇒ W = 4

Fig. 4   Schematic diagram of the process to classify CACs. a The 
representation of the location of coronary artery in a circular map, b 
the representation of coronary artery tree containing different calci-

fications, where A and B are the aorta center and left main coronary 
artery bifurcation, respectively, an c labeled CAC in coronary artery 
tree
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Fig. 5   Examples of original, segmented, and labeled images taken from two different patients with their reports: a the first patient with a single 
CAC at the LCA bifurcation and b the second patient with five CACs located in the LCA, LCX, and LAD



57Physical and Engineering Sciences in Medicine (2022) 45:49–61	

1 3

Results

This section presents the findings we obtained through the 
evaluation of the CAC segmentation algorithm. The meas-
urement between the segmentation results and the ground 
truth is presented in Table 2. The comparative analysis of 
the classification performance of the RF and Adaboost clas-
sifiers yielded an F1 score of 0.82 and 0.71, respectively, 
and a Dice coefficient of 0.74 and 0.61, respectively. Among 
these two ML algorithms, the RF classifier outperformed the 
AdaBoost classifiers, as indicated by its accuracy value of 
99.98% compared to that of the Adaboost classifier (99%).

Pearson’s correlation and Bland–Altman comparison [44] 
were used to compare the total VS obtained by the algorithm 
to that obtained by expert manual scoring. The AS showed a 
correlation of R = 0.857, p < 0.0001 with the ground truth 
(Fig. 6). The Bland–Altman plot (Fig. 7) showed a positive 
bias of 53.31 and the 95% limits of agreement ranged from 
−417.05 to 525.69. In the second step, the classification for 
the labeling of calcium voxels in LAD, LCX, RCA was car-
ried out. Table 3 presents a comparison between quantitative 
assessment of CAC labeling using SVM and RF classifi-
ers. To assess the classification performance, we used the 
parameters of accuracy, sensitivity, and specificity. These 
parameters are widely used to quantify the quality and reli-
ability of a classifier. While using the SVM classifier, the 
accuracy, sensitivity, and specificity ranged between 99.92% 
and 100%. However, these were all equal to 100% in the 
fourth coronaries when the RF classifier was applied. The 
RF classifier showed good accuracy and worked perfectly 
in our case.

Figure 8 shows four examples of different orCaScore 
data providers. The original images, ground truths, and our 
results are presented in the first, second, and third columns, 
respectively.

The artery score was calculated by adding the score vol-
umes of all the calcifications located in that coronary artery. 
The CAC scores were calculated according to their volumes 

AS∕VS risk categories = 1 − 10 ⇒ Minim

= 11 − 100 ⇒ Medium

= 101 − 400 ⇒ Modest

> 400 ⇒ Sever

and intensities. The volume, intensity, and position of each 
CAC (the center of gravity of the CAC) were calculated and 
displayed in the volume report.

Discussion

The given work presented a semi-automatic method for CAC 
identification and AS by cardiac computed tomography. The 
method began with a preprocessing phase to make the input 
volumes identical and remove any unused structures.

The aim of the first slice selection, which contains the 
aorta, and the VOI limitation was delimited to keep only the 
heart and avoid the structures above and below it.

We selected a pack of slices according to the heart size 
and thickness of the slices from each vendor to cover the 
whole heart.

The diversity of equipment used to obtain CCT scans 
in the orCaScore database (GE, Philips, Siemens, and 
Toshiba), the different constants in each acquisition, and 
the morphological differences among individuals resulted 

Table 2   CAC detection

Dice coefficient Accuracy % F1 score

RF 0.74 99.98 0.82
AdaBoost 0.61 99.00 0.71

Fig. 6   Pearson’s correlation between automatic and expert manual 
CAC score

Fig. 7   Bland–Altman plot analysis between automatic and expert 
manual CAC score
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in the limitation of using a fixed threshold for each scan 
in the database. These limitation led us to use an optimal 
threshold and 3D connectivity for 3D lung segmentation. 
The lungs appeared in the largest region. The bone thresh-
old (130 HU) followed by 3D connectivity and dilatation 
with special structuring elements were done for ribcage 
segmentation.

In the bottom of the heart region, the diaphragm and 
liver still appeared, and their intensity was similar to the 
heart muscle. These will cause noise that will be corrected 
later in the classification step. Since the heart is positioned 
between the two lungs and above the diaphragm, the con-
vex hull method of lungs contains the whole heart region. 
Ine this study the space on either side of the heart was 
cropped out using a bounding box algorithm. Compared to 
the original volumes, the process was easier and less time 
consuming ( 19 ± 5s).

Selected and pretreated input volumes were presented to 
a calcium detection classifier that directly predicts the CACs 
in these volumes.

In preliminary experiments, we found that the object-
by-object classification could differentiate CAC from other 
types of calcifications, e.g., aorta calcification, pericardium 
calcification, and heart valve calcification. The voxel-by-
voxel classification in this case was taking a lot of time 
during training. To simplify the problem, we extracted a 
bounding box around each object and calculated their 
characteristics.

By limiting the number of features (using the most-signif-
icant ones), we were able to use a future selection function 
Relief-F that ranks predictors according to their importance. 
After several attempts, we selected the important 2D and 3D 
predictors (Table 1).

RF is known for its efficiency and performance in com-
plex cases, including the similarity between real and false 
candidates. Therefore, in this work, we chose RF for CAC 
detection.

Using the expert manual annotations as references, our 
classifier performed well with an accuracy of 99.98%.

Table 4 presents the comparison of the findings of pre-
vious studies presented in the literature review with the 
results obtained in our study on CAC segmentation. Our 
method surpassed most of the previous work. It is clear that 
the results of [11] were a little better than ours, but they 
required more information on the data for the realization 
(volumes CCTA and CCT). Conversely, our method used 
only CCT images. In addition, the latest research is directed 
towards the detection of CAC in three dimensions, and our 
work followed this direction. Some classification errors were 
inevitable due to the similarity between CAC and noise.

Interestingly, the method gave good results despite the 
limited size of the database. Although the cardiac tomo-
graphic images were synchronized with the ECG, a few 
volumes with artifacts still existed. The misclassification of 
CAC occurred primarily where the right and left coronary 
arteries originated (Ostia). Even manual classification of cal-
cifications can be very difficult in this part. Moreover, noise 
in the liver was not fully corrected.

Multi-classification SVM and RF classifiers were tested 
with CAC labeling. Table 3 presents the evaluation of the 
four principal coronaries with each classifier. The RF trained 
with our features (intensity, distance from the voxel-aorta 

Table 3   Comparison between 
quantitative assessment of CAC 
labeling using SVM and RF 
classifiers

Classifier method SVM RF

Coronary artery RCA​ LCA LAD LCX RCA​ LCA LAD LCX

Accuracy (%) 100 99.92 99.92 100 100 100 100 100
Sensitivity (%) 100 99.34 100 100 100 100 100 100
Specificity (%) 100 100 99.89 100 100 100 100 100

Fig. 8   Example of sections of certain volumes of CCT. The original 
images, the ground truths, and the results of the proposed method are 
presented in the first, the middle, and the last column, respectively
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center, the segment that contains the CAC, voxel position) 
provided high classification accuracy (100) in fourth coro-
naries (RCA, LCA, LCX, and LAD). As a result, the pro-
posed algorithm outperformed the previous work studied in 
state-of-the-art.

To achieve this perfect result, we tried to choose specific 
features, which are mentioned in “Methodology” section. 
These features have not been utilized in any work till date. 
They included the location, shape and parameters of the 
voxel, without using an atlas and CCTA.

The calcium scores per-artery presented the risk of each 
artery. This is mostly used in clinical research. In this work, 
we calculated AS after CAC labeling for a precise view 
of the severity of each coronary artery. Consequently, we 
achieved great reliability.

Figure 5 shows two examples of partial and total AS/VS 
calculation. The first patient had a VS of 185, and the second 
had a VS of 282. The total risk category in both patients 
was the same (modest), but the partial risk was modest and 
medium in the first and second patient, respectively. The risk 
of the first patient was more severe than that of the second 
because of the location (bifurcation), density, and volume of 
the CAC. In this case, we can highlight the importance of a 
partial risk study to explain the severity of the risk and show 
the extent of the lesion.

The contribution of the current work lies in

–	 the speed of program execution ( 19 ± 5 s),
–	 the use of only native scans,
–	 new and simple features for CAC labeling that give a 

perfect result at different vendors, and
–	 calculation of total and partial AS/VS to properly diag-

nose stenosis.

Limitations and future works

The limitations of this study were the size of the CACs and 
the lack of data. To fill these gaps, we plan to increase the 
input volumes from different datasets and to add chest CCT 
volumes in our future work. The liver can be cropped before 
CAC segmentation for more precision.

Conclusion

Our approach enriches the state of the art in medical imag-
ing by improving the speed of calculation and the simplic-
ity of implementation. The coronary artery calcium score 
is an essential tool in measuring cardiovascular disease. 
Until now, physicians manually distinguished CAC with 
increased radio-density of slice-by-slice CCT images. In 
this study, we presented a 3D CAC detection and labeling 
strategy. For 3D calcium scoring, the preprocessing step 
of the original data improved classification results. We 
implemented two RF classifiers applied in the heart region. 
The first RF was used for true CAC identification and the 
second for labeling CACs using some special features. We 
obtained perfect results without extracting the coronary 
artery tree from a CCTA or using the atlas registration. 
Despite the low contrast and high noise existence in the 
images, the proposed algorithms introduced promising 
results in detecting the CAC in most of the patients in 
comparison with the ground truth and give good results in 
labeling CAC in CCT scan (accuracy of 99.98% and 100% 
for CAC detection and CAC labeling in the four coronary 
branches, respectively).
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