
Vol.:(0123456789)1 3

Physical and Engineering Sciences in Medicine (2021) 44:1027–1048 
https://doi.org/10.1007/s13246-021-01072-5

REVIEW PAPER

Arrhythmia detection and classification using ECG and PPG 
techniques: a review

Neha1,2 · H. K. Sardana1,2   · R. Kanwade1,2 · S. Tewary2

Received: 7 June 2021 / Accepted: 25 October 2021 / Published online: 2 November 2021 
© Australasian College of Physical Scientists and Engineers in Medicine 2021

Abstract
Electrocardiogram (ECG) and photoplethysmograph (PPG) are non-invasive techniques that provide electrical and hemody-
namic information of the heart, respectively. This information is advantageous in the diagnosis of various cardiac abnormali-
ties. Arrhythmia is the most common cardiovascular disease, manifested as single or multiple irregular heartbeats. However, 
due to the continuous manual observation, it becomes troublesome for experts sometimes to identify the paroxysmal nature of 
arrhythmia correctly. Moreover, due to advancements in technology, there is an inclination towards wearable sensors which 
monitor such patients continuously. Thus, there is a need for automatic detection techniques for the identification of arrhyth-
mia. In the presented work, ECG and PPG-based state-of-the-art methods have been described, including preprocessing, 
feature extraction, and classification techniques for the detection of various arrhythmias. Additionally, this review exhibits 
various wearable sensors used in the literature and public databases available for the evaluation of results. The study also 
highlights the limitations of the current techniques and pragmatic solutions to improvise the ongoing effort.
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Introduction

According to the 2017 world health organization (WHO) 
report, cardiovascular disease is one of the most prevalent 
causes of death, with an estimated 17.3 million deaths [1]. 
Arrhythmia is a commonly diagnosed cardiovascular disease 
caused due to an irregular heartbeat. It is caused when the 
electrical impulses that coordinate with the heartbeats do not 
work rightly, resulting in the heart beating either too fast, 
too slow, or skipping a beat, showing hardly any insignia of 
heart disease [2]. The irregularity of the heartbeat caused 
due to arrhythmias can be classified into two categories: (a) 
arrhythmias due to impulse production and (b) arrhythmias 
due to impulse conduction [3]. Arrhythmias due to impulse 
production can be further classified into four categories: pre-
mature beats, non-sinus rhythm, fibrillation, tachycardias/
Bradycardias, and flutter. Premature beats are the ecotopic 

beats that arise outside the sinus node and occurs before the 
following sinus rhythm [4], where ventricular ectopic beat 
(VEB) occurs in the heart's lower chambers. It is caused 
when the heart is unable to fill with an adequate amount of 
blood, resulting in inadequate pumping of blood from the 
heart to other parts of the body [5]. Premature ventricular 
contraction (PVC) is a commonly occurred VEB arrhyth-
mia caused due to the early contraction of the ventricles [5]. 
Atrial fibrillation (AF) and ventricular fibrillation (VF) are 
the types of fibrillation that arise in the heart [5], where AF 
occurs when the upper chambers of the heart sense unre-
stricted electric signals that result in the bombardment of 
electric signals between the atria and ventricles. On the con-
trary, VF occurs when the heart is unable to pump blood 
throughout the body due to the variation in left and right 
atrium contraction [5]. Tachycardia occurs when the impulse 
travels rapidly around the heart, resulting in the heart beating 
swiftly, whereas bradycardia occurs when the heart beats 
slower than normal [5]. Arrhythmias due to impulse conduc-
tion can be classified into atrioventricular (AV) block, bun-
dle branch block, Wolff Parkinson White (WPW) syndrome, 
and escape beats [3]. AV block is an arrhythmia occurring 
at the atrioventricular node. In this, the atria and ventricles 
of the heart become impaired due to the anatomical heart’s 
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conduction system. Thus impulses are delayed or disturbed 
in transmitting an impulse from the atria to the ventricles 
[6]. In bundle branch block (BBB), there is a blockage in 
pathways of the heart, caused due to damaged heart mus-
cle, and in WPW syndrome, extra electrical pathways occur 
between the atria and ventricular chambers of the heart 
resulting into rapid heart rate [7].

These irregular heartbeats can be monitored using differ-
ent ECG or PPG modalities [8], as shown in Fig. 1, where 
ECG monitors the electric activity of the heart, and PPG 
monitors the volumetric change of blood in the microvas-
cular bed of the tissue. In ECG, the electrical signals gener-
ated in the atrium of the heart are recorded by placing elec-
trodes on the chest and calculating the potential difference 
between the electrodes at different angles [9]. 12-lead ECG 
is a standard method to diagnose various cardiovascular dis-
eases. However, due to its fewer limitations, i.e., mobility, 
uncomfortable, high cost, limited to hospital settings etc., 
various single-lead, multiple-lead portable ECG sensors 
are being developed for the measurement of a heartbeat in 
out-of-hospital settings. The waveform obtained using an 
ECG sensor is shown in Fig. 2. The waveform consists of 
P-wave, QRS-wave, and T-wave, where P-wave represents 
depolarization of atria, QRS-wave represents depolarization 
contraction of ventricles, and T-wave represents repolariza-
tion of ventricles [2].

On the other hand, in PPG, the light emitted by diodes 
reflects/transmits from the skin and measures blood flow. 
The change in blood flow is thereby used in the detection of 
arrhythmia. Since the wavelength of green light used in the 
PPG sensor is strongly absorbed by blood compared to other 
neighbouring tissues, therefore is preferably used in the 
detection of change in the blood flow from the microvascular 
tissue bed [10]. The working principle of the PPG sensors is 
shown in Fig. 3, where Fig. 3i shows, incident light travels 
from the sensor. Through a microvascular bed of tissues, the 
light either gets reflected or transmitted. The amount of light 

reflected through the epidermis layer of the skin is thus used 
in the detection of abnormality. Figure 3ii represents the 
PPG pulse obtained on signals reflection, where a represents 
depolarization of atria (systolic phase), b repolarization of 
ventricles (diastolic phase), and c is the pulse width of the 
heart. The change observed in these pulsatile waveforms 
is used to identify various cardiac abnormalities. PPG sen-
sors can be mounted at different locations of the body viz 
ear (transmitting sensor) [11], finger (transmitting sensor) 
[12], wrist (reflective sensor) [13], or forehead (reflective 
sensor) [12].

Due to the paroxysmal nature of arrhythmia, it becomes 
troublesome for experts to monitor every heartbeat 

Fig. 1   Various arrhythmia 
monitoring approaches and sen-
sors used for detection

Fig. 2   Representation of ECG waveform, where PQRST represents 
the repolarization and depolarizing of the heart
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continuously. Thus, there is an unmet need for automated 
detection of arrhythmia. State-of-the-art shows various 
review articles for arrhythmia detection using machine learn-
ing and deep learning methods on ECG signals [14–19]. 
Studies also reported several PPG-based vital signs monitor-
ing, i.e., heart rate and arrhythmia monitoring review articles 
[12, 20, 21]. However, a collective review on ECG and PPG-
based detection techniques for arrhythmia detection has not 
been reported so far.

The amount of research articles published on arrhyth-
mia detection using ECG and PPG modalities is shown in 
Fig. 4. The data utilized in the graph has been obtained from 
the web of science database published since 2010. Further-
more, the number of research articles on single/multiple-lead 

ECG, reflected/transmissive PPG sensors has been obtained 
by observing the type of sensor used. It can be observed 
from the graph that 1209 research articles were published 
on ECG-based arrhythmia detection, where 812 articles 
are on single-lead ECG sensors and 142 on multiple-lead 
ECG sensors. The majority of the literature on single-lead 
ECG data for arrhythmia detection has used lead-II ECG for 
identification. On the other hand, PPG reported 109 pub-
lished research articles on arrhythmia detection, where 62 
articles are on the use of reflective PPG sensors and 34 on 
transmissive PPG sensors. The review presents a compre-
hensive study on selected articles every year on ECG and 
PPG-based arrhythmia detection and classification methods 
carried out since the last decade. Studies related to various 

Fig. 3   i Working principle of PPG, where dashed line indicates the 
incident light being transmitted, reflected from the epidermis layer, 
and absorbed in the dermis layer of the skin. The reflected light is 

obtained in the form of PPG signal, and ii Representation of PPG 
waveform, where a represents the depolarization of atria, b represents 
the repolarization of ventricles, and c represents the pulse width

Fig. 4   The graph shows the 
number of research articles on 
arrhythmia detection using ECG 
and PPG modalities. The first 
column in each modality depicts 
all arrhythmia detection meth-
ods, second column represents 
arrhythmia detection methods 
using single-lead ECG/reflected 
PPG sensor, third column 
represents multiple-lead ECG/
transmissive PPG sensors, and 
forth represents the number of 
review articles for each modal-
ity. The data has been acquired 
from Web of science database 
published since 2010
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feature extraction approaches, that is, wavelets, machine 
learning, morphological, statistical, etc., on ECG data have 
been included in the review. Various noise removal and 
classification techniques advantageous in arrhythmia detec-
tion are also included in the study, and merits/demerits of 
the methods have also been discussed. On the contrary, the 
review has included an exploration of the use of PPG signals 
for noise and motion artifacts removal, heartbeat detection, 
and arrhythmia detection as an alternate technique to ECG 
for in-and-out-of-hospital settings. The use of ECG and PPG 
methods for detecting arrhythmia in combination with other 
abnormalities, other CV diseases, and comparison of ECG 
and PPG methods for heart rate measurements during other 
abnormalities are excluded from the study. The publically 
available databases that could be used in the research are 
also discussed in this review.

The paper is organized as follows: Sect. “Databases” 
discusses publically available databases that can be used 
for experimentation. Sect. “Review” discusses the various 
preprocessing, feature extraction, and classification methods 
that can be used for arrhythmia detection. Finally, Sects. 
“Discussion” and “Conclusion” discuss the limitations, chal-
lenges, and areas of arrhythmia classification research with 
particular reference to ECG and PPG signals are highlighted.

Databases

Various databases are publically available containing 
patients’ cardiac records. These records could be used for the 
evaluation of several cardiovascular diseases. The American 
National Standards Institute (ANSI) and AAMI approved 
the national consensus records and practices, giving techni-
cal information reports for medical devices. Following are 
the publically available databases recommended and widely 
used for the evaluation of several cardiovascular diseases 
[19]:

•	 PhysioNet database: It is a research resource for physio-
logical signals initiated by the Massachusetts Institute of 
Technology—Beth Israel Hospital Arrhythmia Database 
(MIT-BIH), providing free access to the recorded bio-
medical and physiologic signals since 1999. The database 
also provides ECG and PPG arrhythmia data, where ECG 
arrhythmia data can be found in the MIT-BIH arrhythmia 
database [22]. The database contains 48 records obtained 
from 47 subjects. The sampling frequency of the signals 
is 360 Hz. The majority of the records were collected 
from lead II, the remaining using V2, V4, or V5 leads. 
PhysioNet database also provides PPG data which can be 
found namely in MIMIC-II [23] and Challenge 2015 [24] 
along with ECG signals, namely lead II, where MIMIC-
II contains 25,328 records of clinical and waveform data 

from the medical, surgical intensive care unit (ICU), car-
diac care unit, and coronary care unit sampled at 125 Hz. 
However, annotations of the signals are not provided in 
the PPG database. Thus signals need to be annotated 
before usage. Challenge 2015 database contains signals 
having false alarm signals, thus encouraging the devel-
opment of an algorithm to reduce these false alarms. It 
includes 1250 train test records sampled at 250 Hz.

•	 AHA: The American Heart Association provides arrhyth-
mia and Normal signal 12-lead ECG data from more than 
6300 hospitals and 400 healthcare systems [25]. It con-
tains eight categories of arrhythmia from 154 records 
[26]. The ECG signals acquired are sampled at 250 Hz. 
However, the data is not public and does not contain PPG 
signals.

•	 European ST-T Database: It is a European database set up 
by European Community in 1985. The database contains 
90 annotated ECG records obtained from 79 subjects 
having 372 ST and 423 T changes. Each record is of 2 h 
duration sampled at 250 Hz. The database is public and 
was acquired using 2-channel ECG [27]. The limitation 
of the record is that it does not contain a PPG database.

The databases discussed above provide annotations con-
taining fiducial points with the type of heartbeat for ECG 
recordings. However, the MIT-BIH arrhythmia database pre-
sented the majority of the published article for ECG records. 
In contrast, the PhysioNet MIMIC-II and PhysioNet Chal-
lenge 2015 databases showed most of the published articles 
for PPG records.

Review

The functional state of the heart is limited by the shape of 
the ECG and PPG waveform. It may comprise important 
pointers that suggest the nature of diseases troubling the 
heart. In this section, several ECG and PPG-based arrhyth-
mia detection methods are discussed in detail.

ECG based arrhythmia detection

Electrical signals of the heart obtained using ECG can be 
used for the detection of various cardiovascular diseases. 
However, the signals directly received from the sensor con-
tain noise and motion artifacts that complicate the accurate 
analysis of the disease. Hence, at first, there is a need to 
preprocess the signals to remove noise and motion arti-
facts. Thereafter, pivotal points are extracted for the detec-
tion of arrhythmic beats. Finally, identification of the type 
of arrhythmia is carried out using various classification 
approaches. The following sub-sections discuss various 
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preprocessing, feature extraction, and classification tech-
niques used for the ECG signal analysis.

Preprocessing

ECG signals possess the following categories of noise: 
powerline interference, electrode–skin interference, radio 
frequency surgical noise, and baseline drift due to respi-
ration [28]. Various noise removal techniques reported in 
the literature are bandpass filtering [29–36], average and 
median filter [37–41], wavelet transform [40, 42–44]. 
Table 1 shows the list of commonly used ECG-based pre-
processing methods found in the literature. Bayasi et al.
[36]. implemented bandpass filtering for noise and artifacts 
removal, with cuts off delay of 5 Hz. The filtering tech-
nique has been able to remove noise effectively. However, 
the bandpass filtering approach has few limitations, i.e., it 
cannot track time-varying ECG characteristics that change 
quasi-periodically. Moreover, the cut-off frequency is fixed 
in this filtering technique, resulting in significant distortion 
of the ST segment and the QRS segment. Thus, authors in 
[40, 42–44] implemented higher-scale wavelet coefficients 
to de-noise ECG signals. In wavelets, coefficients obtained 
can be eliminated using a predefined threshold, resulting 
in additive noise removal. The study reported by Lee et al.
[45] presents a novel first-order intrinsic mode function for 
motion and noise artifacts detection.

The preprocessing method used also depends on the qual-
ity of the signal received from the database or sensor. The 
majority of the studies reported in the literature implemented 
the filtering techniques on the MIT-BIH database. The com-
monly used filtering methods on the database are bandpass 
and wavelet-based filtering methods. Once a preprocessed 

signal is obtained, the next is to extract features that are 
useful in arrhythmia detection. In the following subsection, 
various ECG-based feature extraction methods have been 
discussed.

ECG based feature extraction

Feature extraction is an essential step in arrhythmia detec-
tion, where features represent the characteristics of a signal 
that may vary from the other part or signal. These features 
can be obtained from ECG morphology in frequency as 
well as in the time domain. Various approaches have been 
proposed in the literature for feature extraction of the ECG 
signals, respectively. Table 2 shows some significant stud-
ies reported in the literature for feature extraction of ECG 
signals.

Time-domain features are the prominent feature extrac-
tion approach in ECG arrhythmia detection. It is antici-
pated that the variation in the difference between RR inter-
vals is correlated with the chance of having an arrhythmia. 
Mert et  al. [49] extracted nine time-domain features, 
including R wave detection, PR, ST, QRS, and slopes, RR 
interval, etc. Later, bagged decision trees (BDT) and a 
single decision tree (DT) were used for learning. The study 
was carried out on 22 ECG signals containing 56,569 
heartbeats. The results show that the BDT classifier gives 
improved results than the DT method. Salam et al. [2] 
detected R wave, QRS segment, and ST-segment by ana-
lyzing the inflection point of the signal using an adaptive 
filter. These inflection points are recognized by the change 
in the slope of the respective segments. The authors also 
analyzed non-stationary signals using discrete wavelet 
transform in this research work [2]. The detection accuracy 

Table 1   Some significant studies for noise and artifacts removal using ECG signals

References Database/sensor Method Description Results

Vijaya et al. [46] MIT-BIH (Lead II) Multi-resolution; wavelet 
transform

Wavelet coefficients at higher 
scales are used to de-noise 
ECG signals

Mean, and SD of Q, R, S 
amplitudes is considerably 
more in normal ECG than 
arrhythmia ECG

Homaeinezhad et al. [47] MIT-BIH (Lead II) Discrete wavelet transform 
(DWT)

A supervised fused heart 
arrhythmia classification 
solution has been proposed

Accuracy (Acc): 98.20%

Lee et al. [45] Holter monitor First-order intrinsic mode 
function (F-IMF)

First-order intrinsic has been 
used to separate the artifacts 
from the ECG related 
signal as they are largely 
concentrated in the higher 
frequencies

Sensitivity (Se): 96.63%
Specificity (Sp): 94.73%

Bayasi et al. [36] MIT PhysioNet 
and AHA (Lead 
I)

Bandpass filtering; Pan Tomp-
kins algorithm for QRS 
detection;

A low pass and high pass filter 
with 11 Hz and 5 Hz is used

Out-of-sample validation data: 
86%

Tuncer et al. [48] MIT-BIH (Lead II) Wavelet filtering 5-levels of 1-D DWTwith haar 
filter has been used

Accuracy: 99.7%
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of peaks obtained using these features is 98.65%. Deep 
learning methods have also been used for the extraction 
of appropriate features [50]. Isin et al. [50] extracted QRS 
wave features using a deep learning approach. Zeraatkar 
et al. [51] segment T-wave features into five different lev-
els using the Daubechies wavelet. The accuracy obtained 
in detecting T-wave is satisfactory. Sayadi et al. [52] pro-
posed a model-based beat segmentation approach, where 
every heartbeat is used as a combination of Gaussian ker-
nels. Later, the kernels are compared to the peak points 
and each kernel is represented as a PQRST waveform.

The study reported by Ozbay et al. [53] demonstrates a 
complex wavelet transform for feature extraction using com-
plex random numbers. The results show that the time taken 
to train a model is reduced without affecting the model's 
accuracy [53]. Ye et al. [31] proposed a method to extract 
independent components using the JADE algorithm. In this 
authors, calculated independent components using fixed-
point algorithms. Later, these independent components 
are ordered using the JADE algorithm, and independent 
components are evaluated using various preprocessing, 
feature extraction, and classification methods [31]. In [54], 
the authors proposed an approach where ICA and wave-
let transform is used in extracting morphological features 
for each heartbeat. Later, its corresponding coefficients 
are dimensionally reduced using PCA. However, to attain 
higher accuracy and sensitivity, several independent com-
ponents would be required, resulting in an increase in the 
complexity of the algorithm. Fira and Goras [55] presented 
adaptive hysteretic filtering, extreme local extraction, and 
Lempel–Ziv-Welch based signal compression technique. 
In this skeleton, samples are discarded. A few samples are 
added using hysteretic filtering. Later, a signal reconstruc-
tion is carried out using the Lempel–Ziv-Welch method. A 
study by Lee et al. [56] reported five steps for ECG signal 
compression. First, ECG signals are downsampled by ½ and 
represented as 1 byte. Second, R-peaks are detected using a 
downslope trace window algorithm and are classified from 
the previous peak. Third, a discrete cosine transform of the 
data is obtained. Fourth, a window filter is used to filter out 
the transformed data. Lastly, the Huffman coding algorithm 
is used for data compression. The reported algorithm shows 
its robustness on all MIT-BIH arrhythmia databases. Ozbay 
et al. [57] proposed a clustering algorithm that reduces ECG 
samples from 106 to 67 clusters. The proposed approach is 
also used to inflate the number of features. However, the 
result shows an insignificant difference from the previous 
literature. Thereby, Korurek et al. [58] reduced the sample 
size from 100 to 20 clusters. The authors cluster the QRS 
segment during the learning phase using the Ant Colony 
Optimization (ACO) technique. The study reports an over-
all sensitivity of 94.40%. Yaghouby et al. [59] proposed a 
hybrid approach for the detection of atrial fibrillation using 

genetic programming orthogonal least squares and simulated 
annealing methods.

In [40, 41, 43, 46, 60–62] and [33], authors implemented 
a DWT approach to extract ECG signal features. Llamedo 
et al. [62] considered the features from ECG samples con-
taining RR series and scales of the wavelet transform. 
Thereafter, the floating feature selection algorithm is used 
to select eight features. The results show that the generali-
zation capability of the method outperforms other DWT-
based state-of-the-art methods. Rai et al. [40] separated 
64 features into two DWT based and morphological based 
classes, where DWT contain 48 features and morphological 
based class contain 16 features. These features are fed as an 
input to the classifier. The results show that the specificity 
obtained using MLP and BPN is 100% [40]. The use of the 
Daubechies wavelet approach for the extraction of features is 
most appropriate and obtains preeminent accuracy. In [60], 
the ECG signal is distributed into eight levels, and basic 
features such as minimum and maximum of the signal are 
obtained along with the time features. Thereafter, these time 
features and discrete wavelet features are feed-forward for 
further classification. Kutlu et al. [41] proposed automatic 
heartbeat recognition using the high order statistics (HOS) 
of the wavelet packet decomposition (WPD) [41]. In this 
approach, the authors first calculated coefficients for each 
varied ECG beat. Then HOS of these coefficients is derived, 
and finally, the obtained features are fed into the classifier. 
Thomas et al. [33] extract time-domain features and other 
features like kurtosis, skewness, and timing information 
using the dual-tree CWT approach. The results obtained 
using wavelet-based approaches for feature extraction are 
significant in arrhythmia detection. However, implementing 
the wavelet transform for feature extraction also has fewer 
limitations. DWT can resolve only three spatial domain 
orientations, resulting in poor selectivity of diagonal fea-
tures. Moreover, DWT is shift sensitive, thus it is not able 
to distinguish between signal shifts. Therefore it becomes 
important to appropriately preprocess the input ECG signal 
to avoid variations in obtained transformation coefficients. 
Faezipour et al. [63] presented a profiling scheme where 
wavelets are used for beat detection and classification [63]. 
In this, authors considered ECG waveform as a data packet 
and implemented packet processing techniques. Plawiak 
et al. [64] used power spectral density based on Welsh and 
Fourier transform method for feature extraction. To calculate 
power spectral density, the authors used hamming windows 
of 128, 256, 512, and 1024 samples.

Hong et al. [65] and Zhang et al. [66] proposed a neu-
ral network features extraction approach where authors 
in [65] combined deep neural networks and engineered 
features for the detection of arrhythmia. The engineered 
features used are medical knowledge-based hand-crafted. 
Thus authors in [66] proposed Spatio-temporal mechanism 
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incorporation into convolutional neural networks for the 
extraction of informative features. Asl et al. [68] proposed 
feature extraction using generalized discriminant analysis 
(GDA) [68]. GDA is a generalization of LDA that maps 
input data into an expedient high dimensional feature 
space with LDA properties. Thus, GDA can be used for 
dimensionality reduction and for discriminating features 
as well.

In addition to feature extraction, compression tech-
niques are used to preserve useful diagnostic information. 
Most of the data extracted from the heart's electrical sig-
nals contain useless information; nearly 10% of the data 
contain valuable signals. Therefore, various compression 
techniques like Huffman coding [37], delta coding [37], 
and skeleton coding have been used to extract this use-
ful data. Whereas, for dimensionality reduction, principal 
component analysis (PCA) [43, 53, 69, 70] and independ-
ent component analysis (ICA) [31, 43, 54] methods can 
be implemented. Table 3 shows some significant signal 
compression techniques reported by various studies for 
ECG signals. PCA is a statistical procedure that trans-
forms a large set of correlated variables into fewer ones, 
i.e., it is used for data compression and for evaluating de-
correlation between noisy and useful ECG signals. ICA 
is used for searching the statistically independent com-
ponents, i.e., nonlinear features. Castells et al. [69] pro-
posed a combined PCA and Karhumen-Loeve transform 
for data compression. Though these techniques provide 
useful diagnostic information, there are some limitations 
to these approaches, i.e., when T waves are irregular, 
resulting compression of the features is less efficient. The 
resampling of the ST segment can improve this limitation. 
Chen et al. implemented PCA to decrease the complexity 
of sparse matrix computing architecture and SVM classi-
fiers. Elhaj et al.[43] first investigated linear and nonlinear 
features independently, thereafter proposed a combined set 
of linear and nonlinear features. The proposed approach 
leads to an increase in the classification accuracy of ECG 
signals [43]. According to Elhaj et al. [43], the proposed 
combination of PCA and ICA method for compressed fea-
ture extraction. This approach of combining features has 
been able to obtain maximum accuracy for five types of 
arrhythmia detection of 98.90%.

Although different methods have been used in feature 
extraction, it is difficult to determine which feature extrac-
tion method would be more advantageous than others, owing 
to the physiological difference in patient heartbeats. How-
ever, features obtained using the neural networks approach 
have detected multiple arrhythmias with higher accuracy 
on varied patients' heartbeats. After feature extraction and 
arrhythmia detection, there is a need to classify the arrhyth-
mia type in the human body. The following section discusses 
various ECG-based arrhythmia classification methods. Ta

bl
e 

3  
S

om
e 

si
gn

ifi
ca

nt
 st

ud
ie

s f
or

 d
im

en
tio

na
lit

y 
re

du
ct

io
n 

us
in

g 
EC

G
 si

gn
al

s

Re
fe

re
nc

es
D

at
ab

as
e

M
et

ho
d

D
es

cr
ip

tio
n

Re
su

lts

K
im

 e
t a

l. 
[3

7]
M

IT
-B

IH
 (L

ea
d 

II
)

H
uff

m
an

 c
od

in
g

C
om

pr
es

si
on

 is
 c

ar
rie

d 
ou

t u
si

ng
 S

ke
lto

n,
 d

el
ta

 c
od

in
g,

 a
nd

 
H

uff
m

an
 c

od
in

g
C

om
pr

es
si

on
 ra

tio
: 1

6:
1

R
M

S 
di

ffe
re

nc
e:

 0
.6

41
%

En
co

di
ng

 ra
te

: 6
.4

 k
bp

s
A

cc
ur

ac
y 

of
 R

 p
ea

k 
de

te
ct

io
n:

 1
00

%
C

he
n 

et
 a

l. 
[7

0]
M

IT
-B

IH
 (L

ea
d 

II
)

Pr
in

ci
pa

l c
om

po
ne

nt
 a

na
ly

si
s

D
im

en
si

on
al

ity
 re

du
ct

io
n 

is
 d

on
e 

us
in

g 
PC

A
. A

n 
en

er
gy

-e
ffi

-
ci

en
t a

rr
hy

th
m

ia
 d

et
ec

tio
n 

ap
pr

oa
ch

 is
 p

ro
po

se
d 

us
in

g 
hy

br
id

 
cl

as
si

fie
rs

, i
.e

., 
W

LC
 a

nd
 S

V
M

 c
la

ss
ifi

er
s

A
cc

ur
ac

y:
 9

8.
2%

En
er

gy
 re

du
ct

io
n:

 4
1.

7%

El
ha

j e
t a

l. 
[4

3]
M

IT
-B

IH
 (L

ea
d 

II
)

N
on

lin
ea

r f
ea

tu
re

s:
 H

O
S,

 IC
A

Li
ne

ar
 fe

at
ur

es
: P

CA
, d

is
cr

et
e 

w
av

el
et

 tr
an

sf
or

m
C

om
bi

ne
d 

lin
ea

r a
nd

 n
on

lin
ea

r f
ea

tu
re

s h
av

e 
be

en
 u

se
d 

to
 

in
cr

ea
se

 th
e 

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 o

f E
C

G
 d

at
a

A
cc

ur
ac

y:
 9

8.
91

%

O
zb

ay
 e

t a
l. 

[5
3]

M
IT

-B
IH

 (L
ea

d 
II

)
C

om
pl

ex
 d

is
cr

et
e 

w
av

el
et

 tr
an

sf
or

m
 (C

W
T)

C
W

T 
ha

s b
ee

n 
us

ed
 fo

r d
at

a 
co

m
pr

es
si

on
 a

nd
 fo

r d
ec

re
as

in
g 

m
od

el
 tr

ai
n 

tim
e

A
cc

ur
ac

y:
 9

9.
8%

Ye
 e

t a
l. 

[3
1]

M
IT

-B
IH

 (L
ea

d 
II

)
W

av
el

et
 tr

an
sf

or
m

 a
nd

 IC
A

Si
gn

al
s a

re
 d

iv
id

ed
 in

to
 se

gm
en

ts
, t

he
n 

W
T 

an
d 

IC
A

 a
re

 a
pp

lie
d 

in
de

pe
nd

en
tly

, a
nd

 fe
at

ur
es

 a
re

 se
le

ct
ed

 to
 o

bt
ai

n 
in

fo
rm

at
io

n 
of

 p
ar

tic
ul

ar
 h

ea
rtb

ea
t

A
cc

ur
ac

y 
in

 th
e 

“c
la

ss
-o

rie
nt

ed
” 

ev
al

ua
tio

n:
 9

9.
3%

A
cc

ur
ac

y 
in

 th
e 

“s
ub

je
ct

-o
rie

nt
ed

” 
ev

al
ua

tio
n:

 8
6.

4%
Y

u 
et

 a
l. 

[5
4]

M
IT

-B
IH

 (L
ea

d 
II

)
In

de
pe

nd
en

t c
om

po
ne

nt
 a

na
ly

si
s

In
de

pe
nd

en
t c

om
po

ne
nt

s a
re

 e
xt

ra
ct

ed
, l

at
er

 o
rd

er
in

g 
of

 th
e 

co
m

po
ne

nt
s i

s c
ar

rie
d 

ou
t t

o 
ob

ta
in

 si
gn

ifi
ca

nt
 c

om
po

ne
nt

s
A

cc
ur

ac
y:

 9
8.

7%



1035Physical and Engineering Sciences in Medicine (2021) 44:1027–1048	

1 3

ECG based arrhythmia classification

Classification plays a critical role in the identification of 
the particular class of arrhythmia. State-of-the-art proposed 
various machine learning algorithms for multiple types of 
arrhythmia classification using ECG sensors. The most com-
monly used machine learning classifiers are support vector 
machine (SVM) [2, 31, 61, 68, 70, 71], neural network [29, 
31, 40, 41, 51, 72–74], and fuzzy classifier [75, 76]. Table 4 
shows a list of some significant ECG-based arrhythmia clas-
sification approaches.

SVM is a widely used supervised learning technique for 
data analyses and pattern recognition. The purpose of this 
approach is to minimize the confidence interval or margin 
between hyper-plane and data points. Later, these data points 
are plotted into clusters, representing a different class [2]. 
Salam et al. [2] plots feature vectors in different clusters 
for normal and abnormal ECG classification using an SVM 
classifier and obtain an accuracy of 98.65% in peak detec-
tion. Yu et al. [54] implemented SVM and probabilistic neu-
ral networks (PNN) independently as a multi-class problem 
to identify eight different types of ECG beats. The authors 
claimed that results obtained from SVM and probabilistic 
neural networks are similar. Asl et al. [68] cascade SVM 
with generalized discriminant analysis (GDA) to obtain 
mapped input features. The features obtained are mapped 
on a radial basis to function non-linearly. Chen et al. [70] 
proposed a hybrid classifier architecture approach for feature 
classification using nonlinear SVM and weak linear classi-
fier (WLC). A hybrid approach is implemented to avoid neg-
ative behavior of SVM for imbalanced classes. The results 
concludes that the proposed method is energy efficient in 
ECG processing and obtains negligible performance loss.

Neural network (NN)-based arrhythmia classification is 
a popular model for classification. A fuzzy state in a neu-
ral network is responsible for distributing data into clusters 
providing different membership values. Later, classification 
is carried out using these membership values [57]. Oresko 
et al. [75] proposed an adaptive artificial neural network 
(ANN) based technique for precise and faster training of 
data. In [40], Rae et al. compared different neural network 
techniques for the classification of arrhythmia based on ECG 
records. Ozbay et al. [76] implemented a fuzzy c-means 
clustering algorithm (type 2) along with the wavelet trans-
form. The fuzzy layer is responsible for performing a pre-
classification task, and the wavelet is used to eliminate trivial 
features. Jiang et al. [80] implemented a block-based neural 
network method that optimized weights using evolutionary 
operators and local gradient search. The method obtains 
detection accuracy of 98.1% and 96.6% for VEB and SEB, 
respectively.

Llamedo et al. [81] proposed the integration of a cluster-
ing algorithm with a linear discriminant classifier (LDC) for 

the classification of arrhythmia, where clustering is liable 
to patient-specific data ordering, and LDC is for automatic 
cluster labeling. According to the authors, the beat being 
grouped in a cluster belongs to one class, and the remaining 
belongs to the other classes. In [77], the authors proposed a 
one-versus-one SVM classifier for arrhythmia classification. 
In this approach, time-based, morphological, and wavelet 
coefficient features have been used to classify four classes 
of arrhythmia. Average classification accuracy of 87.88% 
has been achieved.

Others classifiers that can be used for the classification 
of arrhythmia are non-singleton fuzzy logic classifier [82], 
modular neural network [83] and [42], multi-layered percep-
tron [40], fuzzy clustering NN [57], naive Bayes classifier 
[36], neuro SVM-KNN fusion classifier [47], convolutional 
neural network [29, 84, 85] linear discriminant classifier [81, 
86], particle swarm optimization classifier [32, 87] and con-
ditional random fields classifier [39].

Although twelve lead ECG is a standard method for the 
detection of various cardiovascular diseases, however, this 
approach has fewer limitations, such as discomfort, lim-
ited freedom of movement for patients, limited to clinical 
practices only, etc. Moreover, due to continuous manual 
observation, it becomes troublesome for experts sometimes 
to identify the paroxysmal nature of arrhythmia correctly. 
To overcome these limitations, various research work has 
been carried for the automated detection of arrhythmia using 
fewer ECG leads. The review discusses various methods for 
the automated detection of arrhythmia using fewer ECG 
leads. On the contrary, various research also focuses on the 
detection of arrhythmia using PPG signals due to its low cost 
and convenience to used advantages. Thus, the following 
section discusses various PPG-based methods used for the 
detection of arrhythmias.

PPG based arrhythmia detection

In recent years, data acquisition from PPG signals has gained 
significant importance in biomedical signal processing due 
to its low cost, ease of use, and non-invasive benefits. In 
ECG, electrodes need to be deployed onto the patient’s body 
which discomforts the patient. Moreover, when deployed 
for a long duration, feeling of unhealthiness, limited free-
dom of movement, etc. Results in for the patient. Although 
12-lead ECG is a gold standard for the measurement of heart 
activity, it cannot be used as a portable device. Therefore, 
since the last decade, with the advancement in technology 
development, portable devices have been in great demand 
to monitor cardiac activity for a longer duration. Castaneda 
et al. [20] discuss current PPG-based developments and 
their applications in the real world. It explained various PPG 
sensors and discussed analysis methods. Moreover, various 
medical diagnosis tools stating how PPG sensors can be used 
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as personalized health tools for advancement in health care 
and e-health are also presented. The detection process of the 
arrhythmia is mainly categorized into preprocessing of the 
PPG signal, followed by feature extraction and classification 
to identify the type of arrhythmia abnormality. Various pre-
processing, feature extraction, and classification techniques 
found in the literature have been reviewed in the following 
sub-sections.

Preprocessing

Before the detection of an arrhythmia, artifact removal from 
the signal are of utmost importance. Artifacts obtained in the 
PPG signals are noisier compared to ECG signals due to: 
(a) technical artifacts or experimental artifacts, (b) environ-
mental artifacts, and (c) biological artifacts or physiologi-
cal artifacts. Technical artifacts that occur due to the body 
movements might result in the displacement of the sensor 
from its original location. Environmental artifacts occur due 
to the presence of ambient light that may intervene with the 
sensor, resulting in the corruption of the captured signals. 
Biological artifacts occur due to the varied optical response 
of the blood with a person’s hemodynamic parameters. The 
amplitude of the artifacts is increased when the data collec-
tion is transferred to a patient’s home by the hospital [8]. 
However, the most common artifacts leading to false alarms 
are motion and noise artifacts. Solosenko et al. [88] imple-
mented low and high-pass finite impulse response filters to 
minimize noise and remove baseline wandering with cut-off 
frequencies of 5 and 0.4 Hz, respectively. Paradkar et al. 
[89] demonstrated a pulse quality index for noise removal 
by selecting only the highest quality pulses for estimating 
heart rate. Similarly, authors in [90–93] used bandpass filters 
for preprocessing, whereas the study reported in [90] imple-
mented a second-order Butterworth bandpass filter based 
on brute force search. Later, the second derivative has been, 
implemented to extract the acceleration plethysmography 
(APG) signal from a filtered PPG signal. Poh et al. [91] 
used a moving average filter with a bandpass filter to refine 
blood volume pulse peak fiducial points. However, due to 
the presence of ambient light, the filtered signals obtained 
after averaging are weak. To limit this problem, Solosenko 
et al. [93] used a second-order butter-worth bandpass filter to 
remove baseline wandering and non-overlapping noises with 
a cut-off frequency of 0.5 and 3.5 Hz. The use of a bandpass 
filter was able to reduce only non-overlapping noise from 
the signal. Poh et al. [94] used Widrow’s ANC technique 
to minimize motion artifacts. Later, these motion artifacts 
were subtracted from the corrupted output to obtain a physi-
ological signal. In this approach, the authors assume that 
the obtained physiological signal and the motion-induced 
signal are additive. To limit this noise, accelerometers could 
be used for adaptive noise cancellation [97, 98]. Yousefi Ta
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et al. [97] proposed an artificial noise generation approach 
using an accelerometer. In this singular value decomposi-
tion, ICA and FFT generate three references that are later 
used to quantify the randomness of each signal. Fukushima 
et al. [98] calculated the difference in the spectrum between 
PPG and acceleration. Reliability and heart rate frequency 
are later detected, and artifacts are rejected. Lee et al. [99] 
use a fixed interval-based Kalman filter for noise cancella-
tion. The results show that this filter can remove noise effec-
tively compared to the other adaptive filtering techniques. 
However, it has been found that the obtained smoothening 
filter is computationally expensive compared to the other 
algorithms. Sayadi et al. [4] proposed a joint dynamical 
state-space model along with the Kalman filter. This tech-
nique provides a synchronized estimation of multiple cardio-
vascular signals such as PPG, ECG, blood pressure, venous 
pressure.

Patterson et al. [95] proposed a radiometric comparison 
based noise cancellation method. In this, a comparison was 
made between the characteristics of infrared and red light. 
The absorption characteristics were used to cancel out mul-
tiplicative noise, whereas amplitude modulation is used to 
remove additive noise. However, the method compensates 
when ambient light levels are varied. To overwhelmed the 
limitation, another approach by Bhowmik et al. [96] was 
proposed for noise removal. In this, the authors implemented 
Daubechies wavelet transform where signals are passed 
through multiple filter banks, and the baseline of the signal 
is formed. After approximating the coefficient value, any dis-
tinction in the baseline of the signal is removed. This method 
was able to remove artifacts to a large extent however, due to 
its complexity and resolution trade-off between time and fre-
quency domain, the approach cannot be used for real-world 
application effectively. Table 5 shows some studies carried 
out in the literature for noise and artifact removal in PPG 
signals. PPG signals being more prone to motion artifacts, 
accurate preprocessing of the signal is required for efficient 
detection of arrhythmia. In the following subsection, various 
feature extraction techniques for arrhythmia detection have 
been discussed.

Arrhythmia detection and feature extraction

After preprocessing the PPG signal, signal features need to 
be extracted to detect the arrhythmia. This section provides 
brief literature on various arrhythmia detection techniques. 
PPG signals can be captured from the different body parts 
such as a finger, wrist, ear, forehead, ankle [12]. Table 6 
shows the various feature extraction method found in the 
literature for the detection of arrhythmia. Elgendi et al. [100] 
presented a review on various features such as pulse width, 
pulse area, peak-to-peak interval, etc. that can be used to 
process the PPG signal further. In [101–103], authors 

developed a smartphone-based algorithm for arrhythmia 
detection, where the user is required to place the index fin-
ger over the camera lens for signal acquisition. Chong et al. 
[101] proposed a root mean square of successive differ-
ences (RMSSD) and Shannon entropy (ShE) based feature 
extraction method. These features identify AF, PVC, normal 
sinus rhythm (NSR), and premature atrial contraction (PAC) 
based on these features. The limitation of this method is 
that threshold values have been used for the detection of 
a normal and abnormal pulse. Due to these fixed values, 
the robustness of the algorithm decreases. Lee et al. [102] 
used statistical methods such as RMSSD, ShE to decide 
for AF. Although the method has been able to detect AF, 
however, due to the asymptomatic nature of the AF, all 
AF’s are not detected accurately. Scully et al. [103] used a 
green band from the RGB-based video recordings for the 
detection of AF with the same features as in [101]. Other 
methods described in [96, 99, 104–106] are also finger-
based arrhythmia detection algorithms. Poh et al. [104] 
extracted the pulse rate using a webcam and finger-based 
blood volume pulse (BVP) sensor to observe the rate. The 
author has used Bland–Altman and the correlation approach 
for pulse rate estimation. The advantage of the approach 
is that it is tolerant of motion artifacts and is capable of 
examining multiple people at a time. Though this method 
is based on automatic face tracking, the artifacts that occur 
during face tracking have not been addressed in the paper, 
hence, limits its use as a robust method. Elgendi et al. [90] 
proposed a novel approach for the detection of atrial PPG 
signal components by implementing a second derivative to 
a filtered PPG signal. The second-order of the PPG signal 
can be used to detect cardiovascular diseases like atrial stiff-
ness and atherosclerosis. The results obtained has a 99.82% 
positive predictivity. Bhowmik et al. [96] developed an on-
board feature detection algorithm using wavelet transform. 
Solosenko et al. [107] proposed a method for generating 
simulated PPG signals from the ECG RR intervals series. 
In this PPG, the pulse is modeled from the ECG signal as 
a combination of one logarithm waveform and two Gauss-
ian functions. This method signifies the change in the PPG 
signal during atrial fibrillation.

ICA has been used [91, 108, 109] for extracting physi-
ological parameters using a webcam by separating color 
channels obtained during video recordings. These features 
are used to extract blood volume pulse and thereby measure 
heart rate variability (HRV). The methods proposed by these 
authors are based on the detection of blood volume pulse 
from the face of the subject. Poh et al. [91] require the sub-
ject to be stationary; however, Lee et al. [108] and Lam et al. 
[109] proposed the HRV detection approach while the sub-
ject is in motion. Balakrishnan et al. [110] proposed a PCA 
approach to track volumetric features on a person’s head 
and find a periodic signal of the pulse accordingly. Whereas 
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Tulyakov et al. [111] estimate HRV using matrix comple-
tion theory by processing skin pixels in the facial regions. 
This matrix completion-based framework is used for find-
ing the preeminent areas of the face for the correct predic-
tion of HRV. The methods mentioned above for arrhythmia 
detection for video recordings have been able to detect HRV. 
However, the use of ICA and PCA increases the processing 
time of the algorithm. Moreover, artifacts that occur dur-
ing face tracking have not been addressed in the existing 
literature. In [92, 112, 113], the author used the wrist-based 
sensor to extract features and detect arrhythmia. This sensor 
is considered the most preferred sensing device due to its 
convenience in wearing the device. Authors in [113], pro-
posed a TROIKA framework for signal decomposition and 
spectral peak tracking using a wristwatch PPG probe. But 
this framework has few limitations, such as peak spectral 
and acceleration spectrum in the PPG spectrum that does 
not appear at the same frequency bin. Besides, this method 
is limited to the monitoring of the heart rate. In contrast to 
the TROIKA, The Joint sparse spectra model [112] is used 
for the spectrum estimation of the PPG signals. The result 
shows that this method has great potential for PPG-based 
HRV detection during motion. Moreover, it does not require 
signal decomposition like in TROIKA. However, when the 
heart rate is not located in the frequency grid, then accurate 
detection of heart rate is not achieved.

Zhang et al. [92] used a sparse signal recovery algorithm 
for the heart rate estimation. It calculates high-resolution 
power spectra for PPG signals. This method works well 
when the movement of the wrist is stable. Fukushima et al. 
[98] use an accelerometer for motion artifacts removal and 
heart rate estimation. In this approach, frequency analysis of 
PPG signals is analyzed by obtaining the difference of spec-
trum between PPG to acceleration. Parak et al.[117] used the 
heart timing signal algorithm for arrhythmia detection in 
PPG, where R-peaks are verified manually in the reference 
signal and later resampled to the 10 Hz sampling frequency.

Among the discussed PPG sensors, ear-based sensors 
are less affected by motion artifacts. Moreover, an earlobe 
has no cartilage resulting in ample arterial supply [94]. Poh 
et al.[94] used magnetic earring (clips) based sensors for 
feature extraction. In this method, the least mean square 
algorithm is used to minimize the signal's power to estimate 
filter coefficients. According to them, the proposed design 
approach is more tolerant to motion artifacts during physi-
cal activities. Other methods such as Paradkar et al.[89], 
expressed each pulse as a mixture of two Gaussian curves, 
and accordingly, Gaussian fit parameters are extracted. The 
other features, such as peak intervals and pulse amplitude 
features, are also used for false arrhythmia detection. These 
features are later normalized over the PPG window contain-
ing 30 pulses. Fischer et al.[8] implemented a pulse wave 
analysis of the signal for detecting clipping values of the raw Ta

bl
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signals. Later, these clipped signals are filtered, and annota-
tions are compared to the raw input signals. Then, rise time, 
pulse rate, pulse wave duration features are extracted for 
the detection of arrhythmia. Solosenko et.al [88], used a 
sliding window approach for the extraction of normalized 
peak-to-peak interval and power ratio features. The main 
emphasis of the PPG signal is on heart rate variability detec-
tion such that the device could be used as a portable device. 
However, limited research explores the use of PPG signals 
for arrhythmia detection. Authors extracted various time, 
area, and statistical features for the detection of arrhythmia, 
and later classification is implemented for identifying the 
type of arrhythmias’. In the next section, various PPG-based 
arrhythmia classification methods will be discussed.

Arrhythmia classification

After feature extraction, there is a need for the identifica-
tion of the type of PPG pulse. To undertake these, several 
automatic classification methods have been presented in 
the literature. Various algorithms such as neural networks 
[88], naive Bayes classifier [93], and linear discriminant 
classifier [118] are proposed in the literature for arrhyth-
mia classification. Solosenko et al.[88] proposed an ANN 
approach for linear and nonlinear feature classification. The 

backpropagation method has been used to train the model, 
and overfitting has been overwhelmed to some extent by 
adding random noise to the data.

Gil et al.[118] proposed a linear discriminant analysis 
(LDA) based method for ventricular premature beats (VPB) 
classification. In this, features are normalized with their 
mean values. The normalization is done before classifica-
tion. Later, the author’s employed LDA, where features are 
added for improving performance accuracy at each step. 
Solosenko et al.[93] implemented the Naive Bayes classifi-
cation for the different types of arrhythmia detection. This 
method calculates the value of each feature, assuming they 
are conditionally independent. This approach is preferred 
in embedded systems due to its ease in the implementation, 
increased efficiency, and high sensitivity for trained data. 
It has been observed that the state-of-the-art methods have 
reported very few works for the detection of the single or 
multiple types of arrhythmias using a machine learning 
approach. These approaches may provide more prominent 
results compared to conventional methods. Table 7 shows 
various classification methods used in the literature for 
arrhythmia detection from PPG signals.

Other classifiers that can be used for the classification of 
arrhythmia are a non-singleton fuzzy logic classifier, multi-
layered perceptron, fuzzy clustering NN [8], SVM- KNN 

Table 7   Some significant studies for the classification arrhythmia using PPG signals

References Database Sensor Data description Detection Method Results

Gil et al. [118] PhysioNet 
MIMIC; self-
generated

Transmissive 
finger sensor

MIMIC: Sampling 
rate: 125 Hz; 
Self-generated: 
11 subjects; 
Sampling rate: 
1000 Hz

PVC LDA Accuracy: 96.8%

Solosenko et al. 
[93]

PhysioNet MIMIC Transmissive 
finger sensor

Sampling rate: 
125 Hz

Extrasystole 
detection

Naive Bayes clas-
sifier

Accuracy: 99.89%
Sensitivity: 96.40%
Specificity: 99.92%

Solosenko et al. 
[88]

PhysioNet data-
base: MIMIC-II 
and MIMIC; 
self-generated

Transmissive 
finger sensor

MIMIC-II: 18 
signals sampled 
at 125 Hz

MIMIC: 25 
signals of 1–2 h, 
sampled at 
250 Hz; Self-
generated: 1 sig-
nal of 100 min, 
sampled at 
250 Hz

PVC Sliding window 
approach; ANN

With PPG pulse:
Sensitivity: 92.4%
Specificity: 99.9%

Eerikäinen et al. 
[115]

Self-generated 
dataset

Reflected finger 
sensor

40 subjects; 
Sampling rate: 
64 Hz

AF, Atrial flutter Random forest AF
Sensitivity: 7.6%
Specificity: 98.2%
Atrial Flutter
Sensitivity: 84.5%
Specificity: 99.7%

Aschbacher et al. 
[119]

Self-generated 
dataset

Reflected wrist 
sensor

51 subjects; sam-
pled at 20 Hz

AF DNN Accuracy: 98.3%
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fusion classifier, convolutional neural network, etc. The 
limitation of the current methods is that the classification 
methods used are only applicable to binary class classifica-
tion. The detection of all types of life-threatening arrhyth-
mia has not been addressed using a classification strategy. 
Hence, there is a need to improve classification methods that 
can detect to classify all types of arrhythmia using learning-
based approaches.

Discussion

Automated arrhythmia detection is a stimulating issue in 
the area of biomedical engineering. This paper presents a 
comprehensive review of ECG and PPG signals based on 
automated arrhythmia detection and classification tech-
niques. Firstly, the review highlights various preprocessing 
techniques proposed in the literature for noise and motion 
artifacts removal, along with their limitations. Thereafter, 
feature extraction methods for extracting pivotal points from 
the ECG and PPG signals are summarized to detect arrhyth-
mia automatically. Finally, the classification approaches pre-
sented in the literature for the automated classification of the 
type of arrhythmia have been discussed. Tables 1, 2, 3, 4, 
5, 6 and 7 included in the paper shows a brief comparative 
analysis of the methods, the database used, data description, 
and types of arrhythmias identified. Also, the number of 
channels used for ECG data collection and the type of sensor 
used for PPG in the literature are discussed in the review.

ECG and PPG modalities are used for arrhythmia detec-
tion; however, as the review highlighted following challenges 
needs to be addressed. Automated ECG-based arrhythmia 
detection has been carried out mostly on a single channel or 
two-channel publically available dataset, where annotated 
ECG data are available. On the contrary, annotated PPG 
dataset is not available publically. Thus, PPG-based arrhyth-
mia detection has been carried out mainly on self-generated 
datasets using various transmitting and reflective sensors.

In ECG-based arrhythmia detection methods, bandpass, 
wavelet-based, and median filter are some preprocessing 
approaches that have been used in the literature. Among 
these, wavelet filtering has been widely used in the litera-
ture for noise and artifacts removal due to the reconstruc-
tion properties of wavelets with linear and higher-order 
polynomial shapes. Although wavelet-based noise removal 
technique shows a promising future in ECG signal preproc-
essing. However, the use of wavelets leads to an increase in 
computational time and complexity of the algorithm. Moreo-
ver, selecting an approximate sub-band is also complicated 
on using wavelets. Contrary to wavelet filtering for ECG 
preprocessing, an increase in signal-to-noise ratio caused 
due to motion artifacts and sensor dislocation in PPG signals 
are discarded in the bandpass filter effectively. Thus, the 

bandpass filter is preferred in most of the available meth-
ods for noise and motion artifact removal in PPG signal 
preprocessing.

After preprocessing, the foremost emphasis of the ECG 
and PPG signal is to extract fiducial points for heart rate 
variability and arrhythmia detection. Several morphologi-
cal, statistical, Fourier transform, feature engineered, wave-
let, and deep learning-based feature extraction methods 
have been discussed in detail in the ECG-based arrhythmia 
detection approach. These features can detect many differ-
ent classes of arrhythmias with significant accuracy. Among 
these feature extraction techniques, wavelets and deep learn-
ing-based approaches have been able to detect almost all 
types of arrhythmias with significant accuracy. However, 
the deep learning model requires a large dataset for training, 
resulting in an expensive data model. Moreover, deep learn-
ing methods are black-box models resulting in difficulty in 
the interpretability of the model. Thus, it becomes challeng-
ing for the expert to diagnose based on the results of these 
models without giving a clinical explanation. In the PPG-
based arrhythmia detection approach, literature reported 
various feature extraction techniques to extract pivotal points 
for heart rate variability and arrhythmia detection. Several 
time-based, frequency, statistical, and entropy-based feature 
extraction methods have been widely used in the literature. 
However, limited research work has been carried in the area 
of arrhythmia detection using PPG signals. Furthermore, 
most of the work reported AF arrhythmia detection, where 
other commonly occurring arrhythmias are also required. 
Subsequently, to feature extraction, feature selection also 
plays a pivotal role in obtaining significant accuracy. How-
ever, the use of current PCA and LDA feature selection 
techniques have few limitations. For instance, LDA is not 
preferred for nonlinear datasets, and PCA may sometimes 
lead to information loss. To overcome these limitations, the 
usage of generalized discriminant analysis (GDA) and ant 
colony optimization (ACO) in ECG-based applications for 
feature selection and feature dimensionality reduction can 
be studied. GDA is a generalization of LDA that maps input 
data into an expedient high dimensional feature space using 
LDA properties. This generalized mapping leads to the fea-
ture dimensionality reduction of nonlinear datasets as well. 
Thus, usage of GDA would be able to reduce dimensionality 
for both linear and nonlinear features. Moreover, the ACO-
based ECG feature selection method can also be studied. It 
uses local feature importance and overall performance of 
feature set to search the feature space to obtain optimal fea-
ture set. Further research may provide efficient solutions to 
feature reduction and selection problems.

Various classification approaches are discussed in detail 
for both ECG and PPG techniques to identify the type of 
arrhythmia. The widely used classification techniques used 
in the literature are Bayes classification, SVM, regression, 
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neural network, etc. However, in PPG-based arrhythmia 
detection, the results that have been obtained are on a small 
dataset. Thus there is a need to study these methods on a 
larger dataset for their real-time applicability. Moreover, fur-
ther research is needed for new feature extraction techniques 
for multiple types of arrhythmias detection and classifica-
tion. Table 8 shows a comparison of some technological and 
arrhythmia detection aspects between ECG and PPG signals.

Twelve-lead ECG is a gold-standard method for CV 
detection. However, it has fewer limitations, such as lim-
ited mobility, discomfort, and clinical expertise required. 
The recent trends show that the research is being focused on 
the automatic detection of arrhythmia using single-channel 
ECG or PPG techniques for in-and-out-of-hospital settings 
to overcome these limitations. The presented paper shows 
that the literature has been able to detect multiple types 
of arrhythmias using single-channel ECG with significant 
accuracy. However, these techniques have fewer limitations: 
first, the single-channel ECG data used has been acquired 
from 12-lead ECG settings. Thus, detecting multiple types 
of arrhythmia using a single-channel standalone ECG device 
is still a research gap. Second, other CV diseases cannot be 
effectively identified using single-channel ECG. Thus data 
from other channels would be required for accurate estima-
tion of the abnormality, and adding more leads to the device 
would increase the complexity of the device, resulting in dif-
ficulty to set up. At last, tall T-wave obtained in ECG due to 
other CV diseases could be sometimes misclassified with the 
R-wave in ECG signals, resulting in incorrect abnormality 

detection. Contrary to single-channel ECG, PPG sensors 
also prove to be an alternate solution to 2-lead ECG. PPG 
signals are captured from a single spot of the body. PPG 
signals and their derivatives could be useful for the detection 
of arrhythmia and other CV diseases such as coronary artery 
diseases without adding complexity to the device. However, 
these techniques have fewer limitations: first, PPG signals 
are more prone to noise and motion artifacts caused due to 
sensor dislocation, body movement, muscular movement, 
etc. Second, skin color, ambient light, and cold body tem-
perature will also affect signal acquisition. Thus, further 
research is needed to overcome these limitations and provide 
an optimum solution for the efficient detection of arrhythmia 
and other CV diseases.

Conclusion

Arrhythmia detection using user-friendly, portable devices is 
one of the promising areas in the field of biomedical applica-
tions. This paper presents a comprehensive review of various 
methods used for the detection and classification of arrhyth-
mias using single-channel or multiple-channel ECG and 
transitive or reflective PPG sensors. The limitations of the 
current techniques for noise and artifacts removal, feature 
extraction, and classification of ECG/PPG-based arrhyth-
mia detection have been discussed, and rational solutions are 
provided. The review also exhibits a list of public databases 
that can be further used for the evaluation of the results. 

Table 8   Comparison of some technological and arrhythmia detection aspects between ECG and PPG

Comparison PPG ECG

Technological Trending towards the use of single PPG sensors for arrhyth-
mia detection

Trending towards the use of single-lead ECG sensors for 
arrhythmia detection

PPG data acquired is largely invariant to location More leads are required to ascertain the exhaustive set of 
CV diseases

More prone to noise and motion artifacts due to muscle 
movement, sensor dislocation, etc

Less prone to noise and motion artifacts

Skin color, ambient light, etc. would affect data acquisition Skin color, ambient light, etc. would not affect data acqui-
sition

Preferred sensor locations are: wrist, finger Preferred sensor location is: chest
Arrhythmia detection Research interest is limited to arrhythmias due to impulse 

production [114, 115, 119]
Both impulse production and conduction arrhythmias have 

been studied [36, 41, 43, 85, 120]
State-of-the-art reported the majority of published articles 

in PVC, and AF detection i.e. impulse production arrhyth-
mias [88, 107]

State-of-the-art reported detection of all types of arrhyth-
mias [64, 65, 121]

Majority of the published articles reported single class 
arrhythmia detection [102, 118, 119]

Majority of the published articles reported multiple class 
arrhythmia detection [29, 42, 72]

PPG derivatives could be used for the detection of CV 
diseases like atrial stiffness, myocardial infarction, etc. 
[122–124]

Multiple-leads data is required for CV detection [125]

Performance obtained using PPG signals for single class 
detection is around 97% [116]

Performance obtained using ECG signals for multi-class 
detection is significantly high [49, 64]
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Typically, ECG-based methods have been validated on the 
MIT-BIH database, and PPG-based methods have been vali-
dated on the self-generated or PhysioNet database. A list 
of ECG and PPG sensors is also reported in the paper for 
further analysis. The review presented a detailed overview of 
the literature on automated arrhythmia detection using ECG 
and PPG modalities. The review highlights various state-of-
the-art methods, challenges, gaps, and promising areas for 
further research in arrhythmia detections.
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