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Abstract
To develop a convolutional neural network-based method for the subjective evaluation of computed tomography (CT) images 
having low-contrast resolution due to imaging conditions and nonlinear image processing. Four radiological technologists 
visually evaluated CT images that were reconstructed using three nonlinear noise reduction processes (AIDR 3D, AIDR 
3D Enhanced, AiCE) on a CT system manufactured by CANON. The visual evaluation consisted of two items: low contrast 
detectability (score: 0–9) and texture pattern (score: 1–5). Four AI models with different convolutional and max pooling 
layers were constructed and trained on pairs of CANON CT images and average visual assessment scores of four radiological 
technologists. CANON CT images not used for training were used to evaluate prediction performance. In addition, CT images 
scanned with a SIEMENS CT system were input to each AI model for external validation. The mean absolute error and 
correlation coefficients were used as evaluation metrics. Our proposed AI model can evaluate low-contrast detectability and 
texture patterns with high accuracy, which varies with the dose administered and the nonlinear noise reduction process. The 
proposed AI model is also expected to be suitable for upcoming reconstruction algorithms that will be released in the future.
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Introduction

In recent years, tube current control technology, image 
reconstruction technology, and image filtering technology 
have made it possible to significantly reduce the amount of 
radiation humans are exposed to during computed tomogra-
phy (CT) scans. In particular, because noise reduction pro-
cessing based on iterative reconstruction (IR) algorithms can 
reduce radiation exposure while maintaining image quality 
[1], different algorithms are being developed by manufactur-
ers [2, 3]. The effect of IR algorithms on image quality is 
known to be nonlinear and to produce a different frequency 

response than conventional filtered back projection (FBP) 
reconstruction [2, 4]. In addition, the emergence of image 
processing using artificial intelligence is expected to acceler-
ate the non-linearization of images.

Objective evaluation methods for low contrast detect-
ability include image noise and the contrast-to-noise ratio 
(CNR). However, it has been reported that the change in 
low-contrast detectability due to IR does not correlate with 
image noise or CNR [5–8], suggesting that it is difficult to 
evaluate IR based on physical assessment alone. Further-
more, it has been reported that the noise reduction process 
applying the IR method changes the texture pattern of the 
image at low doses, resulting in a visually different impres-
sion compared to FBP [9]. For this reason, many phantom 
studies that focus on the evaluation of IR combine objective 
and subjective evaluations [10].

For the same reason, it is necessary to determine the scan 
parameters based on a comprehensive judgment based on 
both objective and subjective evaluation results in clinical 
practice. However, subjective evaluation is burdensome 
because the observer has to evaluate a large number of 
images one by one [5, 10]. Furthermore, because the char-
acteristics of image quality differ among CT manufacturers, 
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subjective evaluations must be conducted for each CT sys-
tem. For these reasons, there is a need to establish a tech-
nology that provides automated subjective evaluation using 
certain criteria.

Convolutional neural networks (CNNs), which are an 
artificial intelligence technology that simulates the func-
tions of human neurons and human vision, achieve high 
performance in image recognition and are widely used in 
the field of image recognition processing [11, 12]. Many 
studies have been published on image quality evaluation 
using neural networks [13, 14], and some have been applied 
to medical imaging [15, 16]. Kim et.al reported as detecting 
low contrast object using CNN in phantom study [17]. How-
ever, Kim's study used CT images obtained from a single 
CT system, and it is not specified whether the results can be 
obtained with high accuracy for reconstruction algorithms 
from different CT manufacturers and for unknown image 
reconstructions. In addition, the cropping process for each 
object is very complicated, and it is necessary to develop 
a simple evaluation system that can input images without 
preprocessing.

In this study, we developed a CNN-based method for the 
subjective evaluation of CT images to detect changes in low 
contrast resolution due to scan parameters and nonlinear 
image processing.

Method

Phantom

We used the Catphan600 (The Phantom Laboratory, Salem, 
NY, USA) consisting of five modules (CTP404 Slice Geom-
etry and Sensitometry Module, CTP591 Bead Geometry 
Module, CTP528 High Resolution Module, CTP515 Low 
Contrast Module, and CTP486 Uniformity Module), which 

enable different measurements depending on the imaging 
cross section. The CTP515 module used in this study con-
tains cylindrical rods (z-length = 40 mm) with diameters of 
2–15 mm and contrasts of 3HU, 5HU, and 10HU (Fig. 1). 
The observer can evaluate the low contrast resolution by 
visually examining a CT image of a phantom in which a 
number of these cylindrical rods having different diameters 
and contrasts are embedded. In this study, cylindrical rods 
with a contrast difference of 10HU were used for observer 
evaluation.

CT systems and data acquisition parameters

This study was performed using three different CT sys-
tems from two different manufacturers. First, we used the 
Aquilion ONE Genesis system (Canon Medical Systems). 
Acquisition was performed using a 120 kV helical scan 
(beam pitch: 0.637). The tube current was set to 640 mA 
when the rotation time was 1.5 s/rot and was set to 650, 
490, 340, 250, 130, 60, 60, 30, 15, or 10 mA when the rota-
tion time was 1.0 s/rot. The beam collimation was set as 
80 × 0.5 mm, slice thickness was 0.5 mm, the field of view 
(FOV) was 240 mm, and the matrix size was 512 × 512 pix-
els. Images were reconstructed using FBP, adaptive iterative 
dose reduction 3D (AIDR 3D and AIDR 3D Enhanced), and 
the advanced intelligent clear-IQ engine (AiCE). The kernels 
for FBP, AIDR 3D, and AIDR3D Enhanced were all FC03. 
AIDR 3D and AIDR 3D Enhanced, which are noise reduc-
tion processes using the IR method, allow multiple noise 
reduction levels, which are set as follows: AIDR 3D (weak, 
mild, standard, or strong) and AIDR 3D enhanced (e-mild, 
e-standard, or e-strong). AiCE, which is a noise reduction 
technology using deep learning, can provide different noise 
reduction intensities depending on the body part, and was 
set to body-mild, body-standard, or body-strong.

Fig. 1   Catphan600 and CT 
image of CTP515
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Second, we used the SOMATOM Force system (SIE-
MENS). Acquisition was performed using a 120 kV helical 
scan (beam pitch: 0.6). The tube current was set to 630, 420, 
315, 209, 157, 79, or 41 mA when the rotation time was 
1.0 s/rot, and to 38 mA when the rotation time was 0.5 s/
rot. We set the beam collimation as 192 × 0.6 mm, the slice 
thickness as 0.6 mm, the FOV as 240 mm, and the matrix 
size as 512 × 512. Images were reconstructed using FBP 
and advanced modeled iterative reconstruction (ADMIRE). 
ADMIRE, a noise reduction process using the IR method, 
can be set to several noise reduction levels, and was set to 
Strength 1, 2, 3, 4, or 5. The kernel used was Br32.

Finally, the SOMATOM AS system (SIEMENS) was 
used, and acquisition was performed using a 120  kV 

helical scan (beam pitch: 0.6). The tube current was 626, 
416, 312, 207, 156, 78, or 38 mA at 1.0 s/rot and 38 mA 
at 0.5 s/rot. We set the beam collimation as 128 × 0.6 mm, 
the slice thickness as 0.6 mm, the FOV as 240 mm, and the 
matrix size as 512 × 512. Similar to ADMIRE described 
above, SAFIRE was used for reconstruction and can be 
set to multiple noise reduction levels, which were set to 
Strength 1, 2, 3, 4, or 5. For the kernels, H30 medium 
smooth was used for FBP, and J30 medium smooth 
was used for SAFIRE. Table 1 lists the scan parameters 
described above.

Table 1   Scanning and reconstruction parameters

Vendor CANON SIEMENS

Equipment Aquilion ONE Genesis SOMATOM FORCE SOMATOM AS

Tube voltage (kV) 120 120 120
Tube Tube current (mAs)/CTDI (mGy) Tube current (mAs)/CTDI (mGy) Tube current (mAs)/CTDI (mGy)
No. 1 640/89.2 630/89.94 626/89.97
No. 2 650/60.4 420/59.96 416/59.98
No. 3 490/45.5 315/44.97 312/45.11
No. 4 340/30.2 209/29.98 207/29.99
No. 5 250/22.2 157/22.61 156/22.55
No. 6 130/11.6 79/11.42 78/11.28
No. 7 60/5.3 41/5.59 38/5.52
No. 8 30/2.7 19/2.74 19/2.76
No. 9 15/1.3 – –
No. 10 10/0.9 – –
No. 11 10/0.3 – –
Rotation time (s) 1.5 (No. 1) 1.0 (No. 1–7) 1.0 (No. 1–7)

1.0 (No. 2–10) 0.5 (No. 8) 0.5 (No. 8)
0.35 (No. 11) – –

Reconstruction FBP FBP FBP
IR 1 AIDR 3D

(weak, mild, standard, strong)
ADMIRE
(Strength 1, 2, 3, 4, 5)

SAFIRE
(Strength 1, 2, 3, 4, 5)

IR 2 AIDR 3D enhanced
(e-mild, e-standard, e-strong)

– –

DLR AiCE
(Body-mild, body-standard, body-strong)

– –

MBIR FIRST
(Body-mild, body-standard, body-strong)

– –

Collimation 0.5 mm × 80 rows 0.6 mm × 192 rows 0.6 mm × 128 rows
Pitch 0.625 0.6 0.6
Display FOV (mm) 240 240 240
Reconstruction filters FC 13

(FBP, IR1, IR2)
Br32
(FBP, IR1)

H30 medium smooth
(FBP)

None of DLR and MBIR – J30 medium smooth
(IR1)

Thickness (mm) 0.5 0.6 0.6
Gap (mm) 0.5 0.5 0.5
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Labeling: human observer tests

Visual evaluation of CTP515 images was performed by 
four observers. Images were taken from slices where the 
markers on the top of the phantom were visible. Visual 
evaluation was performed on two items: low contrast 
detectability and texture pattern.

For low contrast detectability, the number of visible 
rods was recorded based on a total of nine rods having 
different diameters, all rods having a 10 HU (Δ10HU) 
difference from the background CT value (rod diameters: 
2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 15.0 mm) (Fig. 2). 
Herein, “visible” indicates that the rod was recognized by 
observers irrespective of the shape.

Singh et al. reported that blotchy pixilated artifacts 
produced by the IR method contribute to an observer's 
visual discomfort [9, 18]. It is likely that this change in 
texture pattern is not limited to the IR method, but can also 
be caused by other nonlinear noise reduction processes. 
Therefore, we examined the changes in texture patterns 
caused by various nonlinear noise reduction processes. The 
degree of blotchiness and artificial texture of each cylin-
drical rod (Δ10HU, 15 mmφ) and its surroundings was 
evaluated on a 5-point scale (Table 2, Fig. 3). However, if 
the rod was not visible because of high image noise, the 
score was set to 1. The observer experiment was conducted 
by four radiological technologists with 4–15 years of expe-
rience. The images were displayed using a window level of 
50 and window width of 50. The viewing distance was not 
specified, and the evaluation was conducted at a distance 
that was comfortable for each observer.

The evaluation was conducted on a tablet device (Surface 
GO, Microsoft) equipped with the software developed for 
image observations. An example of the screen produced by 
the application software is shown in Fig. 4. Images were 
randomly displayed on the left side of Fig. 4, and the evalu-
ation score was assigned by the observer using a graphical 
user interface on the right side. The score of an image was 
the average of four observer’s scores.

Network architecture

For the subjective evaluation, we adopted an original CNN 
model that regresses the scores obtained for low contrast 
detectability and texture patterns in the output layer with 
continuous values from 0 to 1 [12]. Both the window width 
(WW) and window level (WL) of the given CT images were 
set to 50 and converted to 8-bit grayscale images.

A CNN includes input layers, hidden layers (convo-
lutional layer, max pooling layer, and fully connected 
layer), and output layers. The hidden layer is responsi-
ble for extracting features, and the features increase in 
the number of layers within the hidden layer. However, 

Fig. 2   Evaluation of low contrast detectability and image examples 
using a phantom. a Overall view of CTP515 image, b Δ10HU cylin-
drical rods (CANON, 250  mAs, FBP), c Δ10HU cylindrical rods 

(CANON, 650 mAs, FBP), d Δ10HU cylindrical rods (CANON, 
650 mAs, AIDR 3D: strong setting), e Δ10HU cylindrical rods (SIE-
MENS, 420 mAs, ADMIRE)

Table 2   Evaluation criteria for texture pattern

Score Rod visibility Blotchiness/artificial texture

1 No –
2 Yes Very strong
3 Yes Strong
4 Yes Weak
5 Yes None or very weak
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excessive extraction features result in overfitting and 
affect the prediction performance of the CNN. Therefore, 
to optimize the evaluation of low contrast detectability 
and texture, we compared four CNN models with differ-
ent hidden layers. As a baseline, we created AI model 1, 

a CNN model with three convolutional and pooling layers 
and two fully connected layers. Furthermore, we created 
AI model 2 with four convolutional and pooling layers, AI 
model 3 with five convolutional and pooling layers, and 
AI model 4 with six convolutional and pooling layers, and 

Fig. 3   Evaluation of texture patterns. a Overall view of CTP515 
image, b Cylindrical rod with Δ10HU (CANON, 60.4 mAs, FIRST), 
c cylindrical rod with Δ10HU (CANON, 960 mAs, AiCE), d cylin-

drical rod with Δ10HU (CANON, 650 mAs, AIDR 3D: strong set-
ting), e cylindrical rod with Δ10 HU (CANON, 250 mAs, FBP)

Fig. 4   Example screen using application software for image quality evaluation
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compared their prediction performance (Fig. 5). In the 
convolutional layer, we set the filter size to 3 × 3, stride 
of 1, and max pooling matrix size of 2 × 2. The activation 
function was the rectified linear unit (ReLU) function.

Training

The CT images used for training were cropped to 350 × 350 
pixels to remove the background around the phantom. 
Out of a total of 407 images of FBP, AIDR 3D, AIDR 3D 
Enhanced, and AiCE reconstructed on Aquilion ONE, 308 
images were used for training each model and 99 were used 
for validation. The cross-entropy error was used as the loss 

Fig. 5   CNN architectures for image assessment. a Convolutional lay-
ers: 3, pooling layers: 3, fully connected layers: 2. b Convolutional 
layers: 4, pooling layers: 4, fully connected layers: 2. c Convolutional 

layers: 5, pooling layers: 5, fully connected layers: 2. d Convolutional 
layers: 6, pooling layers: 6, fully connected layers: 2
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function, and Adam was used as the optimization algorithm. 
The number of training epochs and learning coefficient were 
set to 50 and 0.001, respectively. The training process was 
performed using TensorFlow [19] and Keras frameworks 
[20] running in a graphics processing unit (GPU) environ-
ment. The computers used for training were equipped with 
an AMD Ryzen 9 3950X processor and an NVIDIA TITAN 
RTX GPU.

Contrast‑to‑noise ratio

We measured CNR for 11 computed tomography dose index 
(CTDI) and four reconstructions (FBP, AIDR 3D, AIDR 
3D Enhanced, and AiCE) in CANON CT images. CNR is 
expressed as

where CTRod denotes the CT value of the rod (Δ10HU, 15 
mmφ) used for the human observer test, CTBG denotes the 
CT value of the background near the rod, and SDBG denotes 
the standard deviation of the background near the rod. The 
ROI was set to 20 × 20. The CNR score was the average 
CNR of the three CT images. For low contrast detectability, 
we calculated correlation diagrams between the CNR and 
the score of the human observer test.

Evaluation metrics

To evaluate the prediction performance of each model, 99 
images (not used for training) out of a total of 407 images 
produced using FBP, AIDR 3D, AIDR 3D Enhanced, and 
AiCE reconstructed by Aquilion ONE Genesis were used 
as input for each model, and the correlation diagrams of 
the scores between the observer and the CNN outputs were 
obtained. To conduct the external validation, 288 CT images 
acquired by SIEMENS scanners (ADMIRE: 144 images, 
SAFIRE: 144 images), which were not used for training, 
were input into each CNN model and the correlations of 
scores between the observer and the CNN outputs were 
obtained. The mean absolute error (MAE) and correlation 
coefficient were then calculated from the results. MAE is an 
index used to measure the accuracy of a prediction model 
and is expressed as

where fi is the actual value,yi is the predicted value, and n 
is the number of samples. The correlation coefficient is an 
index that measures the linear relationship between two vari-
ables and is expressed as

CNR =
CTRod − CTBG

SDBG

MAE =
1

n

∑n

k=1
(f i − yi)

2

where r is the correlation coefficient, x and y are target vari-
ables, and i, j, and k are the index values related to the sam-
ple number.

Results

Contrast‑to‑noise ratio

The CNR for each CTDI was increased by the nonlin-
ear noise reduction process, as shown in Fig. 6. Based on 
the correlation between the CNR and the score of human 
observers, we observed that the correlation coefficient was 
different for each CTDI (Fig. 7 and Table 3). For all CTDI, 
the correlation coefficient between the CNR and the score 
of human observers was 0.92 (Table 3).

Predictive performance of the models

We evaluated 99 CT images with AI models 1 to 4, which 
were trained to output the evaluation values of low con-
trast detectability and texture pattern, and then calculated 
the correlations with the subjective evaluation results of 
the observers. The results are shown in Fig. 8, and the 
MAEs and correlation coefficients are listed in Table 4. 
In the plotted points of Fig. 8, the x coordinates of certain 
points have non-integer values because we plotted points 
using average scores with four observers. AI model 2 
achieved the best results in terms of low contrast detect-
ability, with a MAE of 0.458 and a correlation coefficient 
of 0.967. With respect to the texture patterns, AI model 3 
achieved the best results, with a MAE of 0.227 and a cor-
relation coefficient of 0.972. Examples of CT images and 
the scores as evaluated by the observer and the best model 
are shown in Fig. 9.

External validation

We input 288 CT images reconstructed by SAFIRE and 
ADMIRE into each AI model and calculated the correla-
tion diagram with the subjective evaluation results of the 
observer (Fig. 10). AI model 2 achieved the best results in 
terms of low contrast detectability, with a MAE of 0.700 
and a correlation coefficient of 0.932. For texture patterns, 
AI model 4 achieved the best overall results, with a MAE of 
0.493 and a correlation coefficient of 0.866.

r =

∑n

i=1
(xi − x)(yi − y)

�

∑n

j=1
(xj − x)2

�

∑n

k=1
(yk − y)2
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Discussion

Nonlinear noise reduction processes are known to change 
the resolution and noise reduction performance depending 

on the dose level used and on the contrast of a CT image 
[4]. Image noise and resolution are important param-
eters that determine image quality and have a significant 
impact on the detectability of lesions and the depiction of 
structures under low contrast conditions [21]. In addition, 

Fig. 6   Contrast-to-noise ratio between CTDI and reconstructions

Fig. 7   Correlation for each 
CTDI between CNR and 
observer’s visual evaluations. 
The approximate line for each 
CTDI was added as an eye 
guide
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because the nonlinear noise reduction process has multiple 
parameters related to the achievable degree of noise [3], 
it is difficult for an observer to evaluate all the param-
eters based on fixed criteria. In addition to nonlinear noise 
reduction processing, various applications and imaging 
technologies, such as automatic exposure control technol-
ogy [22], high pitch helical scanning [23], and low-tube 
voltage imaging in contrast-enhanced CT [24], as well as 
proposed new technologies are expected to preserve image 
quality while reducing radiation exposure in the future. 
Against this background, we consider it important to 
establish a uniform evaluation method for unknown tech-
nologies that are expected to be developed in the future. 

In this study, we proposed a technique to evaluate the per-
formance of CNN on image observation of processed CT 
images based on certain criteria using linear FBP and non-
linear noise reduction techniques by comparing the CNN 
performance to expert human observers.

First, we evaluated the relationship between the CNR 
and the human observers using CANON's CT images. The 
correlation between the CNR and the subjective evalua-
tion of observers differed according to dose. As for the 
relationship between the CNR and the visual evaluation 
at low doses, when rods could not be detected under FBP 
conditions, the detectability of rods was hardly improved 
by nonlinear noise reduction processing. However, the 
CNR improved with increasing strength of the nonlinear 
noise reduction process at all doses and reconstructions. In 
summary, there is a non-linear relationship between CNR 

Table 3   Correlation coefficient 
for each CTDI

CTDI (mGy) Correlation 
coefficient

0.3 0.56
0.9 0.69
1.3 0.70
2.7 0.68
5.3 0.82
11.6 0.89
22.2 0.71
30.2 0.87
45.5 0.86
60.4 0.64
89.2 0.86
All 0.92

Fig. 8   Correlation of visual evaluation scores between observers and AI—measuring accuracy of AI model for known reconstruction process

Table 4   Mean absolute error and correlation coefficient—measuring 
accuracy of AI model for known reconstruction

AI model Low contrast detectability Texture pattern

Mean abso-
lute error

Correlation 
coefficient

Mean abso-
lute error

Correlation 
coefficient

Model 1 0.679 0.948 0.530 0.882
Model 2 0.458 0.968 0.329 0.939
Model 3 0.547 0.961 0.227 0.973
Model 4 1.482 0.877 0.254 0.967
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results and subjective evaluation results; we believe that it 
is difficult to evaluate the human observer test using CNR. 
AI model 2, which was trained using CANON CT images, 
showed a correlation coefficient of 0.968, as presented in 
Table 4, and was determined to be appropriate for evalua-
tion using a CNN instead of CNR.

When evaluating low contrast detectability, the mini-
mum MAE between the subjective evaluation by the 
observer and the prediction result by a CNN model was 
0.458 and the correlation coefficient was 0.967, indicat-
ing that low contrast detectability can be accurately evalu-
ated by the best CNN model (AI model 2) among the four 
models evaluated. Noise and contrast are relatively simple 
image quality characteristics, and we believe that the fea-
ture extraction and feature integration processes inherent 
in CNN worked well in this case. Because favorable results 
were obtained even when the images were input directly 
into a CNN without any image processing such as crop-
ping or edge detection, we believe that this method is a 

versatile tool that can be applied to other image quality 
evaluation properties.

The AI model trained on CANON's CT images was 
validated using CT images obtained from SIEMENS' scan-
ners to determine whether it would perform satisfactorily 
on unknown reconstructed images from CANON and other 
manufactured systems that will be released in the future. 
The subjective evaluation by the observers and the predic-
tion results using CNN showed good results in both MAE 
and correlation coefficient, so we believe that this AI model 
is suitable for use in upcoming image reconstruction tech-
niques. To optimize the AI model with low contrast resolu-
tion, we evaluated four AI models with different network 
architectures. In this study, we performed the internal vali-
dation of the prediction performance of the AI model using 
CANON CT images (Table 4) and the external validation 
of the generalization performance of the AI model using 
SIEMENS CT images (Table 5). Because the MAE and cor-
relation coefficient showed the best value (Tables 4, 5), AI 

Fig. 9   Examples of CT images 
and scores for low contrast 
detectability and texture. a 
Canon/250 mAs/AiCE_Mild. b 
Canon/60 mAs/AiCE_Strong. 
c Canon/60 mAs/AIDR 3D 
Enhanced_Strong. d Canon/130 
mAs/AIDR 3D_Standard
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model 2 was considered as the most optimized model in 
terms of low contrast detectability. In terms of texture pat-
tern, AI Model 3 and AI Model 4 obtained satisfactory val-
ues, as presented in Table 4, and AI Model 2 and AI Model 4 
obtained acceptable values, as presented in Table 5, suggest-
ing that AI Model 4 was the best model for overall judgment.

This study has some limitations. First, the results of the 
visual evaluations by the observers may contain bias owing 
to the geometric arrangement of the phantoms. Because the 
main purpose of this study was to confirm the correlation 
between the score of an observer and the visual evaluation 
by CNN, bias resulting from the geometric arrangement 
and a detailed study of the visual evaluation process were 
excluded from this study. Moreover, bias may have occurred 
because of a small number of observers. Therefore, we have 
the following challenges to obtain more precise results: 
(1) increasing the number of observers, (2) introduction of 
samples where the presence of the signal is not known to 

the observer, and (3) changing the evaluation method from 
evaluating the number of visible rods to evaluating the vis-
ibility of each rod and performing ROC analysis.

Conclusion

In conclusion, we have proposed a method for the automatic 
visual evaluation of low contrast resolution images using an 
AI model based on CNN. Proposed AI models can accu-
rately evaluate the low contrast detectability and texture pat-
tern in an image, which vary with dose level and the nonlin-
ear noise reduction process applied. Proposed AI models are 
also expected to be suitable for any upcoming reconstruction 
algorithms that may be released in the future.
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Model 4 1.949 0.879 0.493 0.866
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