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Abstract
Schizophrenia is one of the serious mental disorders, which can suspend the patient from all aspects of life. In this paper 
we introduced a new method based on the adaptive neuro fuzzy inference system (ANFIS) to classify recorded electroen-
cephalogram (EEG) signals from 14 schizophrenia patients and 14 age-matched control participants. Sixteen EEG channels 
from 19 main channels that had the most discriminatory information were selected. Possible artifacts of these channels were 
eliminated with the second-order Butterworth filter. Four features, Shannon entropy, spectral entropy, approximate entropy, 
and the absolute value of the highest slope of autoregressive coefficients (AVLSAC) were extracted from each selected EEG 
channel in 5 frequency sub-bands, Delta, Theta, Alpha, Beta, and Gamma. Forty-six features were introduced among the 
640 possible ones, and the results included accuracies of near 100%, 98.89%, and 95.59% for classifiers of ANFIS, support 
vector machine (SVM), and artificial neural network (ANN), respectively. Also, our results show that channels of alpha of 
O1, theta and delta of Fz and F8, and gamma of Fp1 have the most discriminatory information between the two groups. The 
performance of our proposed model was also compared with the recently published approaches. This study led to presenting 
a new decision support system (DSS) that can receive a person’s EEG signal and separates the schizophrenia patient and 
healthy subjects with high accuracy.
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Introduction

Schizophrenia is a mental disorder that affects about one in 
100 people. Also, among the psychological diseases, this is 
a serious one, suspending the person from all aspects of life 
based on the diagnostic criteria of the American Psychiatric 
Association (DSM-IV) [1], this disease often refers to per-
sonality rupture disorder because the thoughts and feelings 
of the patient won’t have a natural and logical connection 
with each other. The patient is also affected by cognitive 
impairment. These deficiencies can reduce expression mem-
ory, short-term memory, language performance, and other 
executive functions such as occupational disorders. These 
deficiencies can help in the early diagnosis of schizophrenia 
[2]. It is very important to treat schizophrenia as soon as 
possible after the onset. With delay ineffective treatment, 
patients may be at increased risk for brain volume loss with 
harmful implications for long-term treatment outcomes.

Extensive studies have been performed using electroen-
cephalogram (EEG) signals based on DSM-IV criteria for 
the diagnosis of schizophrenia and comparing schizophrenic 
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patients with healthy subjects [3]. Several researchers have 
reported that using EEG irregularities and paroxysmal dys-
rhythmias may have a positive effect on the early diagnosis 
and prediction of schizophrenia [4].

The analysis of measured EEG signals from schizo-
phrenic patients seems to have significant differences in the 
two situations of resting and applying tasks. In task-based 
studies, the responses of neurons with time-locked are spe-
cific to the designed event; all other involuntary activities are 
usually considered background noises. Many studies sug-
gested that the brain is a system that acts intrinsically, with 
inherent resting-state integration. External sensory informa-
tion communicates with, rather than assigns, the operation of 
brain systems. Using resting-state EEG for the diagnosis of 
schizophrenia seems to have acceptable results. Also, people 
who were diagnosed, with schizophrenia were referred to 
a specialist for more accurate management and diagnosis.

In recent years, nonlinear methods and machine learning 
have been used to classify healthy individuals and patients. 
Today, the DSS systems are widely used to diagnose a vari-
ety of diseases, such as hepatitis [5, 6], Parkinson’s [7], etc., 
which show that intelligent systems that are used as DSS can 
save lives by helping to diagnose diseases. Boostani et al. [8], 
used support vector machine (SVM) and linear discriminant 
analysis (LDA) classifiers to classify resting EEG signals of 13 
schizophrenic patients and 18 healthy controls. The extracted 
features of the autoregressive model coefficient (ARC), sub-
bands frequencies (SF), fractal dimension (FD), and wave-
let energy (WE) were used to classify the signals. Also, the 
genetic algorithm was used to select the best EEG signal 
recording channels and reduce the dimension of the extracted 
feature. Most of the channels from the temporal lobe regions 
of the brain were selected by the genetic algorithm, and the 
classification accuracy was improved. Boostani et al. [9] 
and Sabeti et al. [10] used direct linear discriminant analysis 
(DLDA), weighted distance nearest neighbor (WDNN), basic 
nearest neighbor (BsNN), naive Bayes (NB), DLDA, adap-
tive distance measure (ADM), LDA, Adaboost, fuzzy SVM 
(FSVM), and SVM classifiers to classify the both healthy and 
schizophrenic groups. The features extracted from the EEG 
signal included the AR model, SF, and FD. The cross-val-
idation method of Leave-one-out was used to produce out-
puts with high accuracy and reliability. Their results showed 
that the SVM, WDNN, and DLDA classifiers in classifica-
tion were highly accurate. In other two studies, Sabeti et al. 
[11] used Adaboost and LDA classifiers to classify the EEG 
signals of 20 schizophrenia patients and 20 healthy subjects 
in resting state. The extracted features of the measured EEG 
signals included Shannon entropy (ShEn), spectral entropy 
(SpEn), approximate entropy (ApEn), Lempel-Ziv complexity 
(LZC), and Higuchi fractal dimension (HFD). Channels with 

discriminatory information, including Cz, C3, T3, T4, Fp2, 
F3, F4, T5, and O2 most of which were situated in the frontal, 
temporal, and limbic regions. Li et al. [12] an chose artificial 
neural network (ANN) classifier to classify the EEG signals of 
depressed and schizophrenia patients as well as healthy indi-
viduals. The back-propagation on artificial neural networks 
(BP ANN) and Self-organizing competitive artificial neural 
networks (SOC ANN) were used. They extracted the power 
spectrum as a feature of the EEG signal. Darkhovsky et al. 
[13] focused more on reducing the dimensions of the extracted 
features, which is the power spectrum (PS). The autoregressive 
moving average (ARMA) model algorithm, which estimates 
PS coefficients, reduces the dimension of the features. After a 
significant decrease in size (from 96 to 4), SVM and random 
forest (RF) classifiers were used for classification. Boostani 
et al. [14] used three methods of phase-locking value (PLV), 
robust synchronization (RS), and synchronization probability 
(SL) to extract the feature from the EEG signal. The greedy 
overall relevancy (GOR) and Across-group variance (AGV) 
methods were employed to optimize the feature extraction. 
SVM, DLDA, and Modified nearest neighbor (BNN) classifi-
ers were utilized to distinguish patients with schizophrenia and 
bipolar disorder. Jahmunah et al. [15] used non-linear entropy 
features to classify the EEG signal of healthy individuals and 
schizophrenic patients. The results of this study showed that 
the SVM classifier was more accurate than classifiers of the 
LD, k-nearest-neighbour (KNN), probabilistic-neural-network 
(PNN), and DT. Two other studies [16, 17] used a convolu-
tional neural network (CNN) method based on in-depth learn-
ing to diagnose healthy individuals and schizophrenic patients. 
They converted the EEG signal to 2D using the short-time 
Fourier transform (STFT) to extract the useful features. A lit-
erature review on available techniques of schizophrenia clas-
sification has been provided in Table 1.

Here, a new classification approach with efficient features 
is introduced for the diagnosis of schizophrenic patients with 
healthy subjects. The proposed method is based on ANFIS to 
classify recorded EEG signals from 14 schizophrenic patients 
and 14 age-matched control participants. The 2nd order But-
terworth filter is used to remove possible artifacts of 16 EEG 
channels. Four features, namely Shannon, spectral entropy, 
approximate entropy, and AVLSAC were extracted from each 
selected EEG channel in 5 frequency sub-bands, including 
Delta, Theta, Alpha, Beta, and Gamma. In addition, the AVL-
SAC method has a special initiative that does not seem to have 
been deployed. The results show that our proposed method is 
superior to the previously published methods.
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Table 1  A summary of the properties of the methods available in EEG signal processing

Advantages Disadvantages Ref

Methods
 Features
  ARC 1. Improved frequency resolution

2. Compatible with frequency spectrum
Sensitive to order models [18]

  WC 1. Ability to analyze all frequency range
2. Capability to analyze sudden changes
3. Ability to analyze complex signals

Sensitive to choosing mother wavelet

  SpEn 1. Describe the signal spectrum irregularities
2. Describe the signal power distribution

Requires stationary data [9–11, 13, 15, 19–21]

  ApEn 1. Measure to the signal irregularity
2. Describes the ratio of new information production
3. Proper performance for noisy data
4. Proper for non-stationary data

Sensitive to data length

  ShEn 1. Measurement of impurities in the signal
2. Proper for PDF estimation of signal

Requires stationary data

  LZC 1. Estimation of the signal complexity
2. Proper for non-stationary signals

Sensitive to data length

  HFD Measurement of the ratio of increase amplitude 1. Requires stationary data
2. Sensitive to data length
3. Sensitive to noise

 Classifiers
  ANN 1. Saving information on the entire network

2. Ability to work with incomplete knowledge
3. The capability of fault tolerance
4. Ability to make machine learning
5. Ability to Parallel processing

1. Dependence on hardware
2. Unexplained behavior of the network

[15, 18]

  LDA 1. Linear and stable
2. Simplicity and low calculations
3. Well-suited for multi-class problems
4. The supervised method

1. Sensitive to variables with higher-order
2. Sensitive to noise

[9, 11, 15, 21, 22]

  Adaboost 1. Non-linear classifier
2. Ability to maximize margins
3. Very simple implementation

1. Sensitive to noise and outliers
2. Not support the null rejection

  DLDA 1. Strong and stable
2. Compatibility with short data

1. High sensitivity to the location of samples
2. Sensitive to overlap data

[9, 10, 14]

  SVM 1. Linear and nonlinear classifier
2. Stable
3. Independent of the feature dimension space
4. Strong against overtraining

Sensitive to noise [15, 20, 22–24]

  FSVM 1. Suitable for short data 1. Weak and inaccurate
2. Sensitive to data length

  WDNN 1. Compatibility with diverse data
2. Low error

Removing low value data [10, 15, 22]

  NB 1. Easy to implement
2. Nonlinear and stable

1. Sensitive to data length
2. Low speed

  ADM 1. Nonlinear and stable
2.Simplicity

1. Sensitive to data type
2. Sensitive to feature dimensions

  BNN 1. Nonlinear and stable
2. Simplicity

1. Sensitive to feature dimensions
2. Assigning inappropriate coefficients

  ROC 1. High ability to organize classes
2. Assigning the optimal cut-off amount

Sensitive to cut-off selection [13, 19, 24]

  RF Ability to specify variable importance 1. Sensitive to data length
2. Sensitive to noise

[20, 22]

  DT 1. Simplicity
2. Ability to assign specific values to samples
3. Compatibility with short data

1. Unstable
2. Inappropriate prediction
3. Inappropriate for data over fitting

[15, 22]
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Materials and methods

Clinical data

We tested our algorithm on 14 healthy controls (7 females: 
28.7 ± 3.4 years, 7 males: 26.8 ± 2.9) and 14 patients with 
paranoid schizophrenia (7 females: 28.3 ± 4.1 years, 7 males: 
27.9 ± 3.3 years). The patients were hospitalized at the Insti-
tute of Psychiatry and Neurology in Warsaw, Poland and the 
study protocol was approved by the Ethics Committee of 
the Institute of Psychiatry and Neurology in Warsaw [25]. 
The EEG signals were recorded in resting state during eyes-
closed (EC) and were measured based on the 10–20 standard 
for 15 min with a sampling frequency of 250 HZ. All 19 
EEG channels were constituted Fp1, Fp2, F7, F3, Fz, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2 and the 
electrode FCz was considered as the reference electrode.

The selected areas included frontal, temporal, and occipi-
tal as well as 16 channels of Fp1, Fp2, F7, F3, Fz, F4, F8, 
T3, C3, Cz, C4, T4, T5, T6, O1, and O2 from the 19 main 
channels which have the greatest overlap with the involved 
areas are considered. The channels have been selected based 
on previous studies [11, 26, 27]. The position of the elec-
trodes and brain areas selected for EEG signal processing 
are shown in Fig. 1.

Pre‑processing

Initially, we preprocessed the EEG signals of 16 selected 
channels which were divided into 32 sections of 25 s to 
remove the artifacts with the second-order Butterworth filter. 

These segments were without overlap. In the second step, 
each of the 16 channels was divided into 5 sub-frequency 
regions of Delta, Theta, Alpha, Beta, and Gamma by the 
wavelet algorithm with the mother wavelet of Daubechies 
2 (Dp2).

Five frequency regions of delta (∆), theta (θ), alpha (α), 
beta (β), gamma (γ) were used for more accurate analysis 
of the EEG signal. The regions of selected frequency fil-
ters included 2–4 Hz, 4.5–7.5 Hz, 8.5–12.5 Hz, 13–30 Hz, 
and 30–45 Hz, respectively. Figure 2 shows the frequency 
regions of the F4 channel of a healthy individual and 
schizophrenic individual.

Feature extraction

Feature selection is of paramount importance since differ-
ent types of brain activity patterns can be decoded from 
EEG signals of patients. Four types of features, namely 
ShEn, SpEn, ApEn, and the absolute value of the highest 
slope of autoregressive coefficients (AVLSAC) are used 
for differentiation of healthy individuals and schizophrenic 
patients. These proposed features have an excellent reflec-
tion of the main nature of the EEG signal. The three 
entropy methods of spectral, Shannon and approximate, 
which are compatible with non-stationary and stationary 
signals, are described in detail [13, 28, 29]. In addition, the 
ALVSCA seems to be a suitable feature extraction method 
because it can increase the frequency resolution by using 
the AR method, which is a powerful algorithm in signal 
modeling [30].

The AR model with p-order predicts the input S via mini-
mizing forward and backward prediction errors using the 
Burg method [31]. While the AR coefficients are finite, ci , 
to satisfy the Levinson–Durbin returns:

Value p represents the order of the model. There are sev-
eral methods to determine the model order, such as decision 
rules based on the Bayesian approach [32], the number of 
information measures [33], and the maximum likelihood 
approach [34]. In this study, the minimum error (threshold) 
method [35] is used to obtain the best order of the model. 
Also, we calculated the absolute value of the highest slope 
between the autoregressive coefficients. The order utilized in 
this study is 20. Figure 3 shows an example of the absolute 
value of the maximum slope in a specific window of the F4 
channel of a healthy individual and a schizophrenia patient.

(1)s(t) = −

p
∑

i=1

cis(t − i)

Fig. 1  The position of the electrodes and brain areas selected for EEG 
signal processing
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Classifiers

Accurate classification and labeling of different groups are 
executed by proper classifiers. Three types of classifiers, 
SVM [36, 37], ANN [38], and ANFIS [39], were selected 
to classify the two groups, and it seems that these three clas-
sifiers have better power and better compatibility with the 
EEG signal of patients with schizophrenia.

SVM structure

Nonlinear SVM_ radial basis function (RBF): given a 
training set of instance-label pairs 

(

xi, yi
)

 , i = 1,… , l 
where xi ∈ R

n and yi ∈ {−1,+1}l , support vector machines 
(SVM) require the solution of the following (primal) opti-
mization problem:

(2)
min
w,b,𝜉

1

2

(

wTw
)

+ c

l
∑

i=1

𝜉i

subject to yi
(

wTzi + b
)

> 1 − 𝜉i, 𝜉i ≥ 0, i = 1,… , l

Here, training vector xi is mapped into a higher- (maybe 
infinite-) dimensional space by the function ∅ as zi = �

(

xi
)

 . 
C > 0 is the penalty parameter of the error term.

Usually, Eq. 2 were used to solve the following dual 
problem:

where e is the vector of all ones and � is an l by l positive 
semidefinite matrix.

The (i, j)th element of � is given by �ij ≡ yiyjk
(

xi, xj
)

, 
where k

(

xi, xj
)

≡ ∅
(

xi
)T
∅
(

xj
)

 is called the kernel function. 
Then w =

l
∑

i=1

�iyj�
�

xi
� and the decision function is as follows:

The Gaussian radial basis function (RBF) kernel, two 
samples of x̃ and x samples are defined as feature vectors in 
some input spaces as follows:

(3)
min
�

F(�) =
1

2
�T�� − eT�

subject to 0 ≤ �i ≤ C, i = 1,… , l, yT� = 0.

(4)sgn
(

wT�(x) + b
)

= sgn

(

l
∑

i=1

�iyjk
(

xix
)

+ b

)

Fig. 2  The 5 frequency regions 
of the F4 channel EEG signal. a 
Healthy individual, b schizo-
phrenia patient
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The best value for the kernel function coefficient, gamma 
( �) = 0.6, was selected. As the gamma value increases, the 
algorithm tries to perform the fitting exactly based on the 
training data set, which leads to the generalization of the 
error and the over-fitting problem. The C parameter trades 
off the correct classification of training examples against the 
maximization of the decision function’s margin. The optimal 
value of C was considered 0.1. Figure 4 shows the architec-
ture of the SVM and the structure of the network in detail.

ANN structure

A multi-layer perceptron neural network (MLPNN) network, 
which is one of the most generally used neural networks, has 
been a for the post-classification procedure and trained by 
a supervised method of learning known as backpropagation 
[40]. It is a feed-forward Artificial Neural network used for 
the classification of data. It has several layers that consist 
of nodes in a graph that is directed. Every layer is made 

(5)k
(

�x,x
)

= exp

(

−
x̃ − x

2

2𝜎2

)

, 𝛾 =
1

2𝜎2

to be fully connected to the subsequent layer. It is a varia-
tion of a linear-perceptron that possesses the capability to 
differentiate samples not linearly separable. Based on the 
error percentage in the given output obtained via comparing 
with the desired result, learning occurs inside the network 
by updating the connecting weights post-processing of every 
piece of data.

It is designed with three layers: an input layer, a hidden 
layer, and an output layer. Neurons in the input layer act as 
buffers for distributing the input signals zp to neurons in the 
hidden layer. Each neuron p in the hidden layer sums up its 
input signal zp after weighting them with the strengths of the 
respective connections wnp from the input layer. Then it cal-
culates its output yn by passing the sum through a nonlinear 
activation function, namely binary sigmoidal function, as pre-
sented in the following Equation.

The backpropagation algorithm is a gradient descent algo-
rithm [41]. When the momentum term is added, the algorithm 

(6)yn = sigm

(

∑

p

wnpzp

)

Fig. 3  Example of the absolute value of the maximum slope in a specific window of the F4 channel EEG
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gives the change Δwpn(k) in the weight of a connection 
between neurons m and p as follows:

where �n is an agent depending on neuron n is a hidden neu-
ron or an output neuron, � is a learning rate parameter and � 
is the momentum coefficient. The output neuron is obtained 
as follows:

(7)Δwpn(k) = ��pzp + �Δwpn(k − 1)

(8)�n =

(

�f

�netn

)

(

u(k)
n

− yn
)

, k = 1, .., n

where u(k)
n

 is the desired output for neuron n and 
�f

�netn
= yn

(

1 − yn
)

 . Here f denotes the sigma function. Thus, 
iteratively, beginning with the output layer, the � term is 
computed for neurons in all layers and weight updates for all 
connections according to Eq. 7 [38].

Figure 5 shows the architecture of the perceptron neu-
ral network and the structure of the network in detail. The 
MLPNN is trained several times using different numbers of 
hidden neurons until achieving the best performance. The 
most optimal neuron with excellent performance was 50 and 
the learning rate was (γ) = 0.01.

Fig. 4  The architecture of the 
SVM (a) and the structure of 
the network in detail (b)
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ANFIS structure

The adaptive neuro-fuzzy inference system is a type of 
artificial neural network, which learns features in the data 
set and regulates the system parameters according to a 
given error standard. It is widely used in biological signal 
analysis. To improve the generalization, ANFIS classifiers 
were trained with the hybrid back-propagation of gradi-
ent descent (GD) method in combination with the least-
squares estimation (LSE) technique. Feature vectors were 
used as inputs for ANFIS. Binary values of (1, 0) and (0, 
1) were set as the target outputs for patients with schizo-
phrenia and control subjects, respectively. For simplicity, 
we assume the fuzzy inference system under considera-
tion with two inputs k1 and k2 and one output u . Figure 6 

shows our implemented ANFIS architecture. This system 
is based on the Takagi–Sugeno fuzzy inference system 
and the fuzzy rule structure of the ANFIS classifiers were 
created by utilizing a generalized bell-shaped membership 
function defined as follows:

where ai , bi , and ti are adaptable parameters, k1 is the input 
to node i , and Ai is the linguistic label. Next, two first-order 
Sugeno-type ANFIS models are implemented with inputs of 
feature vectors and one output. The first-order Sugeno fuzzy 
models have the following rules:

(9)
�Ai

(

k1
)

=
1

1 +

{

(

k1−ti

ai

)2
}bi

Fig. 5  The architecture of the 
perceptron neural network (a) 
and the structure of the network 
in detail (b)
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where Ri is the i the rule of the fuzzy system, ki(i = 1, 2) 
are the inputs to the fuzzy system, and u is the output of 
the fuzzy system; 

{

ni, pi, and qi
}

(i = 1, 2) are membership 
function parameters.

(10)

R1 ∶ if
(

k1 is A1 and k2 is B1

)

then u is f1 = n1 + p1k1 + q1k2

R2 ∶ if
(

k1 is A2 and k2 is B2

)

then u is f2 = n2 + p2k1 + q2k2

Every node in layer 2 is a square node labeled 
∏

 which 
multiplies the incoming signals and sends the product out. For 
instance:

Every node in layer 3 is a circle node labeled N . The ith 
node calculates the ratio of the ith rule’s firing strength to 
the sum of all rules’ firing strengths:

(11)wi = �Ai

(

k1
)

× �Bi

(

k2
)

Fig. 6  The architecture of ANFIS and (a) The structure of the network in detail (b)
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Every node i in layer 4 is a square node with a node 
function:

The following formula produces the ANFIS output:

ANFIS learns and updates all its modifiable parameters 
by using a two-pass learning algorithm, namely forward 
pass and backward pass. ANFIS trains its parameters, 
such as the number of linear parameters as well as ni, 
pi, and qi (antecedent parameters) for minimizing error 
between actual and the desired outputs using a hybrid of 
GD and LSE. For our data, bell-shaped member functions 
with number of 4 and epoch = 100 were the best.

Evaluation parameters

Cross-validation is a model evaluation method that deter-
mines the extent of generalizability and independency of 
the results that the statistical analysis on a data set sug-
gests based on training data. The data set is divided into 
k equal subsets. From this k subset, n/k data for train-
ing and m/k data as a model test randomly were selected 
( m + n = k, n ≥ m ). This procedure is repeated k times. 
Sixty percent of individuals’ feature vectors are used as 
training samples and 40 percent as test sets. The accuracy 

(12)wi =
w1 + w2

wi

(13)wifi = wi(ni + piki + qiki)

(14)U =
�

i=1,2

wifi =

∑

i wifi
∑

i wi

of individuals’ feature vectors was calculated five times 
randomly for further validation, then the average of the 
five iterations was reported.

Figure 7 shows the confusion matrix. The accuracy and 
error of the results were obtained through the following 
mathematical formulas:

Here true positives (TP) are the number of positive samples 
that the model correctly classified as positive; true negatives 
(TN) are the number of negative samples that the model cor-
rectly classified as negative; false positives (FP) mean the 
number of negative samples that the model wrongly classi-
fied as positive; false negatives (FN) are the number of posi-
tive samples that the model wrongly classified as negative.

Result

Sixteen channels of 19 main EEG signal channels of 14 
schizophrenia patients and 14 healthy controls were selected 
and divided into 5 frequency bands (delta, theta, alpha, beta, 
and gamma) because of the complex and non-stationary 
nature of the EEG signal [42]. Then these frequency regions 
were embedded in ShEn, ApEn, SpEn, and AVLSAC for 
extracting features. To calculate ApEn, ShEn, and AVL-
SAC respectively, the frequency region of each channel was 
divided into windows of six, four, and ten seconds. With an 
available signal length of 900 s, we divided them into 150 
windows for ApEn, 225 windows for ShEn, and 90 windows 
for AVLSAC. Then the average of the extracted feature of 
each window was reported as a feature. To obtain the fea-
ture SpEn, the whole signal was used, and according to four 
feature extraction methods and five frequency regions (the 
length of each feature vector is 20), a feature vector was 
calculated for all channels of each person.

Figure 8 shows the accuracy of the ANFIS classifier con-
taining 16 channels with SpEn, ShEn, ApEn, and AVLSAC 
as feature extraction methods. The range of accuracy shown 
in this figure is between 86 and 97. Accuracy outputs were 
calculated in five frequency bands. The best accuracy was 
obtained 97% for the ANFIS classifier in the alpha channel 
O1 with the AVLSAC method. The best available features 
for each channel in 5 frequency regions have been summa-
rized in Table 2. In this table, five frequency regions, and 
four methods of feature extraction are separated for each 
of the 16 channels. The check mark in Table 2 indicates 
the best feature for each channel with the highest accuracy. 
A total of 46 of 640 possible features for healthy subjects 

(15)Accuracy =
TP + TN

FP + FN + TP + TN
= 1 − Error

Fig. 7  The confusion matrix
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and schizophrenic patients were selected. The accuracy 
of ANFIS, SVM, and ANN classifiers with the best fea-
tures with five-folds were near 100%, 98.89, and 95.56 
respectively. 

The highest difference in standard deviation was obtained 
between the patient and healthy group in the channel O1, 
which can be seen in Fig. 9. The absolute value of this differ-
ence is 1.3, which is related to ALVSCA of alpha. Figure 9 
shows a statistical chart of the mean and standard devia-
tion of the channel O1 in 5 sub-frequencies and 4 feature 
extraction methods. This chart includes the channel O1 of 
14 patients and 14 healthy individuals. 

Discussion

Today, the use of DSS in the diagnosis of various diseases is 
relatively common; therefore, recent studies have endeavored 
to design and present DSS with acceptable accuracy [5–7]. 
DSS requires signals that contain useful information for 
proper functioning; for this reason, the EEG signal contains 
useful information on brain function and disease diagnosis 
that has been considered by the majority of researchers. The 
authors in this study attempted to provide an acceptable DSS 
for schizophrenia, using the information contained in the 
EEG signal. An ideal classifier should distinguish patients 

Fig. 8  The accuracy of the ANFIS classifier containing 16 channels with SpEn, ShEn, ApEn, and AVLSAC as feature extraction methods. This 
figure covers the accuracy range from 86 to 97
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at a high rate while identifying all healthy controls with no 
diseases. Therefore, both the selection of the appropriate 
feature and the classifier must be simultaneous, which will 
ultimately lead to high accuracy.

The four features SpEn, ApEn, ShEn, and AVLSAC were 
selected as explained in Section “Feature extraction”. These 
features show the momentary changes and the complexity 
of the signal and are compatible with the non-stationary 
property of data. In addition, the ALVSCA has the ability 
to present the hidden nature of the signal due to its special 
property in increasing the frequency resolution. Figure 10 
shows the performance of the features in the three classifiers 
of SVM, ANN, and ANFIS with a dataset for each channel 
presented in Section “Clinical data”. The accuracy range 

shown in this figure is selected between 92 and 97. Accord-
ing to Fig. 10, the most common area involved among the 
three classifiers is the frontal area in delta sub-frequency 
and the ALVSCA feature has acceptable performance and 
the highest accuracy among classifiers.

We compared our results with certain different available 
methods. Table 3 presents a series of classification accuracy 
of the ANFIS method and earlier methods with common 
feature dimensions. It is usually used 5-fold or 10-fold for 
validation. Figure 11 shows a comparison of the accuracy 
results obtained with different k values from 5 to 10 in k-fold 
cross-validation for the three classifiers. These results show 
us that our method using 5-fold cross-validation obtains the 
highest classification accuracy (99.92%).

Table 2  The selection of the 
best available features for each 
channel in 5 frequency regions

Ch Fp1 Fp2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 T6 O1 O2

Delta
 SpEn – – – – – ✓ – – – ✓ ✓ – – – – –
 ShEn – – – ✓ – – – ✓ – – – – ✓ – – –
 ApEn – – – – – – – – – – – – – – – –
 AVLSAC – – – – ✓ – – – – ✓ – – – – – ✓

Theta
 SpEn – ✓ ✓ – – – ✓ – – – ✓ ✓ – ✓ – –
 ShEn – – – – – – – – – – – – – – – –
 ApEn – – – – – ✓ – – – – – – – – – –
 AVLSAC – – – – – – – – – – – – – – – ✓

Alpha
 SpEn – – – – – – – – – – – – – – – –
 ShEn – – – – – – – – – – – – ✓ – – –
 ApEn – – – – – – – – – – – – – – – –
 AVLSAC – – – – – – – – – – – – – – ✓ –

Beta
 SpEn – – – – – – – – – – – ✓ – – – –
 ShEn – – – – – – – – – – – – – – – –
 ApEn – – – – – – – – – – – – – – – –
 AVLSAC – – – – – – – – – – – – – – – –

Gamma
 SpEn ✓ – – – – – – – ✓ – – – – – – –
 ShEn – – – – – – – – – ✓ – – – – – ✓
 ApEn – – – – – – – – – – – – – – – –
 AVLSAC – – – – – – – – – – – – – – – –
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Fig. 9  Statistical chart of the mean and standard deviation of the channel O1 in 5 sub-frequencies and 4 feature extraction methods

Fig. 10  The performance of the 
features in the three classifiers 
of SVM, ANN, and ANFIS with 
a common dataset. The accu-
racy range between 92 and 97
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Our dataset was previously evaluated by Shu Lih Oh 
et al. [17] who reported achieving a classification accuracy 
of 98.07%. Their method was a CNN model that used raw 
EEG signals as inputs. The method used an eleven-layered 
CNN model to accurately assess schizophrenic patients ver-
sus controls by using the extraction, selection, and classifica-
tion processes automatically. The previous dataset was also 
evaluated against a CNN model proposed by ZülfikarAslan 
et al. [16]. In their method, using 2-D time–frequency fea-
tures for automatic diagnosis of schizophrenic patients pre-
dicts the class value, which obtained 97% accuracy. The sec-
ond dataset was previously evaluated by Santos-Mayo et al. 

[48] who reported obtaining 93.42% classification accuracy, 
their method was a Multi-Layer Perceptron(MLP) that used 
EEGlab and J5 as feature extraction methods.

In comparison to these previous literature methods related 
to our work, our method outperforms the majority of them. 
Our improved performance seems to be largely due to three 
methods implemented on raw EEG signals: 1. the use of 
converting EEGs to sub-frequency regions that explicitly 
represent the signal frequency information, 2. using the 
ALVSCA feature extraction method, 3. and selecting the 
best feature. The ALVSCA seems to be a suitable feature 
extraction method because it can increase the frequency 
resolution by using the AR method, which is a powerful 
algorithm in signal modelling [30]. Table 4 summarizes the 
relevant literature methods according to the methodology 
and the accuracy obtained. As a result of the table, it is obvi-
ous that the method proposed in this paper outperforms all 
the methods mentioned in the table.

Conclusion

It is beneficial to present a new decision support system 
(DSS) as an interactive information system to handle 
and analyze large volumes of data by allowing for better 
informed decision makings, solve problems in a timely 

Table 3  The comparison results of the ANFIS accuracy with other 
available methods

Classifiers Accuracy

ANFIS [39] 99.92 Table 2 Features dimensions
SVM [36, 37] 98.89
ANN [38] 95.59
DT [43] 89.09
LDA [44] 87.16
KNN [45] 85.45
Adboost [46] 68.25
ROC [47] 53.37

Fig. 11  The performance of three implemented classifiers with different k values from 5 to 10 in k-fold cross-validation
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manner, and improve the efficiency in dealing with prob-
lems related to screening schizophrenia patients. In this 
paper, we present a new computerized information system 
that can receive a person’s EEG signal and distinguish 
schizophrenic patients and healthy subjects with high 
accuracy. Individuals who were diagnosed with schizo-
phrenia were referred to a specialist for more accurate 
management and diagnosis.
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