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Abstract
Parkinson’s disease (PD) is a slow and insidiously progressive neurological brain disorder. The development of expert sys-
tems capable of automatically and highly accurately diagnosing early stages of PD based on speech signals would provide 
an important contribution to the health sector. For this purpose, the Information Gain Algorithm-based K-Nearest Neighbors 
(IGKNN) model was developed. This approach was applied to the feature data sets formed using the Tunable Q-factor Wavelet 
Transform (TQWT) method. First, 12 sub-feature data sets forming the TQWT feature group were analyzed separately after 
which the one with the best performance was selected, and the IGKNN model was applied to this sub-feature data set. Finally, 
it was observed that the performance results provided with the IGKNN system for this sub-feature data set were better than 
those for the complete set of data. According to the results, values of receiver operating characteristic and precision-recall 
curves exceeded 0.95, and a classification accuracy of almost 98% was obtained with the 22 features selected from this sub-
group. In addition, the kappa coefficient was 0.933 and showed a perfect agreement between actual and predicted values. 
The performance of the IGKNN system was also compared with results from other studies in the literature in which the same 
data were used, and the approach proposed in this study far outperformed any approaches reported in the literature. Also, 
as in this IGKNN approach, an expert system that can diagnose PD and achieve maximum performance with fewer features 
from the audio signals has not been previously encountered.

Keywords Parkinson’s disease · Information gain approach · KNN · Artificial intelligence systems · Speech signals

Introduction

Dopamine deficiency is the most significance reason for the 
occurrence of Parkinson’s disease (PD) [1]. Dopamine, a 
chemical that transmits information between brain regions 
controlling the body movements, is produced by a subset 
of cells found in a specific part of the human brain [1]. In 
short, dopamine enables people to perform their movements 
fluently and harmoniously [1]. In humans, the cells that 
produce this chemical start to decrease in the later years. 
When this loss is between 60 and 80%, dopamine cannot be 
produced in sufficient quantity and motor disorders, one of 
the symptoms of PD, occurs [1]. Symptoms of the disease 
are more prominent in people between 40 and 70 years of 
age and mostly occur in the 60s [1]. The incidence of this 

disease is higher in males than in females, and it is accepted 
that one in every 100 male individuals over the age of 65 
in the community is suffering from PD [1]. The first symp-
tom indicating a possible diagnosis of Parkinson’s disease 
is slow movements and, in addition, the presence of tremors 
during periods of rest [1]. In this disease, symptoms, such 
as slow movements, mask-like expressions, cramped hand-
writing, tremors, muscle contraction, postural, gait, speech, 
and smelling disorders, kyphosis, the feeling of discomfort, 
restless leg syndrome, and forgetfulness are observed [2]. In 
a previous study, it was emphasized that early diagnosis of 
PD is possible with a simple blood test in which the risk of 
presenting with this disease can be revealed before the asso-
ciated symptoms occur, and the necessary medical measures 
can be taken accordingly [3].

In the field of engineering, voice or walking recordings 
are mainly used for automatic detection of PD [4]. A speech 
disorder is an early distinctive symptom of this disease and 
develops in the majority of people with PD (about 90%) 
[5, 6]. For this reason, sound-related features have been 
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widely used in systems for automatic recognition of PD. 
The purpose of these studies was to automatically differenti-
ate patients from healthy individuals by using the relevant 
audio features [7]. For instance, Sakar and Kursun designed 
a tele-diagnosis system for automatic recognition of PD [7]. 
During the testing of this system, various attributes were 
extracted from the records of patients and healthy people 
and then were evaluated with the Support Vector Machine 
(SVM) method [7]. Considering the characteristics of the 
data set on which they were working, the authors attempted 
to obtain the maximum classification accuracy with the 
least set of features [7]. In another example, the effective-
ness of vocal characteristics in PD diagnosis was analyzed 
using machine learning techniques [8]. As a result of these 
analyses, the highest classification accuracy was obtained 
with an SVM of 96.4% [8]. After collecting various audio 
recordings of people with and without PD and extracting 
the necessary features, Sakar et al. gave these records to 
several classifiers and analyzed the results [9]. Braga et al. 
conducted research on various available data sets in which 
audio signals were processed for the automatic detection 
of PD [10]. In another research, an auto-diagnostic system 
using the fuzzy k-nearest neighbors (FKNN) classification 
method for PD diagnosis was presented [11]. In a study by 
Parisi et al., a new hybrid artificial intelligence system was 
presented for early diagnosis of Parkinson [12]. In a similar 
study, SVM based on bacterial foraging optimization (BFO-
SVM), a new hybrid diagnostic method, was developed for 
PD recognition [13]. In addition, the Random Forest-BFO-
SVM structure in which the feature selection stage was 
performed was applied to the data and a result of 97.42% 
was obtained [13]. Another researcher used four different 
classification systems: Neural Networks (NN), DMneural, 
Regression, and Decision Tree for effective detection of PD. 
The best result (92.2%) was obtained with the NN [14]. Lah-
miri et al. tested various classification systems, such as linear 
discriminant analysis (LDA), k nearest-neighbors (KNN), 
naive Bayes (NB), regression trees (RT), radial basis func-
tion neural networks (RBFNN), SVM, and Mahalanobis dis-
tance and found that the best result was obtained with SVM 
with a rate of 92% in the automatic detection of PD [15]. 
In another study conducted with respect to classification 
systems, parallel feed-forward neural network architecture 
was presented for the same purpose [16]. As a result, it was 
emphasized that a 9-parallel neural network system works 
better by 8.4% compared to a single network structure [16]. 
Eskidere et al. tested the methods of SVM, Least Square 
SVM, (LS-SVM), Multilayer Perceptron NN (MLPNN), 
and General Regression NN (GRNN) on an available data 
set for the purpose of Parkinson’s follow-up and concluded 
that LS-SVM gave the best result [17]. In another study, 
Benba et al. first applied the technique of mel frequency 
cepstral coefficients (MFCCs) to multi-type audio recordings 

taken from healthy and PD subjects [18]. They then gave 
the resulting data to the SVM classifier and evaluated the 
results in which they emphasized that the record of /u/ let-
ter contains more discriminatory analysis than other types 
of audio signals [18]. A cloud-based framework was pre-
sented and achieved a classification performance of 96.6% 
by the authors in reference [19]. In another study conducted 
in this area, an FKNN system based on a particle swarm 
optimization (PSO), named PSO-FKNN, was used to auto-
matically diagnose PD, and an average of 97.47% accuracy 
was obtained [20]. When studies in this area are examined, 
data registration, processing, feature extraction, selection, 
and classification processes were carried out in almost all 
of them. In studies conducted in this field of engineering, 
the focus has been on automatic recognition of PD with high 
classification performance.

In this study, the combined Information Gain Algorithm-
based K-Nearest Neighbors (IGKNN) approach was pro-
posed for operating with high accuracy and automatically 
diagnosing PD from the audio signals of the individual. For 
the presented system, the attributes extracted from the previ-
ously recorded audio recordings from 252 people [21] were 
used as a data set. These data was taken from the University 
of California Irvine (UCI) Machine Learning Repository. 
The selected data were separated as a training-test by virtue 
of the stratified cross-validation (CV) method. The KNN 
classifier, which exhibits high performance against noisy 
data such as audio signals, was used in the automatic PD 
diagnostic system. The performance results obtained from 
the selected algorithm were evaluated with many statisti-
cal criteria. This study aimed at investigating the effect of 
the Information Gain approach, which has not previously 
been used in PD diagnoses in the literature. Also, as in this 
IGKNN approach, an expert system that can diagnose PD 
and achieve maximum performance with fewer features 
from the audio signals has not previously been encountered. 
Moreover, the stratified CV method, which was used as a 
data segmentation method, has also been viewed as an inno-
vation for PD studies. Considering the low number of sub-
jects used in the studies so far, another purpose of this study 
was to depict all of the details of this success rate obtained 
from these 252 subjects.

Methods

Speech data set

Speech disorders, when used in the diagnosis of PD, 
can be seen as a symptom that can be understood by an 
expert or even by the surroundings in nearly 90% of the 
patients. Because the brain’s signals controlling the speech 
and the muscles providing the speech are affected by this 
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disease, the voice of PD patients is generally softer and 
monotonous. For this reason, the symptoms that must be 
quickly noticed by families are changes in speech. When 
the muscles of the face are stiff or take longer to move, 
people have difficulty in speaking, and words can be 
slurred or mumbled [22]. For this reason, it is possible 
to determine the difference between a PD patient and a 
healthy person in an early stage using a specialist system 
although the changes in the audio signals are among the 
secondary symptoms for the medical diagnosis of PD. For 
this purpose, the attributes resulting from the use of dis-
similar methods based on the speech recordings of 252 
subjects (188 PD patients with 107 males and 81 females 
and 64 healthy subjects with 23 males and 41 females) 
in the Department of Neurology at Cerrahpaşa Faculty 
of Medicine, Istanbul University were taken from UCI 
[21]. The age range of the subjects ranged from 33 to 87. 
Accompanied by a specialist, the subjects were asked to 
say the letter /a/ three times, and the necessary data record 
was provided. The frequency of the microphone used dur-
ing recording was fixed at 44.1 kHz. As stated in Ref. 
[21]; after providing information about the data collec-
tion process, signed informed consent was taken from all 
individual participants in accordance with the approval 
of Clinical Research Ethics Committee, Bahçeşehir Uni-
versity, İstanbul, Turkey. More detailed information was 
provided by the creators of the data in [21].

Certain characteristics received from the audio signals 
of patients and healthy people in the diagnosis of PD facil-
itate the separation of these classes. For instance, the sam-
ple curves of standard deviation characteristics extracted 
from the 36 sub-bands obtained after applying the Tunable 
Q-factor Wavelet Transform (TQWT) method to the sig-
nals are shown in Fig. 1. In the figure, these features are 
distinctly separated from each other in specific sub-bands.

Analysis of speech signals

Acoustic measurements of sounds obtained from PD patients 
for analyzing speech signals can be easily obtained without 
disturbing the patient under the supervision of a specialist 
physician [22]. Considering the studies in this area, many 
methods that have been suggested for acoustic sound meas-
urements are outstanding. The most commonly used meas-
urement were jitter, shimmer, and basic frequency irregu-
larities that occur in patient syllables [23]. In addition to 
these measurements, the harmonic noise ratio parameter, 
which can reveal hoarseness occurring over time, was also 
presented as an effective tool [24]. Cepstral peak impor-
tance measurements [25], linear prediction modeling [26, 
27], auditory modeling [28], and Mel frequency cepstral 
coefficients [29] could be also preferred in acoustic sounds 
measurements in PD patients.

The presence of noise in signal processing applications is 
one of the main factors affecting the system result. The noise 
in these signals can occur for many reasons, such as the 
environment, data transmission, and the subject’s own body 
actions. In speech signals, which have an important role in 
PD detection, irregular vibrations and breathiness often pro-
duce noise. It is very important to determine the noise source 
correctly in the first stage. Noises whose source cannot be 
detected directly will negatively affect the system perfor-
mance. Most of the noises have more irregular, random, 
and high frequency contents compared to the basic signal 
frequency. However, classical signal processing techniques 
may be insufficient for detecting and eliminating the above-
mentioned noises. Instead, using of the adaptive, adjustable 
advanced signal processing techniques such as TQWT [30] 
can achieve a high level of noise cancellation. The perfor-
mance of the system proposed in this study may be adversely 
affected by the noise in the data presented as input as done in 
any algorithm. However, thanks to the TQWT method used 
in [21], from which the data used in the study were obtained, 
the rate of exposure of the proposed system was minimized. 
When Ref. [21] is examined, it could be seen that the feature 
group obtained as a result of TQWT had more successful 
classification results by algorithm than the feature groups 
obtained by other methods.

Attributes of the used data

In this study, the TQWT feature group previously obtained 
from the speech signals of 252 subjects by the authors as 
described in reference [21] was used. This feature group 
consists of sub-bands obtain from the TQWT process. 
Detailed information on this feature group was given in [21]. 
The TQWT method is a new discrete wavelet transform form 
consisting of three basic parameters: Q (Q-factor), j (the 
number of levels), and r (redundancy). Band-pass filters with 

Fig. 1  Sample curves of speech signal attributes in healthy and PD 
subjects
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different Q-factors can be generated, and the low and high 
frequency values of the signal are also separated using this 
method. The Q from which the method derives its name is 
derived by dividing the bandwidth of the center frequency 
by the band-pass filter. This factor can be adjusted according 
to the oscillation of the signal being processed, thus creat-
ing a non-linear separation. When the frequency distribution 
of the signal is examined, the frequency spectrum of the 
sudden changing finite signals for the low Q widens. The 
frequency spectra of the oscillating signals are more local-
ized for a high Q. In short, the Q refers to the oscillation 
of the signals being processed. j is described as number of 
levels that will have j + 1 sub-bands after obtaining high-pass 
filter and last low-pass filter outputs. The last parameter, r, 
determines the frequency of the band-pass filters, and as a 
result of this parameter, TQWT starts to resemble a con-
tinuous wavelet transform [30]. Decomposition stages for 

a single level TQWT are given as an example in Fig. 2. In 
this figure, x(n), H0(w), H1(w), LPS, HPS, α, β, c0(n), and 
d1(n) represent input signal, frequency responses of low-pass 
filter, frequency responses of high-pass filter, low-pass scal-
ing, high-pass scaling, low-pass scaling parameter, high-pass 
scaling parameter, low-pass sub-band signal, and high-pass 
sub-band signal, respectively.

In Fig. 3, the decomposition of the speech signals from 
PD and healthy subjects into sub-bands using TQWT is 
given. Samples of the signal in this figure were taken from 
Ref. [31]. Details about this dataset can be found in refer-
ence [31].

The performance of the TQWT algorithm is directly 
dependent on the Q, r, and j parameters. As stated in Ref. 
[21] from which the dataset used in this study was taken, a 
large number of trial and error experiments have been con-
ducted to achieve high accuracy rates. In these experiments 
performed to determine the optimum values, the r param-
eter was chosen as 3, 4, and 5, respectively. The Q param-
eter was analyzed for values between 1 and 10. Finally, in 
order to determine the most appropriate number of levels, 
the j parameter was tested between 5 and 50 for different Q 
values. As a result of all these long-term processes, these 
parameters were determined as Q = 2, r = 4, and j = 35 for 
the best system performance according to Ref. [21].

Fig. 2  Analysis steps for single level TQWT [21, 30]

Fig. 3  Decomposition of the sample speech signals into 36 sub-bands using TQWT method
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Power spectrum density/power spectrum (PSD) is an ana-
lytical method that shows the power of any signal or time 
series, such as sound, as a distribution on a frequency axis. 
Thanks to the analysis, information about the noise com-
ponents in any signal or at which frequencies the signal is 
effective can be accessed. In this way, preliminary informa-
tion about the signals can be obtained before the classifica-
tion of patient and healthy data. The PSD method will make 
a positive contribution to the classification performance as 
a result of the highly distinctive features determined by the 
method if the analyses are sufficiently sensitive. In Fig. 4, 
the results of the 4th level TQWT application on the sample 
speech signals in Ref. [31] and the power spectra of the fifth 
sub-band with the highest energy are given in order to obtain 
the PSD outputs.

When the sub-bands, their energy ratios, and power spec-
tra obtained from the sample signals [31] in Fig. 4 are exam-
ined, it can be seen that patients and healthy subjects can be 
separated from each other. The sound signals of the healthy 
subject have a wider range of power values, while those from 
the patient occur over a more limited range. In addition, this 
separation will be understood more clearly when the most 
basic statistical calculations, such as the average, standard 
deviation, and maximum value of these power spectra are 
obtained.

TQWT attributes used for this study contain 12 × 36 param-
eters. In other words, a total of 432 parameters were obtained 
by extracting 12 attributes (energy, Shannon entropy, Log 
Energy entropy, mean Teager–Kaiser energy operator (TKEO), 
TKEO standard deviation (std), median, mean, std, minimum 
(min), maximum (max), skewness and kurtosis values) from 
36 sub-bands reached as a result of applying the TQWT [21].

Entropy is a measure of the complexity of the data being 
studied. This criterion cannot be negative [32]. Besides that 
Shannon entropy (E) is defined by Formula 1 [32]:

In this formula, Pi symbolizes the possibility of the i. data 
type in the whole data set to be present in all of the data [32].

The Log-Energy entropy (H) attribute formulation is stated 
below [33]:

TKEO is a method used to monitor energy in audio 
signals [34–38]. Formula 3 shows a discrete TKEO 
formulation:

(1)E = −

N∑

i=1

P
i
log2 Pi

(2)H(x) = −

N−1∑

i=1

(
log2

(
P
i
(x)

))2

Fig. 4  Power spectrum graphs and 4th level TQWT decomposition of the sample speech signals
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In this formula, data are defined as x and n is the number 
of samples.

Information gain algorithm‑based KNN hybrid 
model (IGKNN)

Automatic analysis systems using artificial intelligence 
algorithms can easily diagnose diseases with high accuracy, 
similar to diagnosis made by a physician. These systems 
analyze the data entered by a selected classifier or a cluster-
ing algorithm. They also statistically demonstrate the accu-
racy of the result of the evaluation system. In this study, 
a new combined IGKNN approach was proposed for the 
features analysis process. The information gain (IG) algo-
rithm and KNN classifier, which exhibits high performance 
against noisy data such as audio signals, were chosen for 
this model. Figure 5 shows the pseudo-code diagram of the 
IGKNN hybrid feature analysis system.

The basis of the IGKNN method is the assignment of the 
feature subset in which the lowest error will be obtained for 
the used classifier. Thus, the IG method was selected for this 
purpose. This method is often used in data mining and artifi-
cial intelligence topics. IG can be expressed as the opposite 
of the Entropy concept. This criterion, which takes a value 
between “0” and “1”, shows how much value can be gained 
as a result of classification according to the given feature. 
The fact that the calculation is close to “1” is proof that the 
related feature plays an active role in the parsing of classes 
[39, 40]. In order to calculate the IG criterion, entropy for 

(3)�[x(n)] = x
2(n) − x(n + 1) x(n + 1) each class label must be calculated. Entropy, a measure of 

uncertainty in the system, was calculated using formula 4:

Pi shows the probability that each class tag is contained 
in a data set with n class tags. Also, formula 5 was used to 
find IG ranging from “0” to “1”.

In addition, T and x are the data set and class type to be 
calculated, respectively [39, 40]. Besides the feature elimi-
nation algorithm, KNN algorithm [41] was selected as the 
classifier for the classification process of the IGKNN hybrid 
system. In the KNN algorithm, Euclidean, Manhattan, and 
Minkowski functions have been tried in distance calcula-
tions. As a result of these trials, the best performance results 
were obtained with the Euclidean function. In addition, the 
k-parameter, which is the algorithm input, was tried from 
“1” to “20”, and the best result was achieved with a value 
of “1”. The classes of healthy and patient were labeled as 
0 and 1, respectively. Each data was divided tenfold by the 
Stratified cross validation (CV) method. In this CV method, 
each fold has an approximately equal percent sample for 
each class.

Big-O notation is used for the computational complex-
ity calculation of the proposed combined IGKNN approach. 
This notation is often used in computer science to refer to the 
worst case scenario of an algorithm [42]. The computational 

(4)(T) = −
∑n

i=1
P
i
log2(Pi

)

(5)(x, T) = (T) −
∑n

i=1

||Ti||
|T|

H(T
i
)

Fig. 5  The pseudo code dia-
gram of IGKNN approach
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complexity calculation of the KNN algorithm used as a clas-
sifier is the same as the analysis system proposed in this 
study. The computational complexity of KNN is proportional 
to the number and dimensions of training data. Accordingly, 
assuming p is the number of sizes and m is the number of 
dimensions in training data, the computational complexity 
value of the proposed method is obtained as O(pm). A low 
value means that the algorithms respond quickly and take up 
less memory space. Since the KNN classification algorithm 
operates on the basis of “instance-based” [42], it needs more 
memory. This situation negatively affects the computational 
complexity value of the algorithm or the system and causes 
it to increase. If data with hundreds/thousands of dimen-
sions are presented to the system in operations such as text 
classification, the computational complexity will increase. 
Consequently, poor classification performance will likely be 
achieved. Methods, such as feature selection/elimination and 
dimension reduction, are used to solve this problem, which 
is generally caused by the size of the data. In the proposed 
system in this study, IG was used as a feature analysis algo-
rithm. In this way, the analysis of each feature of the samples 
was made directly. As a result, the computational complexity 
(O (pm)) of the proposed method can be reduced by chang-
ing the value of m.

Statistical evaluation processes

In expert systems designed with artificial intelligence algo-
rithms, it is necessary to form a confusion matrix to reveal 
the number of true and false labeling obtained by automatic 
detection. Various statistical criteria may be calculated using 
the number of labels specified in this matrix. In this study, 
statistically valid results were obtained using several criteria: 
True Positive rate (TP rate), also named as sensitivity or 
recall; False Positive rate (FP rate) F measure (F) Matthews 
Correlation Coefficient (MCC)classification accuracy rate 
(ACC); Precision (Prec) [43–46] and Cohen’s Kappa Coeffi-
cient (Kappa) [47]. Besides these statistical criteria, the val-
ues of receiver operating characteristic and precision-recall 
curves (ROC and PRC, respectively) [48] were computed.

Results

For this study, the attributes obtained from the audio signals 
of 252 subjects (188 PD patients and 64 healthy people) [21] 
were under physician supervision, the /a/ letter was repeated 
three times by these people and the data recording process 
was obtained. As a result, the total number of recordings 
was 756 (252 × 3).

In the first phase of the study, the analysis of the sub-
feature sets of the TQWT feature group was started. This 
feature group consisted of 36 sub-bands, and 12 features 
were extracted from each sub-band, so 12 sub-feature groups 
were formed [21]. The tenfold stratified CV method was 
applied to create training-test data in all analysis processes 
after this stage. Initially, all of the 12 sub-feature sets were 
presented to KNN and IGKNN in order to compare the sys-
tem performances. The results obtained for this comparison 
are given in Table 1.

When Table 1 is examined, the success rate for KNN was 
obtained as 90.74% using all 432 sub-bands in total, while 
it was 94.97% for IGKNN using only 108 sub-bands. These 
results alone prove the superiority of the proposed combined 
IGKNN system. In addition, when the proposed system was 
used, a higher performance was obtained with less sub-band 
value by performing a feature analysis. This situation con-
tributes to the reduction of the computational complexity of 
the system. In the next step, which of the 12 sub-feature sets 
was more effective was investigated. Thus, Table 2 shows 
the classification results for each of the 12 sub-feature sets 
of TQWT with the KNN algorithm. As shown in Table 2, 
the best statistical result among all groups was obtained with 
Log Energy entropy (LEE) sub-feature group. The ACC rate 
of this sub-feature group was calculated as 95.76% at maxi-
mum. Also, the values of ROC and PRC reached almost 
the 0.95 band with this sub-feature group, which was much 
closer to the perfect classification result. The LEE sub-fea-
ture group was followed by Std value and TKEO mean with 
92.85% and 87.96% ACC rates, respectively.

The same feature sets were also analyzed in detail using 
the IGKNN system. In this way, the effects of each sub-fea-
ture set on both systems could be seen more clearly. Table 3 

Table 1  The best results for all of the 12 sub-feature sets of TQWT with KNN and IGKNN

TNI total number of instances, CCI correctly classified instances, k-parameter = 1, distance function: Euclidean, TNS total number of sub-bands 
(12 × 36 = 432), NSS number of sub-bands selected

Statistical criteria TNI CCI Kappa TP rate FP rate Prec F MCC ACC (%) ROC PRC

KNN
(TNS = 432
NNS = 432)

756 686 0.751 0.907 0.169 0.906 0.907 0.752 90.74 0.869 0.874

IGKNN
(TNS = 432 NNS = 108)

756 718 0.867 0.95 0.082 0.95 0.95 0.867 94.97 0.937 0.932
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shows the results obtained with the number of sub-bands 
selected for each feature set.

When Table 3 was examined, it could be seen that accord-
ing to Table 2, an increase was achieved in the performance 
results of all sub-feature sets with the exception of Energy. 
Although no increase in the energy feature occurred, the 
number of sub-bands was reduced from 36 to 12, and almost 
identical results were achieved. Achieving the same perfor-
mance with less sub-bands contributed to the reduction of 
computational complexity.

In the next stage of the study, the IGKNN system was 
used to perform double and triple analyses of the sub-fea-
ture groups with the best classification performance. These 
groups were created by adding the second (Std value) and 
the third (TKEO mean) best sub-feature groups next to the 
LEE from which the best results were obtained in both KNN 
and IGKNN. Later, these combined feature groups were sub-
mitted to the IGKNN system for the necessary evaluation 
and classification processes. The results obtained as a result 
of these processes are given in Table 4.

When Tables 2 and 3 are examined in terms of statis-
tical performance results, it is seen that better results was 
obtained for LEE sub-feature group after using IGKNN 
system. The ACC performance result increased almost 2% 
with effective LEE feature of 22 sub-bands. Namely, 737 
of 756 input instances were correctly classified. Moreover, 
the Kappa value was calculated as 0.933, and determining 
this value above 0.8 showed that perfect agreement between 
actual and predicted values existed. In addition, the TP rate, 
Prec, F, and MCC criteria closest to “1” value was statisti-
cally supported by the ACC rate. When the FP rate criterion 
is considered, it reached the lowest value (0.05) among all 
FP rate calculations in the study. According to the results in 
Table 4, the LEE sub-feature group was followed by “LEE-
Std value and LEE-Std value-TKEO mean” with 96.69% 
and 96.42% ACC ratios, respectively. As can be seen from 
Table 4, as the number of features in the groups increases, 
the performance results decrease slightly. In spite of this, the 
decrease in the number of NSS contributes to the decrease 
in the computational complexity of the system as mentioned 
previously.

Finally, in Table 5, only the information gain rates of the 
LEE sub-feature set from which the best performance was 
obtained are given as an example. According to this table, 
the ratios of 14 out of 36 features were obtained as “0”. The 
other 22 features were selected for the next step, which was 
the classification process.

Figure 6 shows the ROC and PRC curves for the values 
indicated in the LEE sub-feature group in Table 4. The ROC 
curve area is the most preferred ROC statistic. Additionally, 
the balance between precision and recall should be created 
because these metrics are inversely related. The balance 
between these two metrics is stated by the PRC curve. In Ta
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this study, the ROC and PRC criteria exceeded the value of 
0.95 after using the IGKNN system and again demonstrated 
the high success of classification.

Discussion

The PD is a stealthy brain disorder that progresses slowly. 
As in any disease, early diagnosis is likely to improve PD 
patients’ quality of life. People diagnosed in the early stage 
of the disease can shape their new life according to this situ-
ation and take the necessary precautions. There are several 
diagnostic methods of this disease, including the analysis of 
the audio signals [49]. Expert systems can be used in real-
life applications in the areas with medical deficiencies for 
PD, which can be diagnosed from these signals under spe-
cialist supervision. These systems can also help physicians 
strengthen the diagnosis with high success rates in existing 
health institutions. In addition, if the proposed system can 
be made available to people online, this type of system can 
contribute to directing the individuals suspected of having 
this disease to a specialist physician in the field. For this 
purpose, in this study, it was proposed to design an expert 
analysis system that could work with fast and high accuracy 
in real-life in addition to the virtual environment and can 
automatically diagnose PD from the audio signals of the 
individual.

In the literature, data recording and processing, feature 
extraction and selection, and also classification processes 
have been generally used in PD studies. A detailed analysis 
of PD-related studies is given in Table 6. The studies in this 
table were compared according to the number of data, exper-
imental methods, and performance results of these systems. 
Accuracy rates obtained in the studies ranged from 82.5 to 
~ 100%. The main goal of the studies in this field is to obtain 
maximum performance with the available data. Although 
the number of subjects in this paper and other studies [21, 
50–53] using the same data was 252, this number changed 
between 31 and 50 for other studies.

As seen in Table 6, the data set used in this study has also 
been examined in other studies so far [21, 50–53], and some 
comparisons were made with these studies in terms of the 
process and results. First, the feature groups formed in these 
relevant studies [21, 50–53] were classified by several classi-
fiers, but the classifier in which the best result was obtained 
for each feature group usually changed. Such situations are 
undesirable as they are restrictive for expert systems in terms 
of time and process intensity. While starting this study, the 
classifier choice was switched to the KNN. Second, the 
sub-feature data sets belonging to the TQWT feature group 
formed in the above-mentioned study [21] were not given 
separate classification systems and were not analyzed. 
However, in this study, great emphasis was placed on the Ta
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sub-feature data sets of this feature group from which the 
best result was obtained, and efforts were made to decrease 
the data density of the expert system. Last, in the related 
studies [21, 50–53], some attribute selection methods were 
implemented for the whole data set. As a result, an ACC 
in the range of 86% to 96.83% was achieved with 20–555 
features. This situation forces the whole system to search 

for an effective feature in all data groups. Therefore, the 
expert system may have difficulty in terms of data density 
and processing time. Despite this difficulty, in this study, a 
much higher ACC rate (approx. 98%) was obtained using 22 
features with the IGKNN mechanism. Also, the effectiveness 
of the proposed approach was supported by multiple statisti-
cal metrics, such as Kappa, Prec, ROC, and PRC.

When examining other studies in the literature that were 
conducted with different data sets for the diagnosis of PD 
based on audio signals, no other studies using the Infor-
mation Gain features analysis approach or IGKNN hybrid 
system were found. Moreover, the fact that the number of 
subjects whose audio signals have been obtained in other 
studies is relatively low compared to this study further rein-
forces the importance of this study.

Although the hierarchical IGKNN system presented in 
this study achieves successful results for the early diagnosis 
of PD, it also contains some limitations. The limitations of 
the proposed approach should be expressed under two main 
headings. The first one is related to the IG algorithm used for 
feature selection. An important disadvantage of this method 
has a poor performance against features that contain differ-
ent variables (such as “date: 19_8_1996”). For this reason, 
it is necessary to be selective against the data to be presented 
to the proposed sequential system. Otherwise, the possibil-
ity of successful results of the feature selection phase will 
decrease. Another important limitation is related to the KNN 
classifier, which is particularly powerful against noisy data, 
such as audio signals. The disadvantage of this algorithm 
is the requirement for a large amount of memory space, 
especially for large data, since it stores the results of all 
situations while calculating the distance. This limitation is 
proportional to the number of samples (p) in and size (m) of 
the data set. This situation directly affects the computational 

Table 4  The best results for 
double and triple analysis of 
the most successful sub-feature 
groups with IGKNN system 
(TNI total number of instances, 
CCI correctly classified 
instances, k-parameter = 1, 
distance function: Euclidean, 
TNS total number of sub-bands, 
NSS number of sub-bands 
selected)

Statistical criteria LEE sub-feature
 group

“LEE-Std value” combined 
sub-feature group

“LEE-Std value-TKEO 
mean” combined sub-feature 
group

TNI 756
CCI 737 731 729
Kappa 0.933 0.912 0.904
TP rate 0.975 0.967 0.964
FP rate 0.05 0.059 0.067
Prec 0.975 0.967 0.964
F 0.975 0.967 0.964
MCC 0.933 0.912 0.905
ACC (%) 97.48 96.69 96.42
ROC 0.959 0.948 0.945
PRC 0.961 0.949 0.948
TNS 36 72 108
NSS 22 17 16

Table 5  Gain ratios of LEE sub-feature set for 22 sub-bands

Gain ratio Attribute name

0.1187 LEE feature of sub-band 12
0.1188 LEE feature of sub-band 11
0.089 LEE feature of sub-band 15
0.088 LEE feature of sub-band 17
0.0849 LEE feature of sub-band 35
0.0798 LEE feature of sub-band 16
0.0667 LEE feature of sub-band 26
0.0664 LEE feature of sub-band 6
0.0629 LEE feature of sub-band 5
0.604 LEE feature of sub-band 10
0.0592 LEE feature of sub-band 9
0.0449 LEE feature of sub-band 28
0.0433 LEE feature of sub-band 19
0.0412 LEE feature of sub-band 4
0.0396 LEE feature of sub-band 3
0.0379 LEE feature of sub-band 23
0.0346 LEE feature of sub-band 21
0.0282 LEE feature of sub-band 36
0.0241 LEE feature of sub-band 32
0.0237 LEE feature of sub-band 1
0.0225 LEE feature of sub-band 29
0.0203 LEE feature of sub-band 2
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Fig. 6  ROC and PRC curves 
of LEE sub-feature group after 
processing with IGKNN method

Table 6  Comparison of the results in this study with those available in the literature

a In these studies, the same data set was used

References Method—system Classifier Number of data Accuracy (%)

Sakar, Kursun [7] Mutual information + mRMR 
(maximum relevance–mini-
mum redundancy)

Support vector machine (SVM) 32
(PD: 24
Healthy: 8)

92.75

Gürüler [54] k-means clustering based feature 
weighting

Complex-valued artificial neural 
network

31
(PD: 23
Healthy: 8)

99.52

Little et al. [55] Pitch period
entropy

Kernel-SVM 31
(PD: 23
Healthy: 8)

91.4

Peker et al. [56] mRMR attribute selection 
algorithm

CVANN 31
(PD: 23
Healthy: 8)

98.12

Sakar et al. [8] Unified Parkinson’s Disease Rat-
ing Scale score method

Kernel-SVM 50
(PD: 42
Healthy: 8)

96.4

Cai et al. [13] Relief feature selection method SVM based on bacterial forag-
ing optimization

31
(PD: 23
Healthy: 8)

97.42

Benba et al. [18] Mel frequency cepstral coef-
ficients (MFCCs) technique

Kernel-SVM 40
(PD: 20
Healthy: 20)

82.5

Sakar et al. [21]a Tunable Q-factor wavelet trans-
form (TQWT) and mRMR-50

SVM
(RBF kernels)

252
(PD: 188 Healthy:64)

86
(with 50 features)

Solana-Lavalle et al. [50]a Wrappers feature subset selec-
tion

SVM 252
(PD: 188 Healthy:64)

94.7
(with 20 features)

Gunduz [51]a Combining the sets of features Convolutional neural networks 252
(PD: 188 healthy: 64)

86.9
(TQWT + MFCC + con-

cat
combination features) 

(432 + 84 + 39)
Tuncer et al. [52]a A combination of minimum 

average maximum (MAMa) 
tree and singular value decom-
position (SVD)

KNN 252
(PD: 188 Healthy:64)

92.46 and 96.83
(with 50 features)

Yücelbaş [53]a Simple Logistic hybrid system with Greedy Stepwise algorithm 
(SLGS)

252
(PD: 188 Healthy:64)

for males 88.71
(with 11 features)
for females 87.15
(with 9 features)

This  studya A New Approach: Information Gain Algorithm-based KNN 
Hybrid Model (IGKNN)

252
(PD: 188 Healthy:64)

 ~ 98
(with 22 features)
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complexity (O(pm)) of the proposed system. The value was 
reduced by eliminating the ineffective attributes of the sam-
ples used in the study as a result of the necessary procedures. 
Other limitations of the KNN classifier used in the system 
are hyper-parameters, such as the number of k-neighbors 
that affect the system performance and the distance calcula-
tion criterion. When it comes to the general limitations of 
the study, the major deficiency of this and similar studies 
is the lack of testing of the proposed systems due to the 
limited amounts of data. In addition, noises in audio signals 
can adversely affect system performance. Another common 
deficiency of the studies in this area is the lack of raw signal 
states in the data in the ready-made data banks.

In the literature, besides classifiers (such as ANN, SVM), 
data segmentation methods (such as k-fold CV, leave-one-
out CV) and signal processing techniques (such as Fourier 
and wavelet) were used. To summarize, a few studies that 
incorporate a new approach are available in this field. Thus, 
in this study, the new proposed approach system makes a 
significant contribution (in terms of both the data segmenta-
tion method and the feature selection method) to the litera-
ture. In addition, a detailed analysis of attributes extracted 
from speech signals with the proposed IGKNN system has 
not been previously reported in the literature. Furthermore, 
the large amount of data in our study compared to similar 
studies in this field is another factor that makes this study 
important.

Conclusions

In artificial intelligence-based automatic diagnosis sys-
tems, data preparation, method implementation, feature 
extraction–selection–reduction, and dimension change 
methods are important and necessary steps. As a result of 
all of these stages, development the performance results of 
the selected classification system was the aim of this study. 
In this study, a novel approach (IGKNN approach) was 
recommended for diagnosing PD with high accuracy based 
on audio signals. For this system, the attributes extracted 
from the previously recorded speech signals of 252 peo-
ple [21] were used as a data set; data were taken from the 
UCI. These recordings were separated as a training-test 
by virtue of the tenfold Stratified CV method. The KNN 
algorithm, which is effective against noisy data such as 
audio signals, was used for the automatic PD diagnostic 
system. This study purposed to examine the effect of the 
Information Gain approach, which to my knowledge, has 
not been previously used in PD diagnosis. Also, as in this 
IGKNN approach, an expert system that can diagnose PD 
and achieve maximum performance with fewer features 
from the audio signals has not been encountered previ-
ously. Considering the low number of subjects used in the 

studies so far, another goal of this study was to define all 
of the details of this success rate obtained on 252 subjects. 
As a result of the proposed system performance, the ACC 
ratio was obtained as 97.48% with 22 features determined. 
Also, Kappa coefficient was achieved as 0.933, and calcu-
lating this value above 0.8 showed that there was a perfect 
reliability between actual and predicted values. Moreo-
ver, the ROC and PRC areas criteria exceeded the value 
of 0.95 and demonstrated the high success of classifica-
tion. In a nutshell, a maximum performance result was 
obtained with a minimum number of attributes thanks to 
the IGKNN approach. Furthermore, the number of data in 
this paper was higher than the other studies.

Gender difference between subjects is a factor empha-
sized in some voice processing studies. In addition to dif-
ferences in tone of voice due to gender or age factors, many 
situations such as accent, mouth, tooth structure, hormonal, 
race/ethnic differences, and environmental factors (smok-
ing, other habits) can affect the success of voice process-
ing studies [57–60]. However, the main purpose of the 
studies in this area is to achieve high classification success 
under optimum system parameters in spite of all of these 
differences/negativities. In the source from which the data 
set used in this study was taken [21], differences in voice 
tone of the subjects or any other negative factors were not 
mentioned. However, thanks to the presented approach, the 
classification success was achieved as almost 98%, and this 
situation demonstrated the success of the study. As a result, 
it is understood that the selection of 36 sub-bands and the 
extracted features for both female and male subjects are 
effective in minimizing the disadvantage that may arise from 
the stated possible differences. According to this informa-
tion, in the future, detailed studies can be carried out on the 
effects of other factors in addition to differences in tone of 
voice between subjects. Besides, the IGKNN system can be 
applied to handwriting, gait, and other medical parameters 
of people with PD. The results of this proposed approach can 
be developed with larger PD data sets and more significant 
properties obtained by various methods. In addition, system 
performance can also be assessed on this existing 12-dimen-
sional data set by using dimension reduction methods, such 
as a principal component analysis (PCA). In the implemen-
tation phase, a new dimensional data matrix obtained by 
changing the size parameter between 1 and 12 is presented 
to the system. The most appropriate size is decided accord-
ing to the performance values recorded for each dimension 
parameter. Thanks to the reduction of the size in the property 
space, a reduction in the computational complexity of the 
algorithm is also found.
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