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Abstract
Schizophrenia (SZ) is a severe disorder of the human brain which disturbs behavioral characteristics such as interruption 
in thinking, memory, perception, speech and other living activities. If the patient suffering from SZ is not diagnosed and 
treated in the early stages, damage to human behavioral abilities in its later stages could become more severe. Therefore, 
early discovery of SZ may help to cure or limit the effects. Electroencephalogram (EEG) is prominently used to study brain 
diseases such as SZ due to having high temporal resolution information, and being a noninvasive and inexpensive method. 
This paper introduces an automatic methodology based on transfer learning with deep convolutional neural networks (CNNs) 
for the diagnosis of SZ patients from healthy controls. First, EEG signals are converted into images by applying a time–fre-
quency approach called continuous wavelet transform (CWT) method. Then, the images of EEG signals are applied to the 
four popular pre-trained CNNs: AlexNet, ResNet-18, VGG-19 and Inception-v3. The output of convolutional and pooling 
layers of these models are used as deep features and are fed into the support vector machine (SVM) classifier. We have tuned 
the parameters of SVM to classify SZ patients and healthy subjects. The efficiency of the proposed method is evaluated on 
EEG signals from 14 healthy subjects and 14 SZ patients. The experiments showed that the combination of frontal, central, 
parietal, and occipital regions applied to the ResNet-18-SVM achieved best results with accuracy, sensitivity and specificity 
of 98.60% ± 2.29, 99.65% ± 2.35 and 96.92% ± 2.25, respectively. Therefore, the proposed method as a diagnostic tool can 
help clinicians in detection of the SZ patients for early diagnosis and treatment.

Keywords Schizophrenia · Electroencephalogram · Transfer learning · Convolutional neural network · Continuous wavelet 
transform

Introduction

Schizophrenia (SZ) is a severe disorder of the brain which 
affects the thinking, memory, understanding, speech, and 
the behavioral characteristics of an individual [1, 2]. This 
chronic psychiatric disorder affects the employment, mar-
riage and lifestyle of the person [3, 4] and consequently 
quality of life is then compromised, being unable to function 
in workplaces, with 20–40% attempting suicide at least once 
[5]. The World Health Organization (WHO) reports that 20 

million people worldwide are affected by this mental disor-
der [6]. Yet, WHO has also reported that SZ is curable, and 
precise and timely prognosis is helpful for better treatment 
and the recovery of the patient.

Currently, there is not a well-known clinical test for 
SZ, and diagnosis relies on behavioral symptoms such as 
hallucinations, functional deterioration and disorganized 
speech observed by experts. Such mentioned assessments 
are subjective and not very accurate. To overcome the 
aforementioned limitations, an automatic, reliable and 
reproducible approach from brain imaging modalities 
using advanced machine learning method is required. This 
system can overcome these limitations and can be utilized 
everywhere with no need to highly-trained experts. For the 
diagnosis of mental disorders such as SZ, electroencepha-
logram (EEG) is a powerful tool since it can interpret the 
brain state so well and widely used in clinical applica-
tions [7–9]. Moreover, EEG is well accepted due to high 
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temporal resolution, easy setup and, being noninvasive, 
and portable method. EEG signals have been used in brain 
source localization for diagnoses of various brain disorders 
such as epilepsy, schizophrenia and Parkinson [10–16]. 
For example, in epilepsy studies, a significant issue is find-
ing activated regions of spikes [15], or in mental disorders 
such as SZ patients, finding brain source localization is 
crucial for treatment approaches such as transcranial mag-
netic stimulation (TMS).

Traditionally, a number of EEG-based machine learning 
methods have been used for feature extraction, perform 
feature selection and finally employ conventional classifi-
cation methods for automated detection of schizophrenia 
[17–30]. But in recent years, there has been a developing 
interest in the utilization of deep learning methods as a 
disruptive alternative to the aforementioned feature based 
methods [31, 32]. Deep learning algorithms are able to 
automatically extract significant features and classify them 
directly from the data. These methods imitate the work-
ings of the human brain in data processing and generating 
patterns of decision making usage.

Recent developments in neural network architecture 
design and training have enabled researchers to solve pre-
viously intractable learning tasks of deep learning meth-
ods. As a result, several research works have focused on 
the application of deep learning as the state-of-the-art 
in machine learning especially the Convolutional neural 
network (CNN) in a wide range of computer vision stud-
ies especially in medical applications [33–40] and also 
for processing EEG signals with very success.[41–45]. 
Also, there are some works in detection of SZ patients 
that used CNNs and EEG signals. Recently, in [46] an 
automatic method for diagnosis SZ patients using CNN 
from EEG signals is proposed. They have used CNN for 
discrimination of 14 normal and 14 SZ patients. In another 
study [47], multi-domain connectome CNN using different 
fusion strategies for detection of SZ patients from EEG 
signals are proposed. Moreover, from functional magnetic 
resonance images (fMRI), a 3-dimensional CNN in com-
bination of autoencoders [48] and 3 dimensional CNN for 
identification of SZ disorder [49] are presented.

The main novelty of this paper is to provide a more 
generalized approach to model the brain dysfunction by 
combination of continuous wavelet transform (CWT), 
transfer learning with four popular pre-trained deep 
CNNs (AlexNet, ResNet-18, VGG-19 and Inception-v3) 
and support vector machine (SVM) as a novel approach 
for automated diagnosis of the SZ patients from EEG 
signals. Also, discriminant brain regions for recognition 
of 14 patients suffering from SZ and 14 healthy subjects 
are considered and determined by the proposed method. 
Finding these distinct brain sources is crucial to treat SZ 
patients with TMS.

Material and methods

Participant and EEG recording

The data used in this study which is publicly available was 
collected from 14 patients suffering from SZ and 14 healthy 
subjects [23]. There are seven males with average ages of 
28.3 + 4.1 years of and seven females with average ages of 
27.9 + 3.3 years in the patient’s group and the same num-
ber of males and females in control group with age ranges 
of 26.8 ± 2.9 for males and 28.7 ± 3.4 years for females. 
The patients must meet International Classification of Dis-
eases (ICD)–10 criteria for paranoid SZ. Study protocol is 
approved by the Ethics Committee of the Institute of Psychi-
atry and Neurology in Warsaw, Poland and written consent 
are provided from all participants. A minimum age of 18, 
and a minimum of seven days medication washout period 
are Inclusion criteria. Pregnancy, organic brain pathology, 
severe neurological diseases (e.g. epilepsy, Alzheimer’s, or 
Parkinson disease), and presence of a general medical con-
dition are Exclusion criteria. The signal was recorded for 
12 min with participants having their eyes closed and in a 
relaxed state at sampling rate of 250 Hz. EEG signals passed 
through the low pass and high pass Butterworth filters with 
cut off frequencies of 0.5 and 45 Hz, respectively. The signal 
was divided into 5 s segments before the analysis, there-
fore each channel of each subject yields 144 segments. The 
standard 10–20 International system was used to record the 
data and therefor 19 channels are resulted per subject: Fp1, 
Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4, T3, T4, T5, 
T6, O1, O2. These channels of EEG signals are divided into 
5 brain regions (Table 1).

EEG signal to image conversion

Wavelet transform is a tool that provides a two-dimensional 
time–frequency representation of EEG signal as an image. 
This image is able to efficiently capture the variation of 
the spectral content of a signal over time and can repre-
sent discriminant properties of normal and SZ subjects. The 

Table 1  Channel clusters for each brain regions

Region (symbol) Electrodes

Frontal F7, F3, Fz, 
F4,F8, Fp1, 
Fp2

Central C3,C4, Cz
Parietal P3, Pz, P4,
Temporal T3,T4,T5,T6
Occipital O1, O2
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resultant image represents EEG power changes in frequency 
and time and is used to feed CNNs. It represents signal as a 
linear combination of basic functions called wavelets [45]:

where a is scale (real and positive integer), b is the trans-
lational value (real integer), ω is a window and Ψ(t) is the 
mother wavelet. In this study, Morse (3,60) mother wavelet 
which yields better localization in frequency domain com-
pared to other mother wavelets is used.

CNN

CNN is one of the most powerful and popular tools of deep 
learning methods in the field of medical imaging. It is the 
state-of-the-art deep learning methodology consisting of 
many stacked convolutional layers. This network contains 
a convolutional layer, pooling layer, batch normalization, 
fully connected (FC) layers and finally a softmax layer [31, 
32]. Feature maps are extracted at the convolutional layers. 
Pooling layers lessen feature maps using maximum or aver-
age operators and the most significant features are extracted. 
Finally, FC layers prepare extracted features to be classified 
by softmax layer. Nonlinear layers (mostly ReLU function) 
are used to strengthen the network for solving nonlinear 
problems. ReLU as activation function are used after each 
convolutional and fully connected layer. Also, drop out and 
batch normalization techniques are introduced to overcome 
the overfitting problem in this neural network.

Pre‑trained CNNs

Pre-trained CNNs are trained networks on very large 
amounts of images with many categories. AlexNet [50], 
VGGNet [51], Inceptions [52] and Residual network 
(ResNet) [53] are popular pre-trained CNNs that are trained 
on ImageNet database and were the winner of the ImageNet 
Large Scale Visual Recognition Competition (ILSVRC) 
from 2012 till 2015. ImageNet is a known image database 
for visual object recognition project that starts with 1.2 mil-
lion of images from 1000 different categories from animals 
(dogs, cats, lions, ….) to objects (desks, pens, chairs, …).

AlexNet

AlexNet with 61 million parameters is a simple CNN with 
a few convolutional layers which has been won the ILS-
VRC2012 [50]. It has 5 convolutional layers for extraction 
low and high levels features, max pooling layers and 3 fully 
connected layers for classification. Figure 1a shows name of 

(1)X𝜔(a.b) =
1

|a|1∕2

+∞

∫
−∞

x(t)Ψ̄
(
t − b

a

)
dt

layer in left column and the number and size of kernels (fil-
ters) of the convolutional and pooling layers in right column. 
For example, ‘Conv1′ layer has 96 kernels with the size of 
11 × 11 × 3 with stride and padding of 4 and 0, respectively.

VGGNet‑19

VGGNet is the runner-up of ILSVRC2014 and has been 
introduced by Simonyan and Zisserman [51]. This network 
has two versions with different stacked convolutional lay-
ers, VGG-16 and VGG-19. VGG-16 has three stacked of 
3 convolutional layers and VGG-19 has three stacked of 
four convolutional layers. In this paper, VGG-19 has been 
used with 19 uniform convolutional layers and 144 million 
parameters. Figure 1b shows the structures of this method. 
For example, ‘Conv1_1′ layer has 64 kernels with the size 
of 3 × 3 × 3 with stride and padding of 1 and 1, respectively.

Inception‑v3

Inception-v3 with 23.9 million parameters was the runner 
up of ILSVRC2015 [52]. Inception-v3 has many stacked 
inception modules which are parallel convolutional layers. 
This network reduced the number of connections, without 
degrading the efficiency of the network. Figure 2a shows the 
structures of this method. For example, ‘Conv2d_1′ layer has 
32 kernels with the size of 3 × 3 × 3 with stride and padding 
of 2 and 0, respectively.

ResNet‑18

ResNet is the winner of ILSVRC2015 [53]. ResNet has 
many stacked identity shortcut connections that help to solve 
the vanishing gradient problem of CNNs. CNNs with many 
layers face with the vanishing gradient problem, i.e. when 
there are so many layers, repeating multiplication make very 
low gradient value near zero and it will be vanished in updat-
ing procedure. Therefore, the performance will be degraded 
as each additional layer. ResNet has some versions with vari-
ous convolutional layers. ResNet-18 is the version comprise 
of 18 convolutional layers with 11.7 million parameters. Fig-
ure 2b shows the structures of this method. For example, 
‘Conv_1′ layer has 64 kernels with the size of 7 × 7 × 3 with 
stride and padding of 2 and 3, respectively.

Transfer learning

The number of parameters in the model increases as net-
works gets deeper which in turn results in improved learn-
ing efficiency. The deeper networks lead to more com-
plicated computations and as well as demanding more 
training data. Transfer learning employs a reference deep 
model trained previously on a huge database and adapts it 
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using a smaller insufficient database for a new application 
[54–58]. It means we transfer the information (the learned 
parameters such as weights layers and biases) to our prob-
lem with an insufficient database. Transfer learning takes 
advantage of a pre-trained CNN model on a huge database. 
This procedure has a number of benefits for researchers 
such as lower training time, weaker and cheaper hardware 
requirement, lower computational load, and fewer images 
for training. In the procedure, the images resulted from 
EEG signal via CWT transform are used as input and con-
volutional and pooling layers of pre-trained CNN models 
namely AlexNet, ResNet-18, VGG-19 and Inception-v3 
are used as deep features and fed into the SVM classifier. 
Then, we have tuned the parameters of SVM to classify 
SZ patients and healthy subjects. In other words, the fully 
connected layer and softmax layer of pre-trained CNN 
models are replaced with a SVM as classifier layer and the 
parameters of SVM are tuned. It should be noted that there 
are little differences in input of each network (AlexNet is 
227*227. VGGNet-19 and Resent are 224*224, Inception-
v3 is 229*229). So in the first step of data preparation, 
according to different sizes of model inputs, all images 
were resized to proper sizes.

SVM classifier

SVM is a supervised method of classification in machine 
learning field and can solve classification problem effi-
ciently. It minimizes error iteratively by maximizing mar-
ginal hyperplane. This classifier has been successfully used 
in EEG signal processing studies [59–61]. The linear hyper-
plane for a training set of data xi is defined as Eq. (2) [62]:

where w and b are n-dimensional vector and bias, respec-
tively. A hyperplane must have the least possible error in 
separating data and maximum distance to closest data of 
each class. Then, according to these two special properties 
a sample belongs to the left (y = 1) or right (y = − 1) sides of 
the hyperplane. Equation (3) shows relation of two margins 
that controls the separability of samples:

The distance (d) to find the best hyperplane is computed as 
Eq. (4):

(2)wTx + b = 0

(3)wTx + b

{ ≥ 1 for yi = 1

≤ −1 for yi = −1

Input Image (227×227×3) Input Image (224×224×3)
Conv1 96, 11×11×3, stride 4, padding 0 Conv1_1 64, 3×3×3, stride 1, padding 1
Norm1 Conv1_2 64, 3×3×64, stride 1, padding 1
Pool1 3×3, stride 2, padding 0 Pool1 2×2, stride 2, padding 0

128, 5×5×48, stride 1, padding 2Conv2
128, 5×5×48, stride 1, padding 2

Conv2_1 128, 3×3×64, stride 1, padding 1

Norm2 Conv2_2 64, 3×3×128, stride 1, padding 1
Pool2 3×3, stride 2, padding 0 Pool2 2×2, stride 2, padding 0
Conv3 384, 3×3×256, stride 1, padding 1 Conv3_1 256, 3×3×128, stride 1, padding 1

192, 3×3×192, stride 1, padding 1Conv4 
192, 3×3×192, stride 1, padding 1

Conv2_2 256, 3×3×256, stride 1, padding 1

128, 3×3×192, stride 1, padding 1Conv5
128, 3×3×192, stride 1, padding 1

Cov3_3 256, 3×3×256, stride 1, padding 1

Pool5 3×3, stride 2, padding 0 Conv3_4 256, 3×3×256, stride 1, padding 1
Pool3 2×2, stride 2, padding 0
Conv4_1 512, 3×3×256, stride 1, padding 1
Conv4_2 512, 3×3×512, stride 1, padding 1
Conv4_3 512, 3×3×512, stride 1, padding 1
Conv4_4 512, 3×3×512, stride 1, padding 1
Pool4 2×2, stride 2, padding 0
Conv5_1 512, 3×3×512, stride 1, padding 1
Conv5_2 512, 3×3×512, stride 1, padding 1
Conv5_3 512, 3×3×512, stride 1, padding 1
Conv5_4 512, 3×3×512, stride 1, padding 1
Pool5 2×2, stride 2, padding 0

(a) (b)

Fig. 1  Block representation of convolutional and pooling layers of a AlexNet and b VGG-19. Each block contains information about the number 
of filters, size of filters, stride and padding
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input Image (299×299×3)
Conv2d_1 32, 3×3×3, stride 2,padding 0
Conv2d_2 32, 3×3×32, stride 1,padding 0
Conv2d_3 64, 3×3×23, stride 1,padding 0
Pool1 3×3 max pool, stride 2, padding 0
Conv2d_4 80, 1×1×64, stride 1,padding 0
Conv2d_5 192, 3×3×80, stride 1,padding 0
Pool2 3×3 max pool, stride 2, padding 0

[64, ], stride 1, padding 01 × 1 × 192

64 channels
[96, ], stride 1, padding 03 × 3 × 64

96 channels
[96, ], stride 1, padding 03 × 3 × 96

96 channels
[64, ], stride 1, padding 01 × 1 × 192

64 channels
[48, ], stride 1, padding 01 × 1 × 192

48 channels
[64, ], stride 1, padding 05 × 5 × 48

64 channels 

Inception_0:
-Conv2d_9
-bn_9
-Conv2d_10
-bn_10
-conv2d_11
-bn_11
-Conv2d_6
-bn_6
-Conv2d_7
-bn_7
-Conv2d_8
-bn_8
-Conv2d_12
-bn_12 [32, ], stride 1, padding 01 × 1 × 192

32 channels

[64, ], stride 1, padding 01 × 1 × 256

64 channels 
[96, ], stride 1, padding 03 × 3 × 64

96 channels
[96, ], stride 1, padding 03 × 3 × 96

96 channels
[64, ], stride 1, padding 01 × 1 × 256

64 channels
[48, ], stride 1, padding 01 × 1 × 256

48 channels
[64, ], stride 1, padding 05 × 5 × 48

64 channels

Inception_1:
-Conv2d_16
-bn_16
-Conv2d_17
-bn_17
-Conv2d_18 
-bn_18
-Conv2d_13
-bn_13
-Conv2d_14
-bn_14
-Conv2d_15
-bn_15
-Conv2d_19
-bn_19

[64, ], stride 1, padding 01 × 1 × 256

64 channels
. . .

[448, ], stride 1, padding 01 × 1 × 448

448 channels
[384, ], stride 1, padding 03 × 3 × 448

384 channels
[384, ], stride 1, padding 01 × 3 × 384

384 channels
[384, ], stride 1, padding 03 × 1 × 384

384 channels
[320, ], stride 1, padding 01 × 1 × 2084

320 channels
[384, ], stride 1, padding 01 × 1 × 2084

384 channels
[384, ], stride 1, padding 01 × 3 × 384

384 channels
[384, ], stride 1, padding 03 × 1 × 384

384 channels

Inception_10:
-Conv2d_90
-bn_90
-conv2d_91
-bn_91
-Conv2d_92
-bn_92
-Conv2d_93
-bn_93
-Conv2d_86
-bn_86
-Conv2d_87
-bn_87
-Conv2d_88
-bn_88
-Conv2d_89
-bn_89
-Conv2d_94
-bn_94

[192, ], stride 1, padding 01 × 1 × 2084

192 channels
Pool 8×8 Average pool, stride 8, padding 0

Input Image (224×224×3)

Conv_1 64, 7×7×3, stride 2,padding 3
Pool1 3×3 max pool, stride 2, padding 1
Res_2a:
-Conv_2a
-bn_2a

[64, ] 2, stride 1, padding 13 × 3 × 64 ×

2, 64 channels
Res_2b:
-Conv_2b
-bn_2b

[64, ] 2, stride 1, padding 13 × 3 × 64 ×

2, 64 channels
Res_3a:
-Conv_3a

-bn_3a

[128, ], stride 2, padding 13 × 3 × 64

[128, ], stride 1, padding 13 × 3 × 128

[128, ], stride 2, padding 01 × 1 × 64

2, 128 channels 
Res_3b:
-Conv_3b

-bn_3b

[128, ] 2, stride 1, padding 13 × 3 × 128 ×

2, 128 channels
Res4a: 
-Conv_4a 

-bn_4a

[256, ] 2, stride 2, padding 13 × 3 × 128 ×

[256, ] 2, stride 1, padding 13 × 3 × 256 ×

[256, ] 2, stride 2, padding 1 × 1 × 128 ×

2, 256 channels
Res_4b:
-Conv_4b
-bn_4b

[256, ] 2, stride 1, padding 13 × 3 × 256 ×

2, 256 channels
Res_5a: 
-Conv_5a

-bn_5a

[512, ], stride 2, padding 13 × 3 × 256

[512, ], stride 1, padding 13 × 3 × 512

[512, ], stride 2, padding 01 × 1 × 256

2, 512 channels
Res_5b: 
-Conv_5b

-bn_5b
[512, ] 2, stride 1, padding 13 × 3 × 512 ×

2, 512 channels

Pool5 7×7  Average pool, stride 7, padding 0

Fig. 2  Block representation of the a Inception-v3 and b ResNet-18 in compact form. Each block contains information about the number of fil-
ters, size of filters, stride and padding
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Maximizing the margin would be equal to minimizing w . 
Then, the optimal hyperplane is computed such that [62]:

where C and �i are the margin parameters and slack variable. 
Margin parameter determines the tradeoff between maximiz-
ing the margin and minimizing classification error, respec-
tively. Slack variable penalizes data points which violate 
the margin requirements. Here, we used L2-SVM classifier 
that uses the square sum of slack variables ( �i ) as the opti-
mization function. This optimization function is computed 
as below:

Evaluation performance

Independently, 4 versions of the pre-trained CNNs model 
were fine-tuned on 90% of data and then evaluated from 
the residual data. Due to the limited dataset, tenfold cross 
validation was used and the process is repeated 10 times, 
with each subsample used exactly once as the testing 
data until all the dataset has been used for testing and 
evaluation performance. Then, averaging the 10 results is 
reported. Then, the average and standard deviation of 10 
results is reported. The accuracy, sensitivity and specific-
ity measures are computed as follow:

where TP, TN, FP and FN are true positive, true negative, 
false positive and false negative from confusion matrix, 
respectively.

(4)d(w.b;x) =

|||
(
wTx + b − 1

)
−
(
wTx + b+

)|||
||w||

=
2

||w||

(5)Minimize
1

2
wtw + C

M∑

i=1

�i

(6)Subject to yi
(
wtx + b

) ≥ 1 − �ifori = 1.… .M

(7)Minimize
1

2
||w||2 + C

2

M∑

i=1

�2
i

(8)Subject to yi
(
wtxi + b

) ≥ 1 − �i for i = 1.… .M

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Sensitivity =
TP

TP + FN

(11)Specificity =
TN

TN + FP

Results

19 channels of EEG signals from each subject were pre-
processed using the EEGLAB [63] toolbox in MATLAB 
software (version 2019a). Then, EEG signals were con-
verted to scalogram images by the CWT method by Morse 
(3,60) wavelet. Scalogram images were built from 19 chan-
nels of each subject. Figure 3 shows a sample scalogram of 
EEG channels for healthy subject and SZ patient. Horizon-
tal and vertical axes represent time (second) and frequency 
(Hz) contents, respectively. Then, the scalogram images 
resulted from EEG signal via CWT transform are used as 
input and convolutional and pooling layers of pre-trained 
CNN models are used as feature extractor and fed into 
the SVM classifier (Fig. 3). Independently, four versions 
of pre-trained CNNs, Inception-v3, VGG-19, ResNet-18 
and AlexNet are used. Then, we have tuned the parameters 
of SVM to classify SZ patients and healthy subjects. In 
other words, the fully connected layer and softmax layer of 
pre-trained CNN models are replaced with a SVM as clas-
sifier layer and the parameters of SVM are tuned. Tuning 
was performed on 90% of scalogram images and then the 
accuracy, specificity and sensitivity are computed on resid-
ual scalograms images. This procedure is done 10-times. 
Finally, mean and standard deviation of these measures 
were computed. All processing steps were done with the 
MATLAB software version 2019a. All codes were imple-
mented on a laptop with an Intel (R) Core (TM) i7-6500U 
CPU @2.50 GHz 2.60 GHz.

Figure 4 shows the average accuracy for 19 EEG chan-
nels using the AlexNet-SVM, VGG-19-SVM, ResNet-
18-SVM and Inception-v3-SVM for SZ detection from 
healthy controls. Maximum accuracy was achieved for 
ResNet-18-SVM in all EEG channels, followed by Incep-
tion-v3-SVM, VGG-19-SVM and AlexNet-SVM having 
the highest accuracy, respectively. Among all EEG chan-
nels, P4 and  O2 achieved higher accuracies using ResNet-
18-SVM with accuracy of 88.05% and 86.25%, respec-
tively. According to psychological studies, the parietal and 
occipital are discriminant brain regions in SZ disorder. 
In [64] after analyzing MR images from SZ patients and 
normal subjects, they found that gray matter (GM) and 
white matter (WM) in these brain regions had significant 
differences between the two groups. Also, in [65], they 
found discriminant regions in parietal and occipital of SZ 
patients after investigating GM and WM in MRI.

To improve the SZ recognition performance, EEG chan-
nel of each region are combined. So, 19 channels of EEG 
signals are divided into 5 brain regions (Table 1). Because 
the highest accuracy achieved using ResNet-18-SVM, this 
network is used for further analysis. Table 2 mentions 
the average accuracy, sensitivity and specificity values 
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for scalogram images of 5 defined brain regions using 
the ResNet-18-SVM in classifying the SZ patients from 
healthy controls. The highest accuracy achieved 94.84% 
for parietal region. Finally, brain regions were combined 
to further improve the performance of SZ recognition. 

All possible combinations of two, three, four and five 
brain regions are considered here. The highest accuracy 
achieved was 98.60% ± 2.29 for scalogram images of 
combination of four regions of frontal, central, parietal, 
and occipital. Table 3 mentions the average and standard 

EEG signal 
from SZ 
patients 

Deep transfer 
learning

Extract deep features 
from convolutional 

and pooling layers of 
pre-trained CNN 
models (AlexNet, 

VGG-19, ResNet-18 
and Inception-v3)

SVM 
classification

Evaluation measures 
(accuracy, specificity 

and sensitivity) 

Scalogram (T-F information 
using CWT method)

EEG signal 
from normal 

group

Fig. 3  Block diagram of the proposed method. A sample Scalogram image of EEG channels from: a healthy subject and b SZ patient is pre-
sented

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

FP1 FP2 F3 F4 F7 F8 FZ C3 C4 CZ P3 P4 PZ T3 T4 T5 T6 O1 O2

ResNet-18-SVM AlexNet inception-v3 VGG-19
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v3-SVM on scalogram images of 19 EEG channels, separately
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deviation of accuracy, sensitivity and specificity values 
for scalogram images of combinations of possible four 
and five brain regions using the ResNet-18-SVM in clas-
sifying the SZ patients. As it is observed, when tempo-
ral region is combined with other regions the accuracy is 
decreased and therefore combination of other four possible 
brain regions and even five regions (95.30%) with tem-
poral have lower accuracy value. So, we can differentiate 
between SZ patients and healthy controls with accuracy of 
98.60% ± 2.29 for combination of frontal, central, parietal, 
and occipital regions. 

Discussion

In this research, we have used transfer learning with deep 
CNNs, CWT and SVM methods for automated detection 
of SZ patients and healthy controls. Accuracy value of 
98.60% ± 2.29 is achieved for ResNet-18-SVM architecture 
in scalogram images of combination of frontal, central, pari-
etal, and occipital regions of EEG signals. Screening of SZ 
patients is momentous for early diagnosis and treatment.

The relatively small database used in this study, limits 
the procedure of training enormous parameters of a deep 
CNN model adequately; Thus, the transfer learning concept 
to compensate this inadequacy have been exploited. In this 
study, we demonstrated the feasibility of 4 state-of-the-arts 
pre-trained CNNs architectures and then used these deep 
architectures on clinical dataset to perform SZ detection 
from EEG signals. Also, the fully connected layer and soft-
max layer were replaced with a SVM. The idea of using 
SVM as classifier layer is reasonable since prior to the deep 
learning methods popularity, it was one the most efficient 
classification methods which could perform discrimination 
with the highest performance.

As seen in the result section, it can be observed that in 
terms of accuracy, sensitivity and specificity the ResNet-
18-SVM architecture is the best model. The highest aver-
age accuracy to recognize SZ patients was obtained by the 
ResNet-18 method than other pre-trained CNNs (Fig. 4). To 
understand why the aforementioned network performs better 
compared to others, one should consider the architectures 
of these pre-trained CNNs. The structure of VGG-19 and 
AlexNet is relatively similar but VGG-19 has more convo-
lutional layers with higher accuracies than AlexNet. So, it 
seems the number of layers affect the performance in this 
situation. But, ResNet-18 has lower convolutional layers 
(18) than Inception-v3 (48) with higher accuracy. Conse-
quently, the number of layers is not the only effective factor. 
ResNet-18 has the residual unit containing multiple stacked 
identity maps and shortcuts, while, Inception-v3 has mul-
tiple parallel convolutional layers in its Inception units. So, 
according to results on accuracy, it seems that the residual 
unit performs better than Inception module for discriminat-
ing this task.

As observed in Table 3, the combination of frontal, cen-
tral, parietal, and occipital regions had achieved the high-
est average accuracy among other combinations. It can be 
deduced that these regions are the most related regions in 
recognition of SZ patients and healthy controls. Our find-
ings about best regions are consistent with related studies 
with other methods [23, 25, 27, 28, 30]. In Table 4, results 
of this study are compared with related studies that used 
EEG signals of the same database [25–27, 46, 47]. As it 
is observed, accuracy achieved in this study is higher than 
those studies with the other machine learning methods and 
proves the preference of the proposed method.

The main limitation of the research can be considered the 
dataset size to train the networks. By performing regulari-
zation terms and simplifying deep models, we were able to 

Table 2  Mean and standard deviation of accuracy, sensitivity and specificity values of SZ detection from healthy controls for scalogram images 
of brain regions using ResNet-18-SVM

Regions Frontal Central Parietal Temporal Occipital

Accuracy 93.45% ± 2.30 93.32% ± 2.50 94.84% ± 2.18 90.18% ± 2.30 94.65% ± 2.20
Sensitivity 95.95% ± 2.45 94.39% ± 2.55 98.25% ± 2.92 89.96% ± 2.45 96.37% ± 2.70
Specificity 91.56% ± 2.56 92.40% ± 3.73 92.39% ± 3.75 90.37% ± 3.50 93.10% ± 3.45

Table 3  Mean and standard 
deviation of accuracy, 
sensitivity and specificity values 
of the SZ detection from healthy 
controls for scalogram images 
of combination of possible four 
and five brain regions using the 
ResNet-18-SVM

Regions Accuracy Sensitivity Specificity

Frontal, central, parietal, occipital 98.60% ± 2.29 99.65% ± 2.35 96.92% ± 2.25
Frontal, central, parietal, temporal 94.45% ± 2.45 94.95% ± 2.50 94.24% ± 2.42
Frontal, central, occipital, temporal 94.16% ± 2.42 94.95% ± 2.40 94.25% ± 2.55
Parietal, central, occipital, temporal 93.46% ± 2.30 93.85% ± 2.31 92.40% ± 2.30
Frontal, central, parietal, occipital, temporal 95.30% ± 2.25 96.45% ± 2.50 94.50% ± 2.52
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overcome this problem. Our aim in the future is to collect 
more samples and employing the developed methodology 
on other types of EEG data. Also, applying different meth-
ods for converting 1-D EEG signals into 2-D image which 
represents information flow between different EEG channels 
to be fed to CNN Architecture are presented in the future.

Conclusion

Transfer learning with one popular version of deep CNN 
named ResNet-18-SVM and CWT method is used with very 
success for automated detection of SZ patients from healthy 
controls using EEG signals. The accuracy, sensitivity and 
specificity of the mentioned method are 98.60% ± 2.29, 
99.65% ± 2.35 and 96.92% ± 2.25 for combination of frontal, 
central, parietal, and occipital regions, respectively. Rely-
ing on the results, newly proposed deep learning model is 
capable of effectively analyzing the brain function and can 
help health care professionals to identify the SZ patients for 
early identification and intervention.

Compliance with ethical standards 

Ethical approval Approval was obtained by data owner from the Ethics 
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