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Abstract
The presented study aims to design a computer-aided detection and diagnosis system for breast dynamic contrast enhanced 
magnetic resonance imaging. In the proposed system, the segmentation task is performed in two stages. The first stage is 
called breast region segmentation in which adaptive noise filtering, local adaptive thresholding, connected component 
analysis, integral of horizontal projection, and breast region of interest detection algorithms are applied to the breast images 
consecutively. The second stage of segmentation is breast lesion detection that consists of 32-class Otsu thresholding and 
Markov random field techniques. Histogram, gray level co-occurrence matrix and neighboring gray tone difference matrix 
based feature extraction, Fisher score based feature selection and, tenfold and leave-one-out cross-validation steps are carried 
out after segmentation to increase the reliability of the designed system while decreasing the computational time. Finally, 
support vector machines, k- nearest neighbor, and artificial neural network classifiers are performed to separate the breast 
lesions as benign and malignant. The average accuracy, sensitivity, specificity, and positive predictive values of each clas-
sifier are calculated and the best results are compared with the existing similar studies. According to the achieved results, 
the proposed decision support system for breast lesion segmentation distinguishes the breast lesions with 86%, 100%, 67%, 
and 85% accuracy, sensitivity, specificity, and positive predictive values, respectively. These results show that the proposed 
system can be used to support the radiologists during a breast cancer diagnosis.

Keywords Dynamic contrast enhanced magnetic resonance imaging · Breast lesion classification · Feature extraction · 
Feature selection · Breast region of interest

Introduction

Breast cancer is a commonly seen cancer that affects over 
two million women each year and has the highest percent-
age among the cancer-related deaths [1, 2]. According to 
the statistical data presented by the American Institute for 
Cancer Research, in 2018, the top three countries for breast 
cancer occurrence are Belgium, Luxembourg, and the Neth-
erlands. Breast cancer ratios of these countries are 113.2, 

109.3, and 105.9 per 100,000 people, respectively [3]. This 
ratio for Turkey is 43.0 and continues to increase each year. 
The ages of women that are subject to breast cancer change 
in a wide interval. However, 44.5% and 40.4% of women 
diagnosed as breast cancer are 50–69 and 25–49 years old, 
respectively [4].

There are three modalities; ultrasound, mammography, 
and magnetic resonance imaging (MRI) mainly used for 
breast cancer diagnosis. Among them, MRI attracts attention 
from the radiologists and also from the researchers in other 
disciplines, in recent years. MRI is preferable for scanning 
women who may have asymptomatic breast cancer. Also, 
the anomalies detected by using mammography can be stud-
ied in detail with MRI. The interpretations of the radiolo-
gists are crucial for breast cancer diagnosis via MRI. So, 
Breast Imaging and Reporting Data System (BI-RADS) is 
developed by the American College of Radiology to provide 
standardized breast imaging findings terminology in breast 
imaging treatments. BI-RADS defines the evaluation criteria 
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and future treatments for lesions detected by MRI. However, 
it is known that inter-observer variability in lesion classifica-
tion is still high and BI-RADS descriptors are not sufficient 
to distinguish benign and malignant lesions [6, 7].

Recently, computer-aided diagnosis (CAD) systems are 
developed to help the detection of cancerous lesions and 
evaluate the success of the complete diagnosis. These sys-
tems analyze the data (i.e. MR images, mammography 
images, and ultrasound scans) through improved determin-
istic algorithms. Through CAD systems, inter- and intra-
observer variability that causes different diagnosis and treat-
ment approaches for the same lesions can be minimized. 
The studies about breast cancer diagnosis can roughly be 
divided into two groups. CAD systems also have this sub-
division. In the first group, researchers aim to determine 
the region of the lesions in the breast. This group can be 
named as the segmentation group. The goal of the second 
group, which is called the lesion analysis group, is to distin-
guish the lesions as benign and malignant. In the proposed 
study, breast lesions are detected by utilizing segmentation 
methods and classified as benign and malignant by apply-
ing signal processing, data mining, and machine learning 
techniques. To demonstrate the contribution of the study a 
detailed literature analysis is made. The related works are 
summarized as given in Table 1.

Literature review

The aim of supporting radiologists for breast lesion detection 
and diagnosis can be reached in a pattern recognition frame-
work by choosing straight segmentation, feature extraction, 
and classification techniques. Thus, the literature is analyzed 
from this perspective. The related studies are given from 
present to past.

Segmentation

Segmentation is the primary step of breast lesion detec-
tion and diagnosis systems. It can be applied to a medical 
image after a preprocessing step including motion arti-
fact compensation, noise reduction, and no-interest tissue 
elimination. In Table 1, segmentation is divided into three 
categories as manual, semi-automatic, and automatic, if it 
exists. In a few studies, segmentation is performed manu-
ally by an expert. Semi-automatic segmentation techniques 
need a seed point to start lesion detection. These techniques 
include an operator-dependent phase (i.e. seed point ini-
tialization) in the CAD workflow. In the fully automatic 
segmentation, there is no interference with the system. The 
seed point or region initialization is directly carried out by 
automatically extracted rough segmentation. Segmentation 
techniques for lesion detection or maybe for lesion classi-
fication can be given briefly. The simplest way to identify 

the lesion region is thresholding. Otsu method is one of the 
adaptive thresholding-based methods that give good results 
in medical image segmentation. Some of the studies per-
form segmentation by determining the ROI that includes 
the breast area. Chest Wall Line (CWL) and Most Suspect 
Region (MSR) methods aim to find a breast lesion region 
based on ROI detection, automatically. Template Matching 
(TM) is another way of segmenting breast with the help of 
a specialist who constructs the breast templates before the 
segmentation starts. Constructing the templates is a time-
consuming task, so template matching based segmentation 
techniques are uncommon. The techniques utilizing the geo-
metric based iterative algorithms are Region Growing (RG), 
Graph Cuts (GC), Watershed (WS), Gradient Vector Flow 
(GVF) snake, and Magnetostatic snake model (M-snake). 
Other techniques can be referred to as supervised and unsu-
pervised methods. Unsupervised techniques are k-means, 
Vector Quantization (VQ), Fuzzy C-means (FCM), and 
mean shift. On the other hand, supervised methods, that 
can be grouped into regression and classification methods, 
are Logistic Regression Analysis (LRA), Linear Discrimi-
nant Analysis (LDA), Artificial, Cellular, Backpropagation, 
Pulse-Coupled and Multilayer Perceptron Neural Networks 
(ANN, CNN, BNN, PCNN, MLPNN), Decision Tree (DT), 
Probabilistic Boosting Tree (PBT), k-NN, Least-Squares 
Support Vector Machines (LS-SVM) and Markov random 
field (MRF). Optimization-based segmentation studies also 
exist in the literature. Ant and swarm bee colony optimiza-
tion techniques can be given as examples. Furthermore, in 
recent years deep learning-based approaches attract attention 
from researches in various disciplines. But deep learning-
based methods require a large database that is impossible or 
difficult to construct for a vast majority of the studies.

Feature extraction

The second main step of the mentioned system is feature 
extraction whereby breast lesions are represented by their 
inherent properties. Dynamic features (DYN) represent the 
temporal kinetics of the time-intensity curve which plots 
the signal intensity values versus time after contrast agent 
uptake. Textural features (TXT) can be used to segment 
an image and classify its segments. These features are spa-
tial properties that measure the relative uniformity in a 
bounded region. Geometrical features (GEO), sometimes 
referred to as morphological or shape features are other 
commonly used features to diagnose the lesion. Pharma-
cokinetic features (PKF) model the contrast agent uptake 
of the tissue in an ROI. The physiological parameters of 
pharmacokinetic models are mainly related to tissue per-
fusion, vascular permeability, and extracellular volume 
fraction.
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Table 1  Literature review

Ref No Year Segmentation Feature extraction Feature selection Classification

No Yes No Yes No Yes No Yes

M SA A

[5] 2018 X TXT X RF
[6] 2018 FCM Χ Χ Χ
[7] 2018 Χ DYN Χ SVM
[8] 2017 FCM DYN Χ SVM
[9] 2016 FCM Χ Χ Χ
[10] 2016 Χ TXT Χ kNN
[11] 2016 Χ TXT Χ LDA
[12] 2016 X DYN, GEO Χ QDA
[13] 2016 X X X Deep Learning
[14] 2015 ROI, FCM PKF GA X
[15] 2015 WS,RG Χ Χ Χ
[16] 2015 X DYN Χ SVM
[17] 2015 X Χ Χ SVM
[18] 2015 Otsu DYN,TXT CBFS NB, DT, SVM
[19] 2014 Ant-based TXT,GEO Χ MLPNN
[20] 2014 FCM Χ Χ Χ
[21] 2014 Seeded RG Χ Χ Χ
[22] 2014 FCM DYN,TXT, GEO Χ LRA
[23] 2014 FCM Χ Χ Χ
[24] 2014 FCM, GVF Snake DYN, TXT, GEO CBFS SVM
[25] 2013 TM Χ Χ Χ
[26] 2013 Χ DYN Χ LDA
[27] 2013 CWL Χ Χ Χ
[28] 2013 SVM Χ Χ Χ
[29] 2013 Χ GEO,TXT T-test SVM, ANN
[30] 2013 SBC TXT T-test ANN, MLP, 

LDA
[31] 2013 FCM TXT MI SVM
[32] 2013 MS, GC Χ Χ Χ
[33] 2013 MSR DYN,GEO Χ DT
[34] 2012 RG Χ Χ Χ
[35] 2012 FCM TXT MI kNN SVM
[36] 2012 PCNN DYN Χ SVM
[37] 2012 X DYN,GEO Χ Bayes DT
[38] 2011 Otsu Χ Χ Χ
[39] 2011 RFCM Χ Χ Χ
[40] 2011 X DYN,TXT, GEO X PBT SVM
[41] 2010 Otsu Χ Χ Χ
[42] 2010 FCM DYN, TXT Χ LS-SVM
[43] 2010 Χ TXT TFS SVM
[44] 2010 FCM DYN,TXT, GEO LDA Bayes
[45] 2010 X DYN Χ SVM
[45] 2009 GC DYN, TXT RB LDA FLD
[47] 2009 FCM DYN,TXT, GEO Χ ANN
[48] 2009 Χ TXT,GEO LRA ANN
[49] 2009 Otsu DYN Χ LS-SVM
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Feature selection

The target of feature selection is to improve the decision per-
formance of the classifier while reducing the computational 
complexity. Hence, some of the studies given in Table 1 use 
feature selection methods to reduce the dimension of the 
feature vector by eliminating the irrelevant features from 
the feature vector. Among these techniques, LDA and LRA 
can also be used for classification. Some of the most popu-
lar feature selection methods are Correlation-Based Feature 
Subset Selection (CBFS), Fisher Linear Discriminant (FLD), 
Average Correlation Coefficient (ACC), Genetic Algorithm 
(GA), T-Test, Ranking Based (RB) and, Mutual Information 
(MI) based techniques. Besides, the Probability of Classifi-
cation Error (PCE) method, considers the feedback mecha-
nism between classifier and feature selection process, can be 
used for the same purpose. In a few studies, a hybrid feature 
selection step is applied to the feature vector.

Classification

The final stage of the given framework is to distinguish the 
detected lesions according to their inherent properties rep-
resented by the extracted features. Most of the classification 
techniques are given in segmentation and feature extraction 
parts. Except for them, Random Forest (RF), Quadratic Dis-
criminant Analysis (QDA), Naïve Bayes (NB), Principal 

Component Analysis (PCA), and Three Well-Chosen Time 
Point (3TP) techniques are also applied for classification. In 
addition to these techniques, a ROCKIT software package 
is used by the researchers.

Materials and methods

The dynamic contrast enhanced magnetic resonance imaging 
(DCE-MRI) database of the system on which all the tests 
were performed is constructed from “Sakarya University 
Education and Research Hospital, Radiology Department” 
with ethical permission. The database includes 10 benign 
and 40 malignant histopathologically proven breast lesions 
analyzed from 49 patients. The histopathologically proven 
malignancy of each lesion is reported in Table 2. The total 
number of the analyzed lesions is 50. In the left breast of one 
of 49 patients, there are two lesions. The remaining patients 
have one lesion in their right or left breast. The patients 
were female and their ages change between 30–72. MRI 
scans are performed in patients participating in a protocol 
for women who underwent breast MRI examination after 
detecting anomalies by using mammography or ultrasound. 
DCE-MRI of the breast was performed on prone patients 
(feed first prone) in the 1.5 T MRI system (GE Healthcare-
Signa Voyager). For each patient, MRI examination takes 
about 20 min. Before contrast agent administration one 

M manual, SA semi-automatic, A automatic

Table 1  (continued)

Ref No Year Segmentation Feature extraction Feature selection Classification

No Yes No Yes No Yes No Yes

M SA A

[50] 2009 X DYN Χ PCA
[51] 2009 MAC DYN,TXT, GEO Χ SVM
[52] 2008 FCM DYN Χ SVM kNN
[53] 2008 X TXT Fisher, POE + ACC kNN ANN
[54] 2008 RG DYN Χ 3TP
[55] 2008 CNN, 3D -TM Χ Χ Χ
[56] 2007 X TXT Χ NN
[57] 2007 RG DYN, TXT, GEO Tooldiag Package BNN
[58] 2006 PCA DYN,GEO Χ LRA
[59] 2006 RG DYN Χ VQ
[60] 2006 FCM DYN Χ ROCKIT
[61] 2005 k-Means, MRF Χ Χ Χ
[62] 2004 Threshold GEO Χ BNN
[63] 2003 Χ DYN,GEO Χ ANN
[64] 2003 Threshold DYN,GEO, TXT Χ NN, Bayes
[65] 2002 ANN Χ Χ ANN
[66] 2001 Χ DYN Χ ANN
[67] 2001 X Χ Χ BNN
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scan and after injection of gadolinium (0.1 mmol/kg dose 
and 1.5 mL/s flow rate) five scans are utilized at a temporal 
resolution 26.1 s. The most proper slices that provide use-
ful information to determine the region of the lesion were 
chosen by the radiologist. The dynamic T1series’ parameters 
are TR 7.2 ms, TE per scan 2.0 ms, flip angle (FA) 11, slice 
thickness 1.4, FOV frequency 35.0, FOV phase 1.0, maxi-
mum slices 1618, pixel size 0.9 × 1.2, the number of excita-
tion (NEX) 1.0 and matrix size 192 × 300. These parameter 
values can vary in a range from patient to patient according 
to the structural features of the patient.

The reported ACR BI-RADS categories of background 
parenchymal enhancement (BPE) are minimal, mild, and 
moderate. More than half of the BPE is evaluated as mini-
mal for our database. However, in the proposed study, the 
degree of BPE is not considered. As discussed in reference 

[79], BPE represents breast activity and depends on several 
factors. So, the effect of BPE degree must be investigated 
alone. This investigation is out of the scope of the paper.

The target of the proposed study is to design a decision 
support system for detecting and then classifying the breast 
lesions in DCE-MRI. The designed system is named as 
Decision Support System for Breast Lesions (DSSBL). The 
block diagram of the DSSBL is given in Fig. 1. The details 
of the applied steps are introduced in the following sections.

Breast region segmentation

In this step, the goal is to take out breasts from the MR image 
including pectoral muscle, air, and breast region. For this 
purpose, several operations given in Fig. 2 are applied to the 
MR images. These operations are carried out in sequence. 
At the end of the breast region segmentation process, breast 
region that probably includes breast lesion is obtained. At 
first, an adaptive noise reduction filtering is performed to 
eliminate the motion artifact and other noise components. 
Then the local adaptive thresholding process is applied to the 
images to dominate the intensity inhomogeneity raised from 
the bias field and low contrast intensity on the gyrate region 
between breast and pectoral muscle. Although there exist a 
few thresholding methods, Niblack’s technique is preferred 
in this study according to the performed several trials on 
the database [76]. The denoised and thresholded image is 
shown in Fig. 3b. The connected component labeling pro-
cess follows the local adaptive thresholding to eliminate the 
undesired extra regions, such as arms and thorax area. After 
connected component labeling, the region including the 
breast area and the fat tissue over the backbone remains in 
the binary image (Fig. 3c). As can be seen from the figure, 
the horizontal projection that is calculated by summing the 
pixel intensities over each row indicates the location of the 
virtual cutting line (green line in Fig. 3c). The location of 
this line corresponds to a row of the binary image and can 
be calculated as follows.

Table 2  Database content

Malign

Invasive ductal carcinoma 25
Invasive ductal carcinoma + lobular carcinoma 2
Papillary carcinoma 2
Apocrine carcinoma 1
Mixt invasive carcinoma 1
Invasive lobular carcinoma 3
Invasive ductal carcinoma + intraductal papilloma 1
Tubular carcinoma 2
Comedo, cribriform and high grade solid type ductal carcinoma 

in situ
2

Ductal carcinoma in situ 1
Benign
Cyst 4
Fibrocystic 1
Fibroadenoma 4
Ductal gland 1
Total 50

Fig. 1  The main steps of proposed system
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where cl is the location of cutting line, f is the first 
nonzero element of horizontal projection vector and indi-
cates the end of breast body point, g is the last nonzero ele-
ment of horizontal projection vector representing the nipple 
points. The breast area and gyrate region are separated by 
the cutting line, as illustrated in Fig. 3d. Finally, left and 
right breasts are disconnected by determining the sternum 
midpoint. The left and right breast masks, the original left 
and right breast regions are given in Fig. 3e–h, respectively. 
As discussed before, the study aims to detect lesions and 
classify them as benign and malignant. So, the left and right 
breasts are separated from each other to determine if they 
contain lesion. Then, the breasts that are containing lesions 
are analyzed. This process also decreases the computational 
load of the system.

Breast lesion segmentation

After determining the left and right breast areas of each 
subject, the lesion region for the breast must be obtained, 
if it exists. For this purpose, at first, we attained the origi-
nal left and right breast regions by using the locations 
obtained in the breast region segmentation stage (Fig. 3g, 
h). Then, two segmentation methods are applied to the 
breast regions. The first method is the Otsu thresholding 
method which is an adaptive method that determines a 
different threshold value for each class. The number of 
classes is specified by the user. The main idea behind 
the Otsu method is to maximize the inter-class variance 
while minimizing the intra-class variance. In our study, the 

(1)cl = f +
g − f

2

32-class Otsu method is performed as a pre-segmentation 
process. Before performing this method, the color MR 
image is converted to the gray level image. For the sake 
of simplicity, the main steps of the two-class Otsu method 
are summarized as follows:

 i. In the first step, normalized histogram values of an 
image, that has L different intensity levels, are calcu-
lated with Eq. (2),

where MxN  is the dimension of the image and ni 
denotes the number of pixels in the i.th intensity 
level. In Eq. (2), 

∑L−1

i=0
Pi = 1,Pi ≥ 0 condition must 

be satisfied.
 ii. The image is separated into two classes by using a 

threshold value T(k) = k, 0 < k < L − 1 . The pixels in 
[0, k] intensity interval are assigned to class C1 and the 
remaining pixels belong to class C2.

 iii In this step, the global mean value of the image ( mG ) 
is calculated with the equation given below.

   As can be seen from Eq. (3), we need to obtain 
mean intensity values of the pixels ( m1,m2 ) assigned 
to C1 and C2 classes. For this purpose, Eqs. (4) and (5) 
are used.

where, P1 =
∑k

i=0
Pi and P2 =

∑L−1

i=k+1
Pi.

 iv. Now, a criterion must be used to evaluate the accu-
racy of the specified threshold values. This criterion 
is referred to as a separation criterion and can be cal-
culated as follows:

   In Eq. (6), inter-class variance Q2
B
 and global vari-

ance Q2
G

 are expressed with Eqs. (7) and (8)

(2)Pi =
ni

M.N
, i = 1, 2,… , L − 1

(3)mG = P1 ⋅ m1 + P2 ⋅ m2

(4)m1(k) =
1

P1(k)

k∑
i=1

i.Pi

(5)m2(k) =
1

P2(k)

k∑
i=1

i.Pi

(6)�k =
Q2

B

Q2
G

(7)Q2
B
=

(mGP1(k) − m(k))2

P1(k).P2(k)
, m(k) =

k∑
i=0

i.Pi

Breast Region 
Segmentation 

1. Adaptive Noise Reduction 
Filtering

2. Local Adaptive Thresholding 

3. Connected Component 
Labeling

4. Horizontal Projection Integral

5. Breast Region Detection

Fig. 2  Breast region segmentation process
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   Note that, to reach the maximum separation crite-
rion value, Q2

B
 must be increased since Q2

G
 is constant.

 v. The goal of the final step is to find optimum k∗ value 
which maximizes the inter-class variance. This prob-
lem can be expressed as follows:

(8)Q2
G
=

L−1∑
i=0

(i − mG)
2
⋅ Pi

(9)Q2
B
(k∗) = maxQ2

B
(k), 0 < k < L − 1

   Once the k∗ value is specified, thresholding process 
is applied to the input image f (x, y) as given below:

In Eq. (10), g(x, y) is the final image. In the description 
given above, the Otsu method is used to separate the input 
image into two classes. In the proposed study, the 32-class 
Otsu thresholding method is applied. For this extension, 
some modifications must be done in the equations. For 

(10)g(x, y) =

{
1, iff (x, y) > k∗

0, iff (x, y) ≤ k∗

Fig. 3  Breast region segmentation: a original MR image, b local adaptive thresholding method’s result, c binary image after connected compo-
nent labeling, d obtained breast region, e left breast region, f right breast region, g, h original left and right breast regions, respectively
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example, in 32-class thresholding, the threshold values 
are, 1 ≤ k1 < k2 < … < k31 < L . By applying these val-
ues to the image, classes as C1 for [1, 2, …, k1 ], C2 for 
[k1 + 1,… , k2] , …, C32 for [k31 + 1,… , L] are obtained. 
In this case, the criterion measure QB

2 is the function of 
k1, k2,… , k31 variables, and an optimal set of threshold 
values k1∗, k2∗,… , k31

∗ is specified by maximizing QB
2 . 

Finally, the image can be partitioned into desired intensity 
levels by using optimal threshold values. The details of the 
Otsu method can be found in [77].

It is shown that the MRF method improves the perfor-
mance of the pre-applied segmentation algorithm. So, the 
MRF method is used in the post-segmentation process to 
improve the segmentation attainment of the Otsu thresh-
olding method. MRF is a stochastic process to model the 
joint probability distribution of an image in terms of local 
characteristics of it The main idea behind the MRF tech-
nique is based on Bayes rule. According to this rule,

where F and Y are the random variables represent the 
feature set and segmentation results of the image, respec-
tively. Hence, f and y are the values of these random vari-
ables. As known from the probability theory, p(Y = y|F = f) 
denotes the conditional probability of event Y = y given 
F = f and a priori probability p(F = f|Y = y) is the condi-
tional probability of F = f conditioned on Y = y. To sim-
plify the MRF approach, two assumptions are made. The 
first one is the conditional independence of F = f instances 
each other concerning Y = y. Because of using one fea-
ture (class of the pixel obtained by pre-segmentation), 
this assumption doesn’t influence our algorithm. The sec-
ond assumption is to assume distribution feature data is a 
Gaussian function with mean �� and standard deviation �� 
where λ is the class of feature.

As F = f is known, p(F = f) can be thought of as a 
constant value. So, when maximizing P (Y = y | F = f), 
p(F = f |Y = y)P(Y = y) must be considered. The steps of 
the MRF-based segmentation algorithm applied in the pro-
posed study are summarized as follows:

 i. n-level segmentation is performed by using the Otsu 
method (n ≥ 32).

 ii. A training region S� is created for each class (λ = 1,2, 
3, …n). S is the two-dimensional image lattice (S = {(i, 
j) | 1 ≤ i ≤ H, 1 ≤ j ≤ W, i, j, H, W ∈ I} where I is an 
image with dimensional H×W).

 iii. A mean value ( �� ) is calculated for each class.

(11)P(Y = y|F = f ) =
p(F = f |Y = y)P(Y = y)

p(F = f )

(12)�� =
1

S�
.
∑
s∈S�

fs

 iv. A variance value ( �� ) is calculated for each class.

 v. First, energy regarding image regions  (ER) is calcu-
lated.

 vi. Second, the energy form of feature modeling compo-
nent  (EF) given in Eq. (11) is calculated.

 vii. After the  ER and  EF values are obtained, the objective 
function is minimized.

where � is a constant parameter that must be adjusted 
according to the image database [68].

Repeat the above five steps until all combinations con-
sidered to find the segmentation result which provides the 
minimum energy. The implementation algorithm of MRF 
can be found in reference [68].

At the end of the breast lesion segmentation step, the tar-
get of determining the boundaries of the lesion is reached, as 
perfect as possible. The accuracy of determining the lesion 
regions affects the success of other processes, directly. Note 
that, all techniques that are applied in the segmentation stage 
of the proposed system don’t need any intervention during 
their processes.

Feature extraction

Feature extraction is a method that represents the visual 
content of an object determined in an image. The main 
idea behind feature extraction is to express the deter-
mined object with fewer parameters to reduce the storage 
and computational load. This process can be performed in 
the time domain and /or frequency domain. In this study, 
time-domain features based on the histogram, GLCM, and 
NGTDM are extracted for each breast lesion. In general, the 
histogram provides more information from the first-order 
statistics of the original image than the simple averaging of 
the image intensity values. In the proposed study, six his-
togram features are derived from the gray level breast MR 
images. These histogram features are mean, variance, stand-
ard deviation, skewness, kurtosis, and absolute deviation. 

(13)�� =
1

S�
.
∑
s∈S�

(f s − ��)

(14)

ER =
∑
s,r

�.�
(
ws,wr

)
,

{
�
(
ws,wr

)
= −1, ifw

s
= wr

�
(
ws,wr

)
= +1, ifws ≠ wr

(15)EF =
�
s

�
log

�√
2��ws

�
+

�
fs − �ws

�2
2�2

ws

�

(16)
argmin

w ∈ Ω
E = ER + �EF
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GLCM and NGTDM features are explained in the following 
subsections.

Gray level co‑occurrence matrix (GLCM)

The texture is an important distinctive used to identify and 
recognize the regions or objects in an image. GLCM is a 
popular statistical method used to extract textural features 
of an image. Haralick defines fourteen textural features 
given in Table 3, which are calculated from the gray level 
co-occurrence probability matrix [69]. Before calculating 
the textural features, 32-level segmentation is applied to 
the breast lesion images. So, in the following equations, the 
number of distinct gray levels denoted with Ng is 32. The 
offsets for GLCM define relationships of varying direction 
and distance. In our study, four directions ( 0◦, 45◦, 90◦, 135◦) 
and one distance (d = 1) is used. So, the input image rep-
resented by four GLCMs. To calculate the statistics from 
these GLCMs, the mean and range values are calculated 
[69]. P(i,j) is the (i,j).th entry of the matrix. p (i, j) is the 
normalized value of P (i,j) and calculated with Eq. (17).

In Table 3, the px and py are the marginal-probability 
matrices obtained by summing the rows and columns of 
p(i,j), respectively. These matrices are calculated with 
Eq. (18) given below.

(17)p(i, j) =
P(i, j)∑

i

∑
j P(i, j)

�x , �Y and �x , �Y are the mean values and standard devia-
tions of px and py probability distributions. The px+y(k) and 
px−y(k) values can be expressed as follows.

Features (12) and (13) measure the information of corre-
lation. HXY1, HXY2, and HXY values are given in Eqs. (21), 
(22), and (23).

In  f12, HX and HY are the entropies of X and Y random 
variables having px and py distributions, respectively. In the 
equations comprising log (.) operator, to not encounter the 
log (0), it is recommended to use log (p(i, j) + �) instead 

(18)px =

Ng∑
j=1

P(i, j), py =

Ng∑
i=1

P(i, j)

(19)

px+y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), k = 2, 3,… , 2Ng, for i + j = k.

(20)

px−y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), k = 0, 1,… ,Ng − 1, for |i − j| = k.

(21)HXY1 = −
∑
i

∑
j

p(i, j) log
{
px(i)py(j)

}

(22)HXY2 = −
∑
i

∑
j

px(i)py(j) log
{
px(i)py(j)

}

(23)HXY = −
∑
i

∑
j

p(i, j) log (p(i, j))

Table 3  GLCM features and 
their expressions

No Feature Expression

1 Angular second moment f1 =
∑

i

∑
j {p(i, j)}

2

2 Contrast f2 =
∑Ng−1

n=0
n2
�∑Ng

i=1

∑Ng

j=1
p(i, j)

�
, �i − j� = n

3 Correlation
f3 =

∑
i

∑
j (ij)p(i,j)−�x�y

�x�y

4 Sum of squares: variance f4 =
∑

i

∑
j (i − �)2p(i, j)

5 Inverse difference moment f5 =
∑

i

∑
j

1

1+(i−j)2
p(i, j)

6 Sum average f6 =
∑2Ng

i=2
ipx+y(i)

7 Sum entropy f7 = −
∑2Ng

i=2
px+y(i) log{px+y(i)}

8 Sum variance f8 = −
∑2Ng

i=2

�
i − f7

�2
px+y(i)

9 Entropy f9 = −
∑

i

∑
j p(i, j) log(p(i, j))

10 Difference variance f10 = variance of px−y

11 Difference entropy f11 = −
∑Ng−1

i=0
px−y(i) log{px−y(i)}

12 Information measures of correlation f12 =
HXY−HXY1

max{HX,HY}

13 Information measures of correlation f13 = (1 − exp [−2(HXY2 − HXY])1∕2

14 Maximal correlation coefficient f14 = (Second largest eigenvalue of Q)1∕2
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of log (p(i, j)) where ε is an arbitrarily small positive con-
stant. Finally, Q used in the feature denoted with  f14 can be 
expressed as follows.

Correlation measures calculated with features 12, 13 and 
14 consider some desirable properties which are not exposed 
in the third feature. At the end of the GLCM process, 14 
features are attained for each direction. Instead of using all 
features ( 14 × 4 = 56 ), the mean and range values of each 
of these 14 features are used as an input of the classifier. So, 
the number of GLCM features is 28.

Neighboring gray tone difference matrix features (NGTDM)

Neighboring gray tone difference matrix features (NGTDM) 
is a method used to represent the spatial changes on pixel 
intensity. As an example, the labeling values of the 5-level 
segmented image with size 4 × 4 and its NGTDM parameters 
are shown in Fig. 4. In this figure, ni is the number of label 
i, and pi is the ratio of ni to the size of the image the matrix. 
The calculation of si is given with Eq. (25).

where 
−

Ai is the ratio of the neighbor sum to the number of 
the neighbor of i. th label. An example of calculating si is 
explained below.

(24)Q(i, j) =
∑ p(i, k)p(j, k)

Px(i)Py(k)

(25)si =

⎧⎪⎨⎪⎩

∑
ni

����i−
−

Ai

����, ni ≠ 0

0, ni = 0

Once the NGTDM parameters are obtained, the five 
features extracted easily. These features introduced below 
are named as coarseness, contrast, busyness, complexity, 
and texture strength.

 i. Coarseness (COA): It is the most fundamental feature 
of image texture and measures the average difference 
between the center pixel and its neighborhood. The 
higher coarseness is the lower spatial change and a 
locally more uniform texture. The formula for the 
coarseness is as follows

where Ng is the number of labels in the segmented 
image. If the image is completely homogenous ∑Ng

i=1
pisi will be zero. To overcome the infinity prob-

lem of coarseness value, a small number of ε is added 
to the denominator of COA.

 ii. Contrast (CNT): This feature is a spatial intensity 
change measure and also dependent on the overall 
gray level dynamic range. If the regions with different 
intensity levels are visible, the contrast of the image is 
high. The mathematical equation of contrast is given 
in Eq. (27)

where, Ng,p is the number of gray levels for pi ≠ 0 and 
Nv,p is the total number of pixels in the region.

 iii.  Busyness (BSY): In a busy texture image, there exist 
rapid changes of intensity from one pixel to its neigh-
bor. In this case, the spatial frequency of intensity 
variations is very high. This computational measure 
can be expressed as

 iv. Complexity (CMP): This measure represents the infor-
mation content of an image. If it is high, it is said that 
the image contains many patches or primitives in its 
texture. Complexity is expressed as follows

s
1
=
||||1 −

6

3

|||| +
||||1 −

15

8

|||| +
||||1 −

11

5

|||| +
||||1 −

19

8

||||
+
||||1 −

23

8

|||| +
||||1 −

7

3

|||| = 14.78

(26)COA =
1

∑Ng

i=1
pisi + �

(27)

CNT =

⎛⎜⎜⎝
1

Ng,p(Ng,p − 1)

Ng�
i=1

Ng�
i=1

pipj(i − j)2
⎞⎟⎟⎠

⎛⎜⎜⎝
1

Nv,p

Ng�
i=1

si

⎞⎟⎟⎠
, pi and pj ≠ 0.

(28)BSY =

�∑Ng

i=1
pisi

�
�∑Ng

i=1

∑Ng

i=1

���i.pi − j.pj
���
� , pi and pj ≠ 0.

=

1 2 4 5

3 1 2 4

1 1 1 2

1 5 5 3

a

i ni pi si

1 6 0.375 14.78

2 3 0.1875 2.7

3 2 0.125 2.13

4 2 0.125 2.4

5 2 0.125 5.8
b

Fig. 4  NGTDM calculations: a 5-level segmented image matrix, b 
NGTDM parameters
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 v. Strength (STR): Texture strength can be thought in a 
correlation with coarseness and contrast. It takes small 
values for coarse textures and high values for busy 
textures. The strength measure can be calculated as 
given below

At the end of the feature extraction step, 39 features are 
derived from each breast lesion image. Time-domain fea-
tures based on the histogram (mean, variance, standard devi-
ation, skewness, kurtosis, and absolute deviation), GLCM 
(28 features), and NGTDM (5 features) are extracted for 
each lesion.

Feature selection

In medical imaging systems, noise affects the quality of 
images and so the performance of the decision-support sys-
tem. To remove the noise, filtering techniques are applied to 
the MR images in the breast segmentation phase of the pro-
posed study. Besides, feature extraction and feature selection 
are the dimensionality reduction techniques that are popu-
lar to remove noisy and redundant features. In this study, 
histogram, GLCM, and NGTDM-based feature extrac-
tion approach is offered to construct a feature space with 
lower dimensionality. On the other hand, feature selection 
approaches aim to select a small feature subset that elimi-
nates the irrelevant features and maximizes relevance to the 
target such as class labels in classification. At the feature 
selection step of the presented system, the Fisher Score (FS) 
method is utilized to determine the most effective features. 
The feature extraction and selection steps provide learning 
performance improvement, computational complexity reduc-
tion, better generalizable models, and storage decrease.

FS is one of the most representative algorithms of 
supervised feature selection. FS is referred to as a filter 
model that evaluates the features without utilizing any 
classification algorithm. In the first step of the method, 
features are ranked based on a certain criterion and in 
the second step, the features with the highest ranks are 
selected to induce classification models. According to the 
FS, if the score of feature is higher than the determined 
threshold value changing between 0 and 1, this feature is 
more selective and so it survives. The features having a 

(29)

CMP =
1

Nv,p

Np∑
i=1

Np∑
i=1

|i − j|pisi + pjsj

pi + pj
, pi and pj ≠ 0.

(30)

STR =

⎛
⎜⎜⎝

Ng�
i=1

Ng�
i=1

(pi + pj)(i − j)2
⎞
⎟⎟⎠
∕

Ng�
i=1

si, pi and pj ≠ 0.

score lower than the threshold value are removed from the 
feature vector. FS can be used to measure the discrimina-
tion of two sets of real numbers (i.e. positive and negative 
data sets) and expressed with the following equation

where mi , m
(p)

i
 , and m(n)

i
 are the mean of the ith feature of the 

whole, positive and negative data sets, respectively. The np 
and nn are the numbers of positive and negative instances 
in the given training vector. f p

k,i
 and f n

k,i
 are the values of i.th 

feature of the k.th positive and negative instances, respec-
tively [70, 72].

In Fig. 5, F-score values of the extracted features, that 
are sorted smallest to largest, are demonstrated. After cal-
culating the FS of each feature, three different threshold 
values are specified experimentally. The number of the 
surviving features changes depending on the specified 
threshold value. By evaluating the performance of the 
classifiers the most appropriate threshold value is deter-
mined for the proposed system.

Cross‑validation

In many applications, the amount of training and testing data 
is not enough to build stable and good models. We need to 
use as much of the available data as possible for training in 
order to build reliable models. But, if the size of the valida-
tion set is small, a relatively noisy estimate of predictive 
performance will be obtained. Cross-validation is one of the 
solutions to this dilemma and it is illustrated in Fig. 6. This 
method allows a proportion (S − 1)∕S of the available data 

(31)

FS(i) =
(m

(p)

i
− m

i
)
2
+ (m

(n)

i
− m

i
)
2

1

np−1

∑np

k=1
(f

p

k,i
− m

(p)

i
)
2
+

1

nn−1

∑np

k=1
(f n
k,i
− m

(n)

i
)
2

Fig. 5  F-Score values of the extracted features
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to be used for training while making use of all the data to 
assess performance [71].

According to the figure, available data is partitioned into 
S groups of equal size. Then, S-1 of the groups is applied 
to the classifier as the training set and the remaining group 
is used to evaluate the performance of the classifier. This 
process is repeated for all S possible choices. The final per-
formance is calculated by averaging the scores of S runs. If 
the size of data particularly small, the S = N case, where N 
is the number of data, will be more appropriate. This case is 
known as the Leave-One-Out (LOO) technique. The major 
drawback of the cross-validation techniques is the increase 
in the computational complexity of the system. In the pro-
posed study, ten-fold and LOO cross-validation techniques 
are utilized to improve the performance of the classifiers.

Classification

The proposed study aims to distinguish benign and malig-
nant breast lesions with maximum accuracy. This is a pattern 
classification process and depicted in Fig. 7. Many tech-
niques are applied to the breast MR images as discussed 
in the previous sections to perform the given task. In this 
section, k-nearest neighbor (k-NN), support vector machines 
(SVM), and artificial neural network (ANN) techniques are 
utilized to classify lesions.

The Nearest Neighbor technique is a simple technique 
for classification which involved assigning to each test 
vector the same label as the closest example from the 
training set. k-NN can be referred to as a two-stage exam-
ple-based classification technique of which the first stage 
is determining the neighbors and the second stage is to 
assign a class for new data points by using the classes of 
neighbors. During the experiments, the k value is changed 
between 1 and 9 to determine the most appropriate k value 
for the given task. The best accuracy values are obtained 
when k = 7 and Euclidean metric is used to calculate the 
distances between the required data points [71].

SVM are another category of feedforward networks that 
have some highly elegant properties about binary learning. 
The main idea behind the SVM technique can be explained 
as follows: when a training sample is given, the machine 

uses an optimization technique to construct a hyperplane 
as the decision surface. The distance between positive and 
negative samples is maximized. In most cases, patterns can 
be separated linearly. However, in some difficult cases, 
nonlinearly separable patterns can be encountered. The 
details of SVM can be found in reference [73, 74]. In the 
proposed study, after performing several computer simula-
tions, Gaussian kernel SVM is preferred to attain the best 
performance for the given classification problem.

ANN is a machine imitating the human brain that is 
a highly complex information-processing system. Neural 
Networks (NN) employ a massive interconnection of sim-
ple computing cells known as “neurons” or “processing 
units”. NN performs two main tasks similar to the brain: 
(1) through a learning process, knowledge is attained 
from the network’s environment, (2) to store the attained 
knowledge, synaptic weights which connect to the neu-
rons are utilized. During the learning process, synaptic 
weights of the network are updated adaptively to perform 
the given task. The details about NN architecture can be 
found in references [72, 73]. In this study, a Multilayer 
Feed-Forward Backpropagation Network (MLFBNN) is 
used to classify breast lesions. The number of the hidden 
layers is chosen as 5 according to the experimental results. 
The transfer function of each layer is tangent sigmoid. The 
backpropagation network training function is “trainlm” 
that updates the weight and bias values according to Lev-
enberg–Marquardt optimization and learning function is 
gradient descent with momentum weight and bias func-
tion. The performance of the NN is measured according 
to the mean square error approach.

Results

The results of the performed steps, shown in Fig. 1, are 
given in this section. As discussed before, the performance 
of each block directly affects the performance of the whole 
system. So, at first, the output of breast lesion segmenta-
tion and lesion detection steps is taken into account. For 
this purpose, Figs. 8, 9, and 10 are illustrated.

In Fig. 8, the two-stage segmentation process is shown 
for an MR image including both benign and malignant 

Fig. 6  S-fold cross-validation scheme Fig. 7  Pattern classification model
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breast lesions. Figure 8a shows the output of breast region 
segmentation and Fig. 8b gives the result of breast lesion 
segmentation in which Otsu and MRF methods are applied 
to the breast region. As can be seen from the figure, the 
proposed segmentation process makes the breast lesions 
more explicit. Figures 9 and 10 are demonstrated to com-
pare the manually selected lesion region with an auto-
matically determined lesion region. For this comparison, 
in Fig. 9, automatically determined lesion regions are 
indicated by color overlay and manually selected lesion 
regions are marked with arrows by an expert radiologist. 
Figure 9a, c shows the color visualization of breast lesion 
detector output for a benign and malignant lesion, respec-
tively. Figure 9b, d illustrates the lesion regions selected 
by an expert radiologist. According to the comparison per-
formed by the radiologist, breast segmentation and lesion 
detection blocks perform the given task successfully. In 
the figures, the regions having reddishness are more sus-
picious about malignancy. The more “reddish” the color 
of a pixel is; the higher chance it is in a cancerous region. 
So, breast segmentation and lesion detection provide some 
information about the malignancy of the breast lesions. 
Besides, in Fig. 10, a different case is considered. As far 
as we know this case is not investigated in the earlier stud-
ies. Figure 10a visualize the color overlay of a malignant 
lesion with increased skin thickness. As can be seen from 
the overlay, there exists a reddish region on the breast skin. 
It means that the breast mass lesion carcinoma affects the 
breast skin. This case is also detected by the proposed 
segmentation process. However, the breast skin is not 
included in the ROI. Including affected skin regions vari-
ates the features of lesions and may cause false classifica-
tion results. Thus, we take into account only the lesions 
that are inside the breast region.

The 2D-ROI selection is performed for feature extrac-
tion. After obtaining the lesion area, the feature extraction 

step is applied to represent breast lesions with their specific 
properties. Histogram, GLCM, and NGTDM features of 
breast lesions are calculated to constitute the feature vector. 
The obtained feature vector with size 39 × 1 is the input of 
the feature selection block. The feature selection is carried 
out by the FS method. However, classification results are 
also given for case 1 to show the effectiveness of the feature 
selection process on the system’s decision performance. FS 
gives scores changing between 0 and 1 to each feature. FS 
value for the most relevant feature is 1. In this study, two FS 
threshold value is selected experimentally to eliminate the 
irrelevant features. The first threshold value is the mean of 
all features’ scores and the second one is 0.1. The number 
of surviving features are 15 and 25 for FS (mean) and FS 
(0,1) cases, respectively. Then cross-validation algorithms 
are utilized to augment the success of the proposed system. 
Tenfold and LOO cross-validation scenarios, which are the 
most preferred scenarios for small databases, are taken into 
account. The contributions of these scenarios are also inves-
tigated during the experiments. To examine the effective-
ness of feature vector on distinguishing benign lesions from 
malignant lesions, SVM, KNN, and ANN classifiers are uti-
lized. The performance of the applied classifiers is given in 
Table 4 for six different scenarios. The performance metrics 
used in the tables are accuracy, sensitivity, specificity, and 
positive predictive value.

Accuracy (ACC) is the ratio of the number of true 
predictions (TP + TN) to the number of all predictions 
(TP + TN + FP + FN). Sensitivity (SEN) can be defined as 
the proportion of correctly identified positive instances (TP\
TP + FN). If the sensitivity value is close to one, it means 
the number of FN predictions are close to zero. Specific-
ity (SPE) is the proportion of correctly identified negative 
instances (TN\TN + FP). When the value of FP is close to 
zero, the specificity of the classifier approaches to its best 
value 1. Finally, positive predictive value (PPV) is the ratio 

Fig. 8  The result of two-stage segmentation process: a an original breast MR image, b segmented image
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Fig. 9  Visualization of breast lesion detection output: a, c color overlays of a benign and a malignant lesion, respectively, b, d original MR 
images (lesions are indicated with arrows)

Fig. 10  Visualization of breast lesion detection output for a different case: a color overlay of a malignant lesion with increased breast skin thick-
ness, b original breast MR image (white and red arrows show malignant lesion and abnormal breast skin, respectively)
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of the number of TP to the sum of the number of TP and FP. 
It is a measure telling what the proportion of patients that 
are diagnosed as having a malignant lesion, actually had a 
malignant lesion. In the above discussions, TP, TN, FP, and 
FN are true positive, true negative, false positive, and false 
negative, respectively. Except for the first case, ACC, SEN, 
and PPV values given in Table 4 are calculated by averaging 
the testing results of each fold.

As can be seen from the table, SVM provides the highest 
ACC, SEN, and PPV values under cases 2 and 6. Among 
the classifiers, SVM performs the given task with the better 
ACC, SEN, and PPV values almost for all cases. According 
to the results, the proposed DSSBL system distinguishes the 
breast lesions with 85.89%, 100%, 66.67%, 85.00% accu-
racy, sensitivity, specificity and positive predictive values, 
respectively. These results ensure that the DSSBL system 
can be used to support the radiologists during the breast 
cancer diagnosis.

In the presented study the database includes 10 benign 
and 40 malignant histopathologically proven breast lesions 
analyzed from 49 patients. After the segmentation process 
39 features are extracted for each lesion. To overcome the 
overfitting problem, some precautions that are offered in the 
literature are taken. Cross-validation is a powerful preven-
tative measure against overfitting. So, at first, ten-fold and 
leave-one-out cross-validation techniques are applied. Then 
Fisher score based feature extraction step is used. Finally, 
accuracy percentages of the training and test dataset are con-
trolled to verify the overfitting problem has not occurred.

Finally, Table 5 compares the achievements of DSSBL 
with the existing studies. In the table, applied methods are 
also given. ACC and SEN values of the proposed system are 
the highest values among the studies given in Table 5. SPE 
value of the system is not the highest one but at an accept-
able level.

Discussion

In this section, the performance of the proposed DSSBL is 
discussed. The main contributions of the system are evalu-
ated in comparison with the published studies. The success 
of each block affects the performance of the other one. So, at 
first, the results of breast segmentation and lesion detection 
steps are considered. The target of these blocks is to deter-
mine the boundaries of breast lesions as correct as possible. 
To ensure whether this target is achieved or not, the original 
breast images are compared with the segmented images. The 
results of the performed breast region and breast lesion seg-
mentation processes are shown to an expert radiologist. The 
radiologist analyzes the determined regions by comparing 
manual segmentation results with automatic segmentation 
results whether to understand the lesion region is correctly 
detected or not. Thus, the success of the proposed two-stage 
segmentation process is verified. According to the compari-
son performed by the radiologist, breast segmentation and 
lesion detection blocks perform the given task successfully. 
In the figures, the regions having reddishness are more 

Table 4  The performance of the 
classifiers for different scenarios

The highest values that are achieved by the proposed system are shown in bold

Classifier Accuracy 
(ACC) (%)

Sensitivity 
(SEN) (%)

Positive predictive 
value (PPV) (%)

Description

SVM 80.00 100 80.06 Case 1:
No feature selection and no cross-validationk-NN 73.33 91.67 79.84

ANN 80.00 100 80.63
SVM 85.89 100 85.00 Case 2:

No feature selection and tenfold cross-validationk-NN 78.88 97.73 80.05
ANN 78.64 92.02 84.45
SVM 83.18 96.79 84.27 Case 3:

FS (mean) and tenfold cross-validationk-NN 80.72 100 81.68
ANN 80.13 96.37 83.71
SVM 83.35 100 82.12 Case 4:

FS (0,1) and tenfold cross-validationk-NN 80.05 99.16 80.46
ANN 79.98 93.57 84.21
SVM 83.20 98.79 83.14 Case 5:

FS (mean) and LOOk-NN 81.03 100 79.00
ANN 80.17 98.37 81.54
SVM 85.88 100 85.00 Case 6:

FS (0,1) and LOOk-NN 81.15 99.16 79.04
ANN 80.05 93.57 82.21
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suspicious about malignancy. So, breast segmentation and 
lesion detection provide some information about the malig-
nancy of the breast lesions. The color visualization of breast 
lesions can be very useful for MRI-guided biopsy. This pro-
cedure uses computer technology to guide a needle to an 
abnormality seen on MRI. A radiologist locates and identi-
fies the specific area of the breast tissue to be biopsied. So, 
color visualization will provide valuable information to the 
radiologist to identify the area on which biopsy is acquired. 
Besides, a different case in which the thickness of the breast 
skin increases because of breast mass lesion carcinoma is 
considered. As far as we know, this case is not investigated 
in earlier studies. In the color overlay of this breast, a red-
dish region on the breast skin is observed. This region is not 
inside the lesion region but must be considered in terms of 
interpreting lesion characterization. The proposed segmenta-
tion process has the ability to detect this case.

After determining the breast lesion area, feature extrac-
tion is applied for each breast lesion. In the presented study, 
histogram, GLCM, and NGTDM features of the lesions are 
calculated to construct the feature vector. Then, the feature 
selection step is carried out by the FS method. Finally, clas-
sification results are achieved for six different scenarios. 
Tenfold and LOO cross-validation scenarios, which are the 
common scenarios used for small databases, are utilized to 
see whether they provide a performance augmentation for 
classifiers or not. The proposed study provides an exhaustive 
breast lesion detection and classification system in which 
lesion segmentation, feature extraction, feature selection, 
cross-validation, and classification are investigated for DCE-
MRI examinations. In this study, the lesions are considered 
as benign or malignant. The subgroups given in Table 2 are 
not classified separately. So, there are two groups in the deci-
sion step. Group 1 consists of malignant lesions and Group 
2 includes benign lesions. The three most popular classifiers 
k-NN, SVM, and ANN are utilized to characterize the breast 
lesions as malignant or benign according to their inherent 
properties represented by the derived features. The achieved 
ACC, SEN, SPE, and PRE values show that the DSSBL suc-
cessfully performs the given task. This success has resulted 
from (i) determining the boundaries of the lesions accurately, 
(ii) representing the lesions by considering their histogram 

and favorable texture (GLCM and NGTDM) properties, (iii) 
eliminating the irrelevant features from the feature vector, 
and (iv) applying three different classifiers. The achieved 
ACC value shows that 86% of the breast lesions are correctly 
classified. The SEN value is 100% which means that the 
number of FN is zero. In other words, no malignant lesion is 
diagnosed as benign. This result is very important because if 
the system decides the type of lesion as benign the specialist 
can miss this patient. The SPE is defined as TN∕(TN + FP) . 
If this proportion approaches one, the number of lesions that 
are predicted as malignant but are actually benign goes to 
zero. The maximum SPE achieved in the proposed study is 
67.00%. The SPE value of the classifier is equal to that of 
the study given in reference [75] and higher than the per-
centage obtained in reference [32]. The FP (identifying a 
benign lesion as malignant) error is not extremely important 
in terms of health but sometimes cause despondency of the 
patient. In the presented study, feature extraction and classi-
fication are applied for the whole lesion region. This process 
decreases the computational complexity of the system. To 
increase the SPE, pixel-based feature extraction and classi-
fication approach can be performed. However, pixel-based 
approaches will increase the computational complexity of 
the system, as expected.

Background parenchymal enhancement (BPE), is the 
normal breast tissue enhancement that occurs after contrast 
agent uptake of breast tissues. In the proposed study, the 
degree of BPE is not considered. However, in reference [79], 
the goal is to develop a model that detects the lesions inde-
pendently from the presence of the BPE. According to the 
discussions given in [79], BPE represents breast activity and 
depends on several factors. So, the effect of BPE must be 
investigated in another study of the authors. Also, in [79], 
the gradient of the image and the entropy are calculated to 
extract useful information from the dynamic MRI acquisi-
tions. After a preprocessing step, the gradient is used to find 
directional change and the entropy measures the statistical 
randomness of the image. The authors perform temporal 
sequence selection and slice selection automatically. In the 
proposed study, the most proper slices that include useful 
information to reach the aim of the study are specified by 
an expert radiologist who is one of the authors of the paper

Table 5  The comparison table

Feature extraction method Classification method Accuracy 
(ACC) (%)

Sensitivity 
(SEN) (%)

Specificity 
(SPE) (%)

Positive predic-
tive value (PPV) 
(%)

The proposed method Histogram, GLCM, NGTDM SVM, k-NN, ANN 85.89 100 66.67 85.00
Piantadosi et al. [74] Local binary patterns three-

orthogonal plane
RF 83.33 95.14 66.67 –

Marrone et al. [77] Deep convolutional NN SVM 76.19 73.91 78.95 –
Glaßer et al. [32] Morphological, clinical DT 64.29 95.65 26.32 –
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In addition to investigating the BPE effect and perform-
ing the slice selection process automatically, in our future 
studies, we aim to consider the following aspects: (i) At 
first, the number of subjects should be increased by tak-
ing MR images from the available medical centers. An 
increased number of breast images makes the system more 
reliable and augments the performance of the system. (ii) 
In addition to the extracted features, new features such as 
geometrical features and transform domain features can 
be derived. (iii) Instead of the traditional techniques, deep 
learning techniques, which consist of successive layers per-
forming feature extraction and classification tasks, can be 
utilized to improve the performance of the system. Accord-
ing to the literature review, deep learning-based approaches 
are commonly used in brain DCE-MRI. So, adopting these 
techniques to the proposed DSSBL can be a new research 
target. iv. Finally, after classifying the lesions as benign and 
malignant, breast lesions can be divided into sub-categories 
as given in Table 2.

Conclusions

The goal of this study is to introduce a CAD system for 
breast DCE-MRI. In the proposed system segmentation 
task is performed in two stages. The first stage is named 
as breast segmentation in which adaptive noise filtering, 
Niblack’s formula-based local adaptive thresholding, con-
nected component analysis, integral of horizontal projection, 
and breast RIO detection algorithms are applied to the breast 
images, consecutively. The second stage of segmentation 
is breast lesion detection in which 32-class Otsu and MRF 
techniques are used for the pre-segmentation and post-seg-
mentation processes, respectively. In the segmentation step 
of the study, different cases are considered. In the first case, 
a breast MR image including both benign and malignant 
lesions is taken into account. It is shown that the designed 
segmentation process is able to determine the region of 
benign and malignant lesions even if they exist on the same 
breast. In another case, a malignant lesion with increased 
skin thickness is considered. The proposed segmentation 
methods could successfully detect breast lesions and affected 
breast skin.

After two-stage segmentation, histogram, GLCM, and 
NGTDM based feature extraction, FS based feature selec-
tion, and tenfold and LOO cross-validation steps are utilized 
to increase the reliability of the designed system. Finally, 
SVM, k-NN, and ANN methods are performed to classify 
the breast lesions as benign and malignant. The average 
accuracy, sensitivity, specificity, and positive prediction val-
ues of each classifier are calculated and the achieved the best 
result is compared with the existing similar studies. Accord-
ing to the results, the proposed DSSBL distinguishes the 

breast lesions with 86%, 100%, 67%, 85% accuracy, sensitiv-
ity, specificity and positive prediction values, respectively. 
These results ensure that the DSSBL can be used to support 
the radiologists during the breast cancer diagnosis.
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