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Abstract
There is an increasing demand for reliable motor imagery (MI) classification algorithms for applications in consumer level 
brain-computer interfacing (BCI). For the practical use, such algorithms must be robust to both device limitations and subject 
variability, which make MI classification a challenging task. This study proposes methods to study the effect of limitations 
including a limited number of electrodes, limited spatial distribution of electrodes, lower signal quality, subject variabilities 
and BCI literacy, on the performance of MI classification. To mitigate these limitations, we propose a machine learning 
approach, WaveCSP that uses 24 features extracted from EEG signals using wavelet transform and common spatial pattern 
(CSP) filtering techniques. The algorithm shows better performance in terms of subject variability compared to existing 
work. The application of WaveCSP to Physionet MI database shows more than 50% of the 109 subjects achieving accuracy 
higher than 64%. The data obtained from a commercial EEG headset using the same experimental protocol result in up to four 
out of five subjects who had prior BCI experience (out of a total of 25 subjects) performing with accuracy higher than 64%.

Keywords Brain Computer Interfacing · Electroencephalogram · Motor imagery classification · Wavelet decomposition · 
Common spatial patterns · Machine learning

Introduction

Brain-computer interfacing (BCI) technology is becoming 
increasingly popular with the availability of commercial 
electroencephalogram (EEG) acquiring devices. Compared 
to medical grade EEG devices, commercial devices are low 
cost and more portable. They do not require special expertise 
to use and are more comfortable to wear. Therefore, BCI 
systems implemented using these devices have a potential 
use in a variety of entertainment [1–3], aesthetic [4], reha-
bilitative [5, 6], therapeutic [7], prosthetic [8] and personal 
health monitoring [9] applications in addition to conven-
tional applications in clinical healthcare and research.

Generally, a BCI system works by extracting informa-
tion about a user’s intention from his or her EEG activity 

and translating it into a control signal. Motor imagery (MI) 
is one of the popular paradigms of extracting information 
from EEG. Here, imagined or planned movements of one’s 
body parts can be identified using the information extracted 
from EEG. Classifying different MI is, therefore, a crucial 
component of such a BCI.

Compared to other EEG paradigms such as steady state 
visually evoked potentials (SSVEP), MI is less strenuous 
for the user. Popular alternatives such as SSVEP or oddball 
paradigms using P300 potential require the user to be atten-
tive throughout complicated and extensive series of external 
visual or auditory stimuli. Many studies have reported this to 
cause discomfort to users when used for prolonged periods 
[10, 11]. However, MI does not depend on visual stimula-
tions to elicit EEG potentials. It may require the subject to 
respond to cues only during the training phase. In practi-
cal BCI applications such as prosthetics, rehabilitation, and 
gaming, MI is more intuitive and natural as control signals 
compared to other paradigms.

However, the identification and classification of MI 
are more challenging compared to SSVEP or P300 [12]. 
Because of this, even if MI is an ideal paradigm in the 
user’s end, practical application of MI as a BCI paradigm 
is limited [13]. In addition to this, the lower signal quality 
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and limited distribution density of electrodes in commer-
cial EEG devices, in general, make MI detection more 
difficult when such devices are used. It is also important 
for MI classification algorithms to be robust and accu-
rate for a wide range of subjects with varying degrees of 
BCI literacy [8]. Therefore, it is required to improve the 
performance of MI identification and classification if this 
user-friendly paradigm is to be successfully implemented 
in practically used consumer-level BCI.

Many recent studies have been undertaken in the field of 
MI classification. Several feature extraction methods have 
been used including common spatial patterns (CSP) [14], 
cross-correlation [15] and wavelet decomposition [16]. 
Proposed MI classification algorithms include machine 
learning algorithms such as naive Bayes classifiers [14], K 
nearest neighbors (KNN), support vector machines (SVM), 
linear discriminant analysis (LDA), decision trees [15, 16], 
ensemble classifiers [16], voting methods [15], neural net-
works [17] and convolutional neural networks [18, 19].

Despite the abundance of work related to general MI clas-
sification, there are only a few studies that focus specifically 
on MI classification with commercial EEG devices. Vamvak-
ousis and Ramirez [20] have studied whether the EPOC head-
set is suitable to detect the presence or absence of imaginary 
and actual toe movement, however, the ability to differentiate 
between two imaginary movements have not been studied 
here. Fakhruzzaman et al. [21] have also studied the suitabil-
ity of the commercial headset to identify MI from the lack of 
it. Their analysis using CSP algorithm available through the 
OpenViBE software [22] concludes that the low-cost device 
is not recommendable for BCI applications. The algorithmic 
component of these work is similar to those used with clini-
cal grade EEG devices and therefore lack robustness required 
in an application with commercial BCI. Takehara et al. [23] 
have compared the headset and a medical grade device for the 
effectiveness of using signal power as a discriminant feature 
to classify MI and found the low-cost device to be satisfac-
tory for BCI applications. Martinez-Leon et al. [24] has com-
pared the performance of a MI classification based on dFasArt 
models proposed by Cano-Izquierdo et al. [25] on EEG data 
acquired from the headset against BCI competition IV dataset 
and arrived at similar conclusions. A few studies have focused 
on optimizing MI classification algorithms to suit BCI imple-
mented with commercial EEG devices. Hurtado-Rincon et al. 
[26] have obtained a set of features used in MI classification 
from EEG recorded using the same device and have proposed 
a feature relevance study to select the best discriminating 
features. Yang et al. [27] proposed a novel subject-specific 
channel selection method based on a criterion derived from 
Fisher’s discriminant analysis that can be applied with a small 
number of electrodes typically available with a commercial 
EEG device. Schiatti et al. [28] have used a feature optimiza-
tion algorithm to select band power features to classify MI.

The primary objective of this study is twofold. Firstly, 
we focused on developing a robust classification algorithm 
WaveCSP that can be used to differentiate MI using EEG 
acquired by low-cost commercial devices. WaveCSP incor-
porates wavelet transform and CSP algorithms to extract 
features from the mu-beta rhythm of EEG. The objective 
was to increase the number of features to capture intra-
band time and frequency domain discrimination between 
the classes. We evaluated the performance of left hand vs 
right hand clenching MI classification using the proposed 
algorithm for EEG acquired using an EPOC EEG headset 
[29]. Secondly, we focused on the specific challenges associ-
ated with MI classification using EEG from a commercial 
device including a limited number of electrodes, limited 
spatial distribution of electrodes, lower signal quality and 
subject variabilities. To independently evaluate the effect 
of these limitations in isolation, we evaluated the algorithm 
with a publicly available MI database of EEG acquired using 
a medical grade device from 109 subjects.

Methods

Dataset

EEG data from Physionet

The publicly available EEG data were sourced from the Phy-
sionet MI dataset [30]. We used the left-hand versus right-
hand MI paradigm where the subject imagines clenching 
his right or left fist according to a cue displayed on a screen. 
When the cue appears directing towards either the left or 
the right side of the screen, the subject imagines opening 
and closing the corresponding fist until the cue disappears. 
Then the subject relaxes a random time of  TR (< 2 s) until 
another cue is displayed. Figure 1—Top shows the timeline 
of a single trial of the experiment. The EEG recorded simul-
taneously consists of signals from 64 EEG channels, each 
sampled at 160 Hz and saved along with annotation markers 
for the display of right and left cues. Data were available for 
109 volunteering subjects who performed a total of 45 left 
and right MI tasks in three experiments that took 2 min each.

Data from the commercial EEG headset

The EEG data were collected using the aforementioned 
EEG headset. We adopted the same experimental protocols 
reported under which the publicly available data were col-
lected. We used the OpenViBE EEG platform for acquir-
ing EEG, generating stimulations for cues, displaying cues 
and for recording signals and annotation markers as GDF 
files. The target cue for left and right MI were chosen to 
be arrows pointing to the corresponding direction (Fig. 1 
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-Bottom). The EEG signals consisted of 14 EEG chan-
nels, each sampled at 128 Hz. Each of the 25 volunteering 
subjects performed a total of 46 left and right MI tasks. 
Five out of the 25 subjects had previously participated 
in at least one BCI experiment. The rest had no previous 
experience with any type of BCI.

Analysis

The data collected from the two sources were used for five 
studies as described in Table 1. The experimental proce-
dure and the parameters used for training and testing the 
classifiers were kept constant across all the studies. Based 
on these studies, five different analyses were undertaken 
to comparatively evaluate the performance of the proposed 
algorithm on a medical grade and consumer grade EEG 
with inherent limitations as shown in Table 2. Stages of 
the WaveCSP algorithm are shown in Fig. 2.

Algorithm

Pre‑processing

The EEG acquired from the Physionet database [31] were 
clean and noise-free due to the superior quality of the acqui-
sition system. Therefore, no filtering was applied to these 
signals. However, the signals recorded using the headset 
were noisy and therefore a filter was used to smoothen the 
signal as shown in Eq. 1. A moving average filter of width 
w = 10 was used to optimize classification accuracy.

The signals from both the data sets were epoched into 
blocks of time series signals using the event markers for 
each left-hand and right-hand MI trials using the EEGLAB 
toolbox [32] available in MATLAB.

(1)y[n] =
1

w

w−1
∑

i=0

x[n − i]

Fig. 1  Top-The timeline of a 
single trial of MI experiment. 
Bottom-The cue displayed to 
instruct the subject to imagine 
right-hand clenching MI

Table 1  Description of the 
studies performed

Study Description

1 Physionet data with all 64 electrodes
2 Physionet data with only the 14 electrodes available in the commercial EEG headset
3a Headset data with all 14 electrodes in the regular position (all 25 subjects)
3b Headset data with all 14 electrodes in the regular position (only the five subjects 

with prior BCI experience)
4 Headset data with all 14 electrodes and headset pulled backwards (only the five 

subjects with prior BCI experience)
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Frequency filter

Mu and beta rhythms, defined to be the EEG signal band-
width confined in the ranges of 7.5–12.5 Hz and 16–31 Hz 
respectively have been well documented as corresponding 
to the motor activity of the brain. Therefore, we extracted 
the signal components y[n] belonging to the frequency range 
7.5–31 Hz from the raw EEG signals x[n] using a Ham-
ming windowed sinc filter f [n] as shown in Eq. (2) where 
the ∗ indicates convolution operation. The filter order was 
optimally chosen by EEGLAB implementation of the filter.

Wavelet decomposition

The combined mu-beta component of each signal was 
decomposed into three wavelet components using discrete 
wavelet transform (DWT) using Harr mother wavelet. The 
objective of applying wavelet transform was to capture the 
intra-band discriminators for the two classes that span both 
in time and frequency domains. Each of the 64 (or 14) chan-
nels were decomposed into three components such that there 
were 192 (or 42) signals available for the next stage.

CSP filter training

Each of the three sets of components (with 64 or 14 chan-
nels each) resulting from wavelet decomposition were used 

(2)y[n] = f [n] ∗ x[n]

to train a CSP filter. CSP is a spatial filtering technique that 
maximizes the ratio of variance between two sets of time 
series signals.

Consider XL and XR as the two sets of signals belonging 
to the two classes (left hand vs right hand) of MI. Each of 
XL and XR consist of n = 64 or 14 signals of length T samples 
each in the form of a matrix of dimension n × T. Here T was 
determined by the sampling rate of the recorded EEG and 
the time interval for which the cue arrow was displayed. The 
goal of CSP filter training is to obtain a spatial filter W such 
that the ratio of variance between the resulting signals after 
multiplying the original signal with the filter is maximized.

The solution for this optimization problem can be 
obtained by simultaneous diagonalization of the averaged 
normalized spatial covariance of the two matrices XL andXR . 
The normalized spatial covariance of the two sets of signals 
RL and RR can be calculated as follows:

Average of RL and RR is computed over the 23 (or 22) trials 
of left and right imagery for each subject to produce the 

(3)W = arg max
W

∥ WXL∥
2

∥ WXR∥
2

(4)

RL =
XLX

T
L

trace(XLX
T
L
)

RR =
XRX

T
R

trace(XRX
T
R
)

Table 2  Description of the analysis of the studies performed

Analysis Studies analyzed Purpose

1 Study 3a, study 3b Studying the effect of BCI literacy on the performance of the algorithm
2 Study 1, study 2 Studying the effect of the limited number of electrodes independent of other factors
3 Study 3b, study 4 Studying the effect of the spatial arrangement of electrodes over the scalp
4 Study 2, study 3a Studying the effect of signal quality independent of other factors
5 Study 1, study 3a Studying the overall performance difference between a commercial EEG device 

and a professional EEG device

Fig. 2  The schematic represen-
tation of the algorithm EEG 
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average normalized spatial covariance matrices RL and RR . 
Simultaneous diagonalization of RL and RR is equivalent to 
Eigen decomposition of RL

−1
RR:

Here D is the diagonal matrix of eigenvalues and columns 
of P represent the corresponding eigenvector. When the col-
umns of P are sorted in descending order of the corresponding 
eigenvalue and transposed we obtain n spatial filters in the n 
rows of the resulting matrix V:

We define W  of dimension 2m × n as the spatial filter 
matrix by selecting the firstmand last m (< n) rows of V  . 
Using W  we obtain 2m spatially filtered signals that maxi-
mize the variance between the two classes represented by 
each row of FL and FR where:

Feature extraction

Three spatial filters W1, W2, and W3 were obtained for each of 
the three wavelet decomposition components from the previ-
ous step. We selected m = 2 after evaluating the performance 
of the algorithm for m = 1, 2 and 3 . The resulting filtered 
signals F1, F2, and F3 contained four filtered signals each. 
Two sets of features fA and fB were extracted from each of the 
signals to produce a total of 24 features for each EEG epoch 
(Table 3). Here Fi,j denotes the jth row of Fi:

(5)RL

−1
RR = PDP−1

(6)V = sort(P)T

(7)
FL = WXL

FR = WXR

(8)

fA(i, j) = log

�

var
�

Fi,j

�

∑4

j=1
var

�

Fi,j

�

�

fB(i, j) =

l
�

k=1

Fi,j[k] where l = length of Fi,j

for i = 1, 2, 3 and j = 1, 2, 3, 4

Classifier

Three commonly used machine learning algorithms, a linear 
SVM classifier, an LDA classifier and a KNN classifier were 
tested as the machine learning framework. The three algo-
rithms have been widely used in the binary classification of 
MI. A linear SVM classifier separates two classes of train-
ing data points by maximizing the gap between the decision 
boundaries. New predictions are then made by assigning a 
test data point to a category based on side of the boundary 
that it belongs. LDA assigns a class to a test data point based 
on whether it satisfies a criterion derived as a function of a 
linear combination of the training data points. In KNN a test 
data point is assigned to the class most common among its 
K nearest neighbors where Euclidean distance is considered 
in the multidimensional feature space.

The model parameters for the classifiers were heuristically 
chosen to optimize the performance using preliminary experi-
ments. Based on the results of the preliminary experiments, 
we selected a Matlab implementation of linear SVM which 
automatically selects a suitable scale factor by subsampling the 
input data. The soft margin parameter was set to 1. LDA was 
implemented in Matlab using uniform prior probabilities and 
same diagonal covariance matrix for both the classes. KNN 
was implemented with K = 1 neighbors and uniformly weighted 
Euclidean distance. All three algorithms standardize the predic-
tor variables by the corresponding mean and standard deviation.

Performance evaluation

For each of the subjects, 45 trials of either left or right MI 
were available. Fivefold cross-validation was performed by 
dividing the 45 trials into five groups of 9 trials each and 
using a combination of four of them as the training set and 
the remaining set of records as the testing set in each of the 
fivefolds of validation. The classifiers were trained using the 
feature vector of 24 features obtained from each trial.

The classifier outputs were compared with the class labels 
of the testing trials and accuracy of prediction was evalu-
ated as the percentage of correctly classified trials out of the 
total number of trials conducted for the subject. In contrast to 
other physiological signals such as ECG, EEG signals depend 
on the subject’s thought process. Termed BCI literacy, the 
degree to which one can successfully communicate through 
BCI differs from person to person [33]. Particularly, BCI 
illiteracy in MI tasks is known as “Motor Imagery Inability” 
that signifies the inability of some people to elicit imagi-
nary movements [34]. These subjects are unable to perform 
imaginary motor activity even if they perfectly understood 
the instructions and fully intend to engage in the experiment. 
Therefore, the mean accuracy of all the subjects may not 
accurately describe the true performance of the classifica-
tion algorithm. To address this issue, we adopted a measure 

Table 3  Feature vector used for machine learning

Wavelet component (i)

1 2 3

CSP Filter (j) 1 fA (1, 1) fA (2, 1) fA (3, 1) Variance feature ( A)
2 fA (1, 2) fA (2, 2) fA (3, 2)

3 fA (1, 3) fA (2, 3) fA (3, 3)

4 fA (1, 4) fA (2, 4) fA (3, 4)

1 fB (1, 1) fB (2, 1) fB (3, 1) Power feature (B)
2 fB (1, 2) fB (2, 2) fB (3, 2)

3 fB (1, 3) fB (2, 3) fB (3, 3)

4 fB (1, 4) fB (2, 4) fB (3, 4)
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proposed by Muller-Putz et al. [35] to identify subjects for 
whom the algorithm performed significantly well as opposed 
to “random guessing”. The random process of classifying a 
signal into either left or right MI can be modeled as a bino-
mial process with expected value 50%. The upper bound of 
the 95% confidence interval of this expected value indicates 
a percentage above which a classifier can be considered to 
have performed significantly better than randomly guessing. 
According to the method proposed by Muller-Putz et al. [35], 
for 45 trials the upper bound of the confidence interval is 
64%. We developed the metrics described in Table 4 to evalu-
ate the performance of the algorithm.

We compared the performance of the proposed algorithm 
against previously reported algorithms for data obtained 
using a medical grade EEG device (in study 1) and for data 
obtained using a commercial EEG device (in study 3). In 
study 1, we compared the performance of the proposed 
algorithm against two recent works based on SUTCCSP 
algorithm [36, 37] that are evaluated on the Physionet MI 
dataset which is acquired using a medical grade EEG device. 
In study 3a, we compared the performance of the proposed 
algorithm against two previously reported works where the 
same commercial headset was used to classify left vs right 
MI using CSP features [21] and band power features [28] 
respectively. We limited the comparison for only the studies 
that used the same device (commercial or medical grade) and 
the same MI classification (left vs. right hand) because of the 
performance variability across devices and EEG paradigms.

Results

The study 1 for the three classifiers was done using data 
from all the 109 subjects of the Physionet dataset. All three 
classifiers performed nearly equal, with KNN slightly lead-
ing the others in terms of SPP (Table 5). To evaluate the 
performance of the algorithm independent of the limita-
tions imposed by the headset, we compared the results of 
our algorithm with two recently published work that used the 
same medical grade EEG dataset. Both the algorithms use 
EEG features extracted with strong-uncorrelating Transform 
Complex CSP (SUTCCSP) which is an extension of CSP 

method for the analysis of pair-wise MI data. Kim et al. [37] 
show a superior SA but a low SPP resulting in an overall 
loss in mean accuracy. Park et al. [36] have reported slightly 
lower SA and slightly higher SPP than the proposed method. 
However, they have not included data from four subjects cit-
ing poor signal quality. Moreover, they have neither reported 
the overall mean accuracy or the mean accuracy of subjects 
who performed below the significant accuracy.

In study 2, when only the 14 channels of EEG signals 
acquired from the medical grade data using electrodes avail-
able in the commercial headset were used, a clear reduction 
of performance was observed. Interestingly, unlike in study 
1, SVM outperformed the other two algorithms.

In study 3a, data collected from 25 subjects using the 
headset was used to evaluate the performance of the algo-
rithm, all three classifiers performed poorly. SVM showed 
the best SA with significant accuracy level for 4 subjects out 
of 25. In comparison, Fakhruzzaman et al. [21] used online 
processing with an OpenViBE implementation of CSP algo-
rithm. Following CSP filtering, the signal is filtered in the 
alpha/beta [8 30] Hz range, split into blocks of 1 s every 
16th second and the logarithmic band power is computed as 
features for an LDA classifier. The performance was evalu-
ated on a single subject. Schiatti et al. [28] used band power 
features extracted from all 14 electrodes available in the 
commercial headset. These features included five frequency 
bands [Mu = (8–13) Hz, B1 = (13–18) Hz, B2 = (18–23) Hz, 
B3 = (23–28)  Hz, and B = (13–30)  Hz] extracted from 
three time windows [TW1 = (0–2) s, TW2 = (1–3) s, and 
TW3 = (2–4) s] after the stimulus presentation. Mutual infor-
mation-based feature selection was used to select optimal 
features and subsequently, an SVM classifier was trained. 
While their results are slightly better than the proposed algo-
rithm, they evaluated the performance only on three subjects.

In study 3b, headset data with all 14 electrodes in regular 
position from only the five subjects with prior BCI experi-
ence were used. A significant improvement in all three per-
formance metrics was observed. The SVM classifier showed 
significant performance for four out of the five subjects who 
had prior BCI experience while LDA and KNN both showed 
significant performance for three out of the five subjects.

Study 4 was performed to investigate the effect of elec-
trode distribution of the commercial headset. As shown in 
Fig. 3, the device does not have electrodes over the motor 
cortex in its usual position. Therefore, this study was per-
formed with the headset positioned backwards from its usual 
position such that the frontal sensors align with the motor and 
premotor cortices. We used the data from the subject who had 
prior BCI experience in this study because of the very poor 
performance of the other subjects. Better signal acquisition 
from the motor cortex was expected and hence better perfor-
mance. However, the mean accuracy and SPP have reduced 
considerably while SA has considerably increased.

Table 4  Definition of performance metrics

Metric Definition

Mean accuracy (MA) MA of all the subjects evaluated
Significant performance 

percentage (SPP)
Percentage of subjects for whom the 

algorithm performed with accuracy 
higher than 64%

Significant accuracy (SA) MA for the subjects for whom the algo-
rithm performed with accuracy higher 
than 64%



165Australasian Physical & Engineering Sciences in Medicine (2019) 42:159–168 

1 3

Discussion

The performance of an EEG classifier heavily depends on 
the degree to which the subject was able to accurately per-
form the mental activity studied, in addition to the inherent 

differences between subjects in the electrical activity of the 
brain. Therefore, having a high SPP is important for a clas-
sifier to be implemented in consumer level BCI. It has been 
widely accepted that MI BCI paradigm requires more train-
ing for successful use. Through analysis 1, the results from 

Table 5  Performance evaluation 
in the studies conducted

a Calculated using reported values
b Four subjects were not evaluated citing poor signal quality
c Calculated from the accuracy reported for three subjects
d Significant accuracy margin of 57% is used as 200 trials were used

Study Classifier MA (%) SA (%) SPP (%)

1 WaveCSP–LDA 63.4 74.0 46.8
WaveCSP–SVM 63.4 74.8 46.8
WaveCSP–KNN 63.5 74.0 50.5
SUTCCSP with random forest [37] 57.9a 80.1 22.9a

SUTCCSP with SVM Gaussian Kernel [36] NA 72.4b 51.4b

2 WaveCSP–LDA 60.3 72.9 35.8
WaveCSP–SVM 61.3 72.6 43.1
WaveCSP–KNN 59.2 53.9 30.3

3a WaveCSP–LDA 55.0 68.1 16
WaveCSP–SVM 54.1 68.6 16
WaveCSP–KNN 52.8 67.8 16
Fakhruzzaman et al. [21] 28.3 NA NA
Schiatti et al. [28] 62.0c 62.0c,d 100.0c,d

3b WaveCSP–LDA 64.1 68.7 60
WaveCSP–SVM 67.0 68.6 80
WaveCSP–KNN 61.2 68.8 60
WaveCSP–LDA 61.1 78.8 40

4 WaveCSP–SVM 61.6 89.0 20
WaveCSP–KNN 61.8 72.8 40

Fig. 3  The recommended 
positioning of electrodes in the 
EPOC headset and the region 
of motor cortex mapped over 
the scalp
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studies 3a and 3b clearly show that subjects who had prior 
experience with BCI (four had performed similar MI experi-
ments, one had experienced an SSVEP experiment) show 
better performance. With four out of five subjects having 
significant performance, WaveCSP-SVM shows the best per-
formance for subjects who have some prior BCI experience.

We performed analysis 2 by comparing the results of 
study 1 and study 2. A clear reduction in performance has 
been observed in all the performance metrics. Therefore, it 
can be concluded that independent of the signal quality, the 
limited number of electrodes available in the headset reduces 
the performance of MI classification. Since increasing the 
number of electrodes is not a feasible option for an easy-to-
wear headset, increasing the number of classifier features in 
a non-redundant fashion is demonstrated in our study.

When the EEG headset is positioned such that the fron-
tal sensors align with the mid-region of the scalp, motor 
cortex activity should be more pronounced in the recorded 
EEG resulting in better classification accuracy. In analysis 
3 we compared the performance of the classifier with data 
obtained with the headset in the usual position vs the modi-
fied position. However, due to the physical design of the 
headset, the reference electrodes lose contact from the scalp 
when altered from the ordinary position. This effect varies 
according to the shape and size of the subject’s head as the 
device has been designed as a one-size-fits-all headset. In 
study 4, WaveCSP-SVM performance with 89% SA and 20% 
SPP implies that there was one subject out of the five for 
whom the classifier worked with very high accuracy. This 
may be a result of the fact that the modified position of the 
headset fits well on the subject’s scalp.

EEG acquired from the commercial headset is more sus-
ceptible to noise and artifacts since the device is typically 
worn over hair and is not tightly fixed. In analysis 4, com-
paring study 2 and study 3a, we see a general decrease in 
all performance metrics when the commercial EEG headset 
is used instead of the medical grade EEG device. There is 
a significant drop in SPP when the commercial headset is 
used, which may be attributed to its lower signal quality. 
This provides evidence that signal quality of the commer-
cial device has an effect on classification accuracy. It can be 
observed that, when the medical grade device with better 
signal quality is used, subjects for whom performance is 
higher than 64% the classification accuracy is considerably 
high and for those lower than 64%, performance is consider-
ably low.

An overall drop in performance is observed when the 
commercial headset is compared with the medical grade 
device in analysis 5. In comparison with previous work on 
the commercial device, WaveCSP-SVM has better perfor-
mance with respect to mean accuracy and significant accu-
racy. Meaningful interpretation of SA and SPP requires a 
large set of test subjects.

MI classification problem is solved in the twofold process 
of feature extraction and classification. There are many clas-
sification algorithms that have been shown to work well with 
EEG signals. However, the major bottleneck is in feature 
extraction methods. While the use of deep learning instead 
of handcrafted features could be a solution to this problem, 
its suitability MI classification should be further investi-
gated. Existing work using neural networks and convolu-
tional neural networks do not produce significantly better 
results than the classical methods. Sparse nature of MI data 
could be a reason for this observation.

Conclusion

This study proposes a robust MI classifier that attempts to 
address the limitations posed by a commercial EEG acqui-
sition device. Comparative analysis of the performance of 
the proposed algorithm for different configurations of data 
acquired from a commercial device and data acquired from a 
medical grade device is undertaken. Subjects who had prior 
experience in BCI performed significantly better compared 
to those who did not have any BCI experience. The use of a 
smaller number of electrodes has reduced the performance 
irrespective of the signal quality and other factors. Conclu-
sive evidence was not found for the hypothesis that position-
ing the EEG electrodes closer to the motor cortex results 
in better classification performance. Practical limitations 
for such modified electrode placement were identified. The 
quality of the acquired EEG signal was found to affect the 
performance of MI classification. Further, EEG from medi-
cal grade device better discriminates between subjects with 
significant and poor performance. Variability of subjects 
and their prior experience and training in using BCI was 
identified as a significant aspect of MI classification in this 
work. We collected data from 25 subjects for this study due 
to the lack of a large EEG dataset acquired with the headset. 
Future work should focus on collecting a data set with more 
subjects using a commercial EEG device. The relationship 
between the levels of training and experience in BCI and MI 
performance could be explored in detail.
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