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Abstract
The purpose of this study is to develop a novel breast abnormality detection system by utilizing the potential of infrared breast 
thermography (IBT) in early breast abnormality detection. Since the temperature distributions are different in normal and 
abnormal thermograms and hot thermal patches are visible in abnormal thermograms, the abnormal thermograms possess 
more complex information than the normal thermograms. Here, the proposed method exploits the presence of hot thermal 
patches and vascular changes by using the power law transformation for pre-processing and singular value decomposition to 
characterize the thermal patches. The extracted singular values are found to be statistically significant (p < 0.001) in breast 
abnormality detection. The discriminability of the singular values is evaluated by using seven different classifiers incorpo-
rating tenfold cross-validations, where the thermograms of the Department of Biotechnology-Tripura University-Jadavpur 
University (DBT-TU-JU) and Database of Mastology Research (DMR) databases are used. In DMR database, the highest 
classification accuracy of 98.00% with the area under the ROC curve (AUC) of 0.9862 is achieved with the support vector 
machine using polynomial kernel. The same for the DBT-TU-JU database is 92.50% with AUC of 0.9680 using the same 
classifier. The comparison of the proposed method with the other reported methods concludes that the proposed method out-
performs the other existing methods as well as other traditional feature sets used in IBT based breast abnormality detection. 
Moreover, by using Rank1 and Rank2 singular values, a breast abnormality grading (BAG) index has also been developed 
for grading the thermograms based on their degree of abnormality.

Keywords Breast cancer · Infrared breast thermography · Thermal patches · Singular value decomposition · Breast 
abnormality detection · Breast abnormality grading

Introduction

Early detection and diagnosis of breast diseases are cru-
cial to reduce the incidence and mortality rate of breast 
cancer by improving the survival benefits. In India, the 
incidence rate of breast cancer increases in young age 
group and the cancer growth is very aggressive in women 
of younger age group [1]. Moreover, the vulnerability of 
young women towards the radiation risk and high false 
negative rate of the traditional gold standard method X-ray 

mammography necessitates exploring the efficiency of 
non-invasive and non-radiating infrared breast thermog-
raphy (IBT) in early breast abnormality detection. Since 
breast cancer is asymptomatic until late in the disease 
process, regular breast health examination is necessary to 
identify any change in breast health. With the sensitivity 
of 90% [2], IBT can be used for routine examination of the 
breast health in asymptomatic patients for detecting the 
cases that require urgent medical attention. In literature 
[3, 4], it is reported that the thermograms which possess 
asymmetric temperature distributions signify the physi-
ological dysfunction in patients’ breasts most of the time 
[5]. Compared to these thermograms, the thermograms 
having increased nipple temperature, hot patches, and vas-
cular changes may be more suspicious and indicate more 
severe breast problems [6, 7]. The appearance of these 
hot patches and vascular changes are due to the heat pro-
duced by the high metabolic activities of the blood vessels, 
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changes in blood perfusion, etc. in the suspicious regions 
[7, 8]. However, the intensity of heat radiation emitted by 
a breast mass may vary with its location within the breast 
[9], due to which a malignant tumor present deeper inside 
the breast may radiate poor radiation than a benign tumor 
present near the skin surface. Besides, the subtle tem-
perature difference in breast thermograms may lead to an 
incorrect analysis of thermograms. So in order to identify 
the presence of breast abnormality in early stages, design-
ing of an efficient computer-aided detection (CAD) system 
to analyze the thermal patterns may play a significant role.

As reported in the literature, the most common breast 
abnormality detection method is the bilateral asymmetry 
analysis of breast thermograms, which is based on the prem-
ise that the thermal patterns of the two breasts of an abnor-
mal thermogram are noticeably asymmetric [10]. Although 
many contributions to the breast abnormality detection from 
infrared thermograms have been found in the literature [3, 
11, 12], differentiating the abnormal thermograms from the 
normal one is still very challenging because of the subtle 
nature of temperature patterns in breast thermograms. The 
early and accurate detection of breast abnormality is impor-
tant not only to provide a second opinion to the physicians 
in decision making but also for treatment planning.

In this study, we propose an automatic breast abnormality 
detection system to support the radiologists in decision mak-
ing. Figure 1 depicts the flow of the proposed breast abnor-
mality detection system. The proposed method is motivated 
by the fact that the abnormal thermograms have more high 
temperature regions or thermal patches in either breast than 
the normal thermograms, for which the abnormal thermo-
grams have more spatial information than the normal ther-
mograms. To prove this fact, “Association of singular val-
ues with image complexity of breast thermograms” section 
performs the complexity analysis of the processed breast 
thermograms which concludes that the abnormal thermo-
grams possess more complex information than the normal 
thermograms. The proposed system aims at discriminating 
the abnormal thermograms with suspected abnormality and 
also to predict the degree of abnormality in these thermo-
grams. Such an automatic system can help to reduce the radi-
ologists’ burden and examination time with the additional 
advantages of objectivity and diagnosis quality. Moreover, 
it can help to rapidly identify the cases that require urgent 

medical attention and further evaluation. The key contribu-
tions of this paper are summarized as follows.

1. We propose a simple yet effective breast abnormality 
detection method. Unlike the conventional method of 
using texture feature based bilateral asymmetry analysis, 
the proposed method makes use of the candidate ther-
mal patches to signify the breast abnormality. A set of 
singular values (SVs) has been extracted from the pre-
processed images to quantify the abnormality present in 
each thermogram.

2. The classification performance of the proposed breast 
abnormality detection system has been evaluated with 
both in-house and public breast thermogram databases 
namely Department of Biotechnology-Tripura Univer-
sity-Jadavpur University (DBT-TU-JU) [13] and Data-
base of Mastology Research (DMR) [14] by using a 
series of seven state-of-the-art classification systems.

3. The potential of the SVs in breast abnormality detection 
is compared with some other feature sets and the evalua-
tion results reflect that the proposed method outperforms 
the existing methods.

4. A breast abnormality grading (BAG) index has been 
designed by using 1st and 2nd rank SVs to grade the 
abnormal thermograms into mild abnormal and severely 
abnormal based on the degree of abnormality present in 
it.

The rest of the paper is organized as follows. A related 
work on IBT based breast abnormality detection is given in 
“Related work” section. The detail description of the pro-
posed breast abnormality detection method is provided in 
“Proposed method” section. “Experimental results” section 
provides the details of the experimental databases and the 
experimental results. The comparative studies are presented 
in “Discussion” section. Finally, “Conclusion” section con-
cludes the paper.

Related work

IBT with the characteristics of showing the abnormal 
thermal patterns or hot thermal patches as the suspicious 
breast regions draw the attention of the researchers to 

Fig. 1  The overview of the proposed breast abnormality detection system
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use it in breast abnormality detection. Bilateral asymme-
try analysis is the most widely investigated and classical 
method of breast abnormality detection from thermo-
grams. In literature [3, 11], there are several prior inves-
tigations in asymmetry analysis based breast abnormality 
detection from thermograms. A summary of the existing 
works on asymmetry analysis based breast abnormality 
detection has been illustrated in Table 1. Table 1 summa-
rizes the system protocol like the feature sets, the size of 

the experimental dataset, the classifier algorithm and the 
performance scores of the existing methods [5, 15–27].

Even though a lot of work had been done in bilateral 
asymmetry based breast abnormality detection, this conven-
tional method of bilateral asymmetry analysis cannot detect 
the presence of breast abnormalities in breast thermograms 
where both breasts are suffering from abnormalities. It is 
because, in thermograms where both breasts are suffering 
from breast abnormalities, the features that measure the 
bilateral asymmetry possess a very minute difference, which 

Table 1  Summary of existing bilateral asymmetry analysis based breast abnormality detection methods from thermograms

Acc. accuracy, Sens. sensitivity, Spec. specificity, N normal, B benign, C cancer, M malignant, Cy cyst, L left, R right, Ab abnormal, DWT dis-
crete wavelet transform, RBFN radial basis function network, DT decision tree, FS fuzzy Sugeno, FNN feed forward network

Authors Method used Dataset Classifier used Performance measures

Acc. Sens. Spec.

Schaefer et al. [5] Statistical and texture 
features

146 (29M 117B) Hybrid Fuzzy rule 
based classifier

80.00% – –

Ng et al. [15] Temperature data and 
patient’s clinical 
biodata

82 (30N, 48B, 4C) RBFN 80.95% 81.20% 88.20%

Mookiah et al. [16] Texture features and 
DWT

50 (25N, 25M) DT, FS 93.30%
93.30%

86.70%
86.70%

100%
100%

Acharya et al. [17] Texture features 50 (25N, 25C) SVM 88.10% 85.71% 90.48%
Francis et al. [18] Texture features 27 (9N, 18C) FNN 85.19% 88.89% 77.78%
Francis et al. [19] Statistical and texture 

features
36 (24N, 12M) SVM 83.30% 83.30% 83.30%

Francis et al. [20] Statistical and texture 
features

22 (11N, 11C) SVM 90.91% 81.82% 100%

Araujo et al. [21] Temperature based 
interval symbolic 
features

50 (14M, 19B, 17Cy) Distance based clas-
sifier

– 85.70% 86.50%

Garduno-Ramon et al. 
[22]

Temperature features 454 (414N, 40Ab) – – 86.84% 89.43%

Gaber et al. [23] Statistical, Gabor, 
texture features

63 (29N, 34M) SVM Average Acc. of four scenarios: 88.41%

Zadeh et al. [24] Patient’s age, mean, 
variance, kurtosis, 
skewness, entropy, 
difference between 
two breasts and 
thermal pattern of the 
breasts

200 ANN 70.00% 50.00% 75.00%

Sathish et al. [25] Statistical and texture 
features

80 (40N, 40Ab) SVM 90.00% 87.50% 92.50%

Borchartt et al. [26] Range temperature, 
mean temperature, 
Standard deviation, 
quantization of higher 
tone

28 SVM 85.71% 95.83% 25.00%

Lashkari et al. [27] 23 features including 
statistical, morpho-
logical, frequency 
domain, histogram 
and GLCM based 
features

67 AdaBoost 85.33% (L)
87.42% (R)

63.33 (L)
68.56 (R)

90.83 (L)
92.14 (R)
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ends up concluding the absence of abnormality. Hence, in 
contrast to bilateral asymmetry analysis for abnormality 
detection, our proposed method has used the SVs to char-
acterize these thermal patterns irrespective of their location 
in either breast. Thus, the proposed method may improve 
the accuracy of breast abnormality detection by increasing 
the number of true positives or by detecting the abnormali-
ties in those breast thermograms, where bilateral asymmetry 
analysis fails to detect.

Proposed method

Given a breast thermogram, a set of efficient features is 
required to be extracted for detection of abnormality. Con-
sidering that our work focuses on the generation of efficient 
features from breast thermograms that can provide better 
performance over the reported works. The proposed breast 
abnormality detection system primarily consists of four sub-
steps. The first sub-step involves the pre-processing and the 
segmentation of the breast regions from raw breast ther-
mograms. The second sub-step does the identification of 
the candidate thermal patterns from the segmented images 
by doing hue–saturation–value (HSV) transformation and 
power law transformation of the images. The third sub-step 
decomposes the preprocessed images into SVs to quanti-
tatively characterize the candidate thermal patterns of the 
breast thermograms. In fourth sub-step, the extracted SVs 
are fed to seven different classification methods to find the 
most efficient classifier for our proposed method in differ-
entiating the abnormal thermograms from the normal ones.

Furthermore, based on the 1st and 2nd rank SVs extracted 
from each breast thermogram, a BAG index has also been 
developed to predict the degree of abnormality it possesses. 
Detail description of each sub-step is provided in the fol-
lowing sub-sections.

Pre‑processing and segmentation of breast region

Pre‑processing of breast thermograms

In designing a computer aided breast abnormality detection 
system, the pre-processing of the raw thermograms is very 
crucial since the raw breast thermograms generally contain 
some irrelevant parts like neck portion, area underneath 
the breasts and the background, etc. Hence to make the raw 
thermograms in “Rainbow HC” color pallet more suitable 
for further processing and to enhance the performance of 
the proposed system, the breast thermograms are manually 
cropped to discard the irrelevant regions. For the subsequent 
steps, all the breast thermograms are resized to have a reso-
lution of 200 × 400 pixels. The pre-processing of the breast 

thermograms has been followed by the segmentation of the 
breast regions.

Segmentation of breast region

The primary objective of segmenting the breast region from a 
breast thermogram is to discard all those portions that are not 
belonging to the breasts so that the prediction accuracy of the 
breast abnormality detection system gets improved. Infrared 
breast thermograms are poor in contrast for which it lacks clear 
edges and it is amorphous in nature [28], which makes auto-
matic segmentation of breast region very tedious. Although a 
lot of work have been done for automatically segmenting the 
breast region from a breast thermogram, due to the unclear 
lower parabolic boundaries in most of the cases present in our 
dataset, these methods are not found to be robust. Therefore by 
considering the fact that the lower breast boundaries and the 
inframammary folds should not be getting lost in segmentation 
of breast thermograms, we have adopted a semi-automatic seg-
mentation method. This semi-automatic segmentation method 
requires the human interaction for selecting the lower parabolic 
boundaries of both breasts. Algorithm 1 summarizes the pro-
cedure of segmenting the breast region from a breast thermo-
gram. Figure 2 shows the segmented breast regions of some 
sample breast thermograms.

Algorithm 1: The Breast Region Segmentation Algorithm
Input: RGB image I
Output: Segmented Breast Region S
 Step 1. I′ ← Compute the blue difference Chroma compo-

nent Cb by using the RGB to YCbCr Image conversion 
formulae described in [29, 30]

 Step 2. B ← Convert I′ to binary image to distinguish the 
body area from the background by using thresholding 
segmentation technique

 Step 3. P ← Select the lower breast boundary points manu-
ally on I′ where the coordinates of the last point must be 
the first point so that it creates a polygon

 Step 4. X ← Generate a binary mask of the polygon, P
 Step 5. M ← B − X, M is the binary breast mask
 Step 6. S ← I * M

Identification of candidate thermal patches

The goal of this step is to enhance the segmented breast ther-
mograms to make the candidate thermal patches more promi-
nent by neglecting the unnecessary surrounding regions. The 
candidate thermal patches are those thermal patterns that are 
characteristically in contrast to the surrounding regions on 
its color and intensity that can be used as an important fact 
for separating these candidate patterns from the surrounding 
areas. As illustrated in Fig. 3a–c, the temperature radiations 
emitted by different regions of a breast are represented with 
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different pseudo colors. For better description of the can-
didate thermal patterns in thermograms, we have labeled 
each temperature region with different colors as shown in 
Fig. 3d–f. Among all the pseudo colors, the white region 
corresponds to the highest temperature region (hotspot) 
indicating the anomalous region of a breast and this highest 
temperature region along with its surrounding reddish white 
regions are considered as the candidate thermal patches. Fig-
ure 3a, d shows a breast thermogram with a malignant tumor 
in the right breast. Figure 3b, e shows the breast thermogram 
of a healthy person with no candidate thermal patches and 
Fig. 3c, f shows the breast thermogram of a healthy person 
with some candidate thermal patches. In order to make these 
candidate thermal patterns more prominent, two methods 
have been used here.

RGB to HSV transformation

In a breast thermogram image, the color component does not 
carry important information, for which these color information 
can be removed to reduce the processing complexity of breast 
thermograms. Unlike the RGB color model, the HSV model 
has the advantages in that the intensity is decoupled from the 
color information, for which object description in terms of 

these components is easy. Besides, the hue and saturation are 
closely related to the way in which human observes color [30]. 
Figure 4 illustrates the histogram of each channel of an RGB 
and HSV color spaced breast thermogram. As depicted in 
Fig. 4a, it can be stated that in the RGB breast thermogram, all 
three color components are dominant over the entire dynamic 
range; no channel is efficient in highlighting the highest tem-
perature regions. On the contrary, Fig. 4b illustrates that if 
converted to HSV color space, each of the three color compo-
nents is dominant in different ranges. Hue is found to be more 
or less dominant over the entire dynamic range, while satura-
tion is dominant over the higher scale and the value is found 
to be dominant over the middle to higher scale of the dynamic 
range. Based on the distribution range of each channel in the 
HSV breast thermogram, we have found that saturation chan-
nel will be more suitable for our research work to characterize 
the higher temperature regions. Hence, for developing a human 
visual system based breast abnormality detection method, the 
saturation channel (S) has been extracted from each segmented 
breast thermogram by using the Eq. (1) [30, 31],

(1)
S =

{
1 −

3

R + G + B
min (R, G, B), if R + G + B > 0,

0 if R + G + B = 0.

Fig. 2  a Manually selected 
lower parabolic curve, b gener-
ated breast mask, c segmented 
breast region

Fig. 3  a–c Some sample breast 
thermogram images; d–f cor-
responding labeled images with 
candidate thermal patches
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The saturation refers to the pureness of the color or the 
amount of whiteness in the color mixture [30] and hence, the 
higher temperature regions having the maximum intensity 
values are poorly saturated. The hue, saturation and value 
components obtained from a breast thermogram image are 
illustrated in Fig. 5. As shown in Fig. 5b, it has been seen 
that the candidate thermal patches have the highest contrast 
in the saturation channel and these patches appear as a group 
of pixels with local minimal intensity surrounded by higher 
intensity pixels. However, in contrary to the fact that the 
hot patch bears the highest temperature or intensity value, 
saturation channel makes the hot patches to have the lowest 
intensity values due to the poor saturation. Hence, the satu-
ration channels of all breast thermograms are complemented 
so that the higher temperature regions are represented with 
the higher intensity values as shown in Fig. 5d and it is 
denoted as Is. Here it is worth mentioning that only the pixel 
values inside the breast region of the saturation channel get 
complemented for which the non-breast region (the black 
region of the breast mask shown in Fig. 2b) remain same 
before and after performing the complementation.

Power law transformation

In thermal images, due to the absence of sharp transition of 
intensity values from one region to another, the thermal pat-
terns do not have sharp boundaries and it causes the appear-
ance of some unnecessary regions in Is as shown in Fig. 5d. 
Hence to further improve the representation power of the 
channel and to make the candidate thermal patches more 
prominent by removing all the unnecessary portions, the 
power law transformation has been performed. The power 
law transformation reduces the insignificant spread of the 
patches in Is to make the candidate patches more distinguish-
able. The power law transformed image, Ip is obtained by,

where c, γ are positive constants.
The power law transform changes the dynamic range of 

Is. It is worth mentioning that for any γ > 1, power law trans-
form increases the bandwidth of the high intensity values at 
the cost of the low pixel values and for γ < 1, it enhances the 
low intensity value while decreasing the bandwidth of the 

(2)IP(i, j) = c × Is(i, j)
� ,

Fig. 4  The histogram plot of each channel of a breast thermogram image in a RGB color space and in b HSV color space

Fig. 5  a Hue channel, b saturation channel, c value channel and d complemented saturation channel of a breast thermogram
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high intensity values. Since our motive is to suppress the low 
intensity pixel values by enhancing the high intensity pix-
els, we have used positive values of γ. For our experimental 
purpose, the γ value is set to 3.5. Moreover, the value of c 
is fixed at 1 as for any value of c not equal to 1, scaling sig-
nificantly affects the dynamic range of the pixel values of Is.

Feature extraction

Feature extraction is probably the single most essential step 
in achieving high accuracy in breast abnormality prediction. 
In pattern recognition, it is desirable to extract features that 
focus on discriminating between classes. In this section, our 
main objective is to extract an efficient feature set from the 
candidate thermal patches that can significantly characterize 
the breast abnormality with limited number of features. To 
deal with this problem, we have utilized the image compres-
sion property of singular value decomposition (SVD), where 
it can represent an image with a limited number of SVs that 
can preserve the useful information of Ip. The extraction of 
SVs, their significance, their association with image com-
plexity and normalization are detailed in subsections.

Singular value decomposition

SVD is a linear transformation of an M × N matrix, which 
refactors the matrix into three component matrices. Thus, 
SVD decompose the Ip into three component matrices, U, S 
and V such that

where U is an M x M orthogonal matrix containing the left 
singular vectors of Ip, V is an N × N orthogonal matrix con-
taining the right singular vectors of Ip, S is an M × N diagonal 
matrix, in which the nonnegative entries along the diago-
nal of S are the singular values of Ip. The singular values 
�1, �2 … �k , k = min(M, N) are unique. If r is the rank of the 
matrix Ip, then,

Proposition The low rank SVs of the abnormal ther-
mograms are larger than the low rank SVs of the normal 
thermograms.

Since the presence of thermal patches signifies the pres-
ence of breast abnormality, let us assume the abnormal 
thermograms bear more candidate thermal patches than the 
normal thermograms. Let, the normal thermogram be I and 
abnormal thermograms be I + Ω, where Ω: additional can-
didate thermal patches.

(3)Ip = USV∗,

(i) 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎r > 0,

(ii) �r+1 = �r+2 = ... = �n = 0.

Now, the properties of 2-norm of a matrix can be used. 
However, in practice it is difficult to compute the 2-norm of 
a matrix due to the unavailability of direct formula. Hence 
instead of directly computing the 2-norm of a matrix, we 
use the concepts of vector norm to compute the 2-norm of a 
matrix. For doing this, we need to treat the M × N elements 
of any matrix A as the elements of an MN dimensional vec-
tor, then compute the 2-norm of the vector as follows [32],

For easiness, we denote I as A and I + Ω as B. If A and 
B are of same order and Ω: additional candidate thermal 
patches in B, then,

Thus,

Another definition to compute 2-norm of a matrix is as 
follows [33, 34],

Thus, Eqs. (5) and (6) imply that,

If we denote largest SV or Rank1 SV of a matrix as � , 
then

Based on the Eq. (7), we can conclude that the first SV 
of an abnormal thermogram is larger than the first SV of 
a normal thermogram. In the same way, we can show that 
other low rank SVs of an abnormal thermogram are also 
larger than the corresponding lower rank SVs of the normal 
thermograms. Here, we mention the term low rank because, 
as rank increases the magnitude of the SVs tends to be zero.

The first 20 (from Rank1 to Rank20) SVs extracted from 
all breast thermograms of the normal and abnormal groups 
are plotted in Fig. 6. As illustrated in Fig. 6a, it has been 
seen that the magnitudes of the rank r SVs of the abnor-
mal thermograms are larger than the magnitudes of the 

(4)‖A‖2 = ‖A‖F =

�
M�

i=1

N�

j=1

���aij
���
2

� 1

2

.

bij > aij, aij ∈ A, bij ∈ B, i, j ∈ Ω ⇒

M∑

i=1

N∑

j=1

|||bij
||| >

M∑

i=1

N∑

j=1

|||aij
|||

⇒

{
M∑

i=1

N∑

j=1

|bij|2
} 1

2

>

{
M∑

i=1

N∑

j=1

|aij|2
} 1

2

⇒ ||B||2 > ||A||2.

(5)‖I + Ω‖2 > ‖I‖2.

(6)
||A||2 =

√
Maximum eigenvalue of A�A

= Largest singular value of matrix A.

||I + Ω||2 > ||I||2

⇒ Largest singular value of I + Ω > Largest singular value of I.

(7)𝜎(I + Ω) > 𝜎(I).
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corresponding r rank SVs of the normal thermograms. 
However as the rank increases, the discriminating power 
of SVs gets reduced. In Fig. 6b, the rank wise average of 
the SVs obtained from the thermograms of the abnormal 
group is plotted against the rank-wise average of the SVs 
of the thermograms of normal group and it also depicts the 
discriminating power of lower rank SVs.

Statistical significance of rank wise singular values

Extraction of SVs from breast thermograms is followed by 
the testing of the statistical significance of these SVs in dis-
tinguishing breast thermograms. For this, 2-sample t test with 
significance level 0.1% and null hypothesis, Ho: the abnormal 
and normal thermograms have equal means has been used. 
Due to the limitation of space to show the statistical signifi-
cance of all the extracted SVs, the statistical significance of 
first 10 SVs i.e., from Rank1 to Rank10 for both normal and 
abnormal thermograms have been demonstrated in Table 2. 
Table 2 illustrates that the average magnitude of the SVs 
(in each rank) of the abnormal thermograms is significantly 

greater than the average magnitude of the SVs of the cor-
responding rank of the normal thermograms. Moreover as 
shown in Table 2, the SVs of all ranks, obtained from all 
the normal and abnormal thermograms are statistically sig-
nificant with P-value < 0.001 in breast abnormality detection.

Association of singular values with image complexity 
of breast thermograms

This section analyzes the association of the SVs with the 
degree of image complexity that a breast thermogram 
bears. In the absence of any standard definition of image 
complexity, here the complexity of a breast thermogram is 
considered as the amount of information present after pre-
processing the thermograms. Hence, the image complexity 
is not measured from the raw breast thermograms; instead 
the thermograms possessing the candidate thermal patches 
are used for measuring the image complexity. Three different 
measures are used here to compute the complexity of pro-
cessed breast thermograms. The first measure is based on the 
Shannon’s definition of information, known as entropy [35].

Fig. 6  a Rank-wise magnitudes of SVs of all normal and abnormal breast thermograms of DBT-TU-JU dataset, b Rank-wise average of the SVs 
of normal and abnormal breast thermograms of DBT-TU-JU dataset

Table 2  Average of SVs in each 
rank

Rank DBT-TU-JU DMR

Normal group Abnormal group P-value Normal group Abnormal group P-value

R1 3.06 ± 2.66 23.49 ± 12.37 3.1e−21 1.94 ± 1.76 18.33 ± 10.33 4.5e−33
R2 1.94 ± 1.78 12.22 ± 6.65 1.8e−21 1.38 ± 1.10 9.471 ± 5.121 6.3e−33
R3 1.43 ± 1.33 8.846 ± 4.479 6.7e−19 1.10 ± 0.85 6.751 ± 3.809 5.9e−30
R4 1.22 ± 1.21 6.919 ± 3.475 2.5e−20 0.94 ± 0.73 5.133 ± 2.863 9.0e−29
R5 1.07 ± 1.11 5.465 ± 2.800 6.4e−19 0.87 ± 0.66 4.222 ± 2.557 3.5e−25
R6 0.93 ± 0.97 4.535 ± 2.330 1.9e−18 0.79 ± 0.60 3.585 ± 2.197 5.6e−24
R7 0.86 ± 0.91 3.863 ± 2.092 1.3e−16 0.74 ± 0.56 3.161 ± 2.025 4.3e−22
R8 0.79 ± 0.86 3.260 ± 1.821 3.8e−15 0.69 ± 0.53 2.746 ± 1.856 6.9e−20
R9 0.73 ± 0.79 2.815 ± 1.596 3.1e−14 0.65 ± 0.49 2.454 ± 1.681 5.9e−19
R10 0.67 ± 0.74 2.472 ± 1.465 4.9e−13 0.61 ± 0.47 2.184 ± 1.527 1.2e−17
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Let p(i) = n(i)∕N be the probability of gray level i, where 
n(i) is the number of pixels having gray level i and N is the 
total number of pixels in a breast thermogram. Then, Shan-
non’s entropy can be defined as,

The second measure is the spatial information (SI) [36], 
which is an indicator of edge energy and it is computed as 
follows.

Let Hs and Vs denote the edge images generated by apply-
ing the horizontal and vertical kernels of Sobel, then the spa-
tial information SImean of a breast thermogram is given by,

where N is the total number of pixels in Ip and

The third measure is the fractal dimension (FD) [37], 
which observes how the number of boxes deviates as the 
grid becomes finer by applying a box-counting algorithm. 
To determine the FD of a pattern, it is imagined that the pat-
tern is laid on an equally spaced grid, and then the number 
of boxes required to cover the whole set is counted [38]. 
Mathematically, it is computed as follows.

Let B is the number of boxes that covers the candidate 
thermal patches and r is the magnification or the inverse of 
box size, then FD is the slope of the line when the value of 
log(B) is plotted on Y-axis against the value of log(r) on the 
X-axis and it is given by,

After extracting the image complexity values of the ther-
mograms of both normal and abnormal group, it has been seen 
that the abnormal thermograms possess significantly higher 
entropy (ent), SI and FD values than that of the normal breast 
thermograms, i.e., based on these three complexity meas-
ures, we can conclude that the abnormal thermograms are 
more complex than the normal thermograms. The mean and 

(8)H = −

255∑

i=0

p(i) × log p(i), ∀i ∈ Ip.

(9)SImean =
1

N

∑
Si, ∀i ∈ Ip,

(10)Si =

√
H2

s
+ V2

s
, ∀i ∈ Ip.

(11)FD =
log(B)

log(r)
.

standard deviation of the values of these complexity metrics 
for the thermograms of both normal and abnormal group are 
demonstrated in Table 3. Moreover, as illustrated in Table 3, all 
the complexity metrics are statistically significant (p < 0.001, 
t test) in showing that the abnormal thermograms are having 
higher image complexity than the normal thermograms.

Now, the association of the computed SVs with the com-
plexity of the thermograms has been evaluated by using the 
Pearson Correlation measure [39], which is a statistical tool 
used to measure the degree to which the variables are associ-
ated with each other. The correlation between the rank r SVs 
of all thermograms and their corresponding image complex-
ity measures are analyzed and it has been found that the SV 
of any rank is positively correlated with the image complex-
ity that means for an image with higher complexity, the SVs 
will also be greater. Thus, the abnormal breast thermograms 
have higher SVs than that of the normal thermograms. The 
correlation of the Rank1 SVs of all the normal and abnormal 
thermograms with the corresponding image entropy, SI and 
FD has been illustrated in Fig. 7 for both DBT-TU-JU and 
DMR databases.

Normalization of singular values

As demonstrated in Table 2, the SVs of different ranks exhibit 
significant variation in their range, which necessitates the 
normalization or rescaling of the SVs before feeding them to 
various classifiers. Moreover, the normalization of all SVs to 
a fixed range ensures that each feature contributes proportion-
ately to the final match score.

Let f and f′ denote a feature vector before and after normali-
zation. The normalized feature vector f′ is computed through,

where N is the number of thermograms.

Classification of breast thermograms

In a CAD system, the feature extraction is followed by the 
classification of the images based on the extracted features. 
Although all the SVs are found to be statistically significant, 
utilization of all the SVs may degrade the accuracy of the 

(12)f
�

i
i∈N

=
fi −min(f )

max(f ) −min(f )
,

Table 3  Average values of 
image complexity metrics

Dataset used Complexity measures Abnormal group Healthy group P-value

DBT-TU-JU Entropy 2.4977 ± 0.833 0.7752 ± 0.607 2.9052e−23
Spatial information 0.0258 ± 0.008 0.0120 ± 0.005 3.1442e−18
Fractal dimension 0.9121 ± 0.165 0.4838 ± 0.207 2.0367e−16

DMR Entropy 1.1359 ± 0.526 0.2533 ± 0.247 1.9958e−28
Spatial information 0.0151 ± 0.005 0.0085 ± 0.004 1.0370e−14
Fractal dimension 0.8661 ± 0.141 0.5209 ± 0.142 4.2832e−17
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system as the discriminating power of the SVs gets reduced 
with increasing ranks. Hence, to obtain a right combination 
of SVs and classifier to attain best prediction performance, 
different combination of SVs with seven most widely used 
classifiers including support vector machine (SVM) with 
three different kernels [radial basis function (RBF), polyno-
mial, linear], K-nearest neighborhood (KNN), decision tree 
(DT), artificial neural network (ANN), random forests (RF), 
AdaBoost (AB) and linear discriminant analysis (LDA) have 
been investigated.

Designing of breast abnormality grading (BAG) 
index

Determination of degree of abnormality in an abnormal 
thermogram is very much crucial for early detection and 
diagnosis of the severely abnormal cases. Considering this, 
the classification of thermograms as normal and abnormal 
is followed by the designing of a BAG index. For designing 
the BAG index, among all the SVs of a thermogram, we 
consider the first two SVs, SV1 and SV2, which are found 
to be highly discriminative as shown in Table 2. By using 
these two SVs: SV1 and SV2, the BAG index is defined as-

As illustrated in “Association of singular values with 
image complexity of breast thermograms” section, the SVs 
are highly correlated with the image complexity for which 
the SVs SV1 and SV2 are also highly correlated with abnor-
mality. Hence, thermograms with less abnormality will have 
smaller values of BAG index compared to the BAG index 
values of the thermograms having severe abnormality. Thus, 

(13)BAG index = SV1 + SV2.

based on the values of BAG index, we can predict the degree 
of abnormality in a breast thermogram.

Experimental results

Experimental databases

Both publically available and in-house acquired databases 
were used to evaluate the performance of our proposed breast 
abnormality detection method. Two breast thermogram data-
bases namely DBT-TU-JU [13] and DMR [14] have been used. 
The DBT-TU-JU database is our own developed database in 
collaboration with Regional Cancer Centre (RCC), Agartala 
Government Medical College (AGMC), Tripura, India. To 
acquire the thermograms, a standard acquisition protocol 
suite had been designed [13] that comprises of a number of 
important parameters: patient preparation, patient acclima-
tion, patient intake form, examination room condition, patient 
position and acquisition views. The breast thermograms were 
acquired by using the FLIR T650sc thermal camera with 
thermal sensitivity of < 20 mK @ 30 °C and image resolu-
tion of 640 × 480 pixels. Currently, the database comprises 
the thermograms of both healthy and pathological subjects 
in the age group of 21–80 years. Moreover, the database is 
also annotated with the ground truth images of the suspi-
cious hot regions. From this database, a dataset of 120 breast 
thermograms (70 abnormal and 50 normal) in frontal view 
has been considered for the experimental purpose. The set of 
abnormal thermograms comprises of 35 thermograms having 
benign tumors, 15 thermograms having malignant tumors and 

Fig. 7  a–c Correlation of Rank1 SVs of all breast thermograms of DBT-TU-JU dataset with the image complexity measures, d–f correlation of 
Rank1 SVs of all breast thermograms of DMR dataset with the image complexity measures
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20 other thermograms suffering from other breast problems 
like breast pain, feeling of solid mass, bloody discharge, pus 
formation etc.

For validating the performance of the designed BAG index 
in breast severity prediction, the abnormal thermograms are 
clinically categorized into mild abnormal (MA) and severely 
abnormal (SA). Due to the incapability of X-ray mammog-
raphy in breast abnormality detection in all suspected cases 
of DBT-TU-JU database, the categorization of breast thermo-
grams has been done based on patient history, clinical find-
ings, X-ray mammography report and Fine Needle Aspiration 
Cytology (FNAC) report. Considering the findings of these 
modalities, all the abnormal thermograms are categorized into 
MA and SA. The abnormal thermograms whose mammog-
raphy or FNAC reports show the presence of either benign 
or malignant tumor are labeled as SA. On the other hand, the 
abnormal thermograms whose FNAC reports are not available 
and mammography could not reveal the presence of any tumor 
or calcifications, but clinically they are found to be abnormal 
or having some disease related symptoms like feeling of solid 
and lumpy structures, experiencing pain for a long period of 
time are labeled as MA. Moreover, the abnormal thermograms 
of those patients whose mammography reports are normal, 
but they are experiencing blood or pus discharge for very long 
periods of time are also labeled as SA.

The publically available DMR database [14] contains the 
breast thermograms of 287 subjects. The breast thermograms 
of almost 47 subjects are labeled as ‘Sick’ and remaining are 
labeled as ‘Healthy’. It is reported that the breast thermograms 
were captured using FLIR SC-620 Infrared camera with tem-
perature sensitivity < 0.04 °C and image resolution: 640 × 480 
pixels. Here for experimental purpose, a dataset of 100 normal 
(healthy) thermograms and 45 abnormal (sick) thermograms 
has been used.

Evaluation metrics

To facilitate the performance evaluation of our proposed breast 
abnormality detection system, three evaluation metrics: accu-
racy, sensitivity and specificity have been used that establish 
the superiority of our proposed method. These evaluation 
parameters are given as follows,

where TP, TN, FP and FN indicate true positive, true nega-
tive, false positive and false negative respectively. The 

(14)Accuracy =
TP + TN

TP + TN + FP + FN
,

(15)Sensitivity =
TP

TP + FN
,

(16)Specificity =
TN

TN + FP
,

sensitivity is the proportion of positive (abnormal) cases 
that are correctly identified as positive, specificity is the pro-
portion of negative (normal) cases that are correctly identi-
fied as negative and the accuracy is the proportion of total 
number of cases that are correctly classified. Thus, if both 
sensitivity and specificity are high (low), the accuracy will 
also be high (low). But, if any of the sensitivity or specific-
ity is high, then the accuracy will be biased to any one of 
these measures.

Assessment of classification performance

The classification performance of the proposed breast 
abnormality detection system has been evaluated with seven 
‘state-of-the-art’ classification systems including: SVM, DT, 
KNN, ANN, RF, LDA and AB employing tenfold cross-
validation. A brief description on designing of each of 
these classifiers except LDA is provided below. In LDA, no 
parameter tuning is done.

Support vector machine

For the SVM classifier, the performance has been tested with 
three different kernels: RBF, polynomial and linear kernel. 
Except for the linear kernel, the parameters of both polyno-
mial and the RBF kernel are altered to obtain better clas-
sification accuracy. Among different values of sigma, the 
SVM with RBF kernel shows the highest accuracy against 
sigma = 2. Similarly, SVM with polynomial kernel provides 
the best accuracy against the polynomial order = 3.

Decision tree

In DT, except ‘MaxNumSplits’ parameter, other parameters 
are set as default to obtain the optimal classifier to better fit 
the data. For tuning DT, the maximum number of splits is 
set with a number ranging from 1 to 15 and found that with 
higher number of splits, our model can perfectly predict the 
train data, but fails to predict the test data. However, the 
maximum accuracy with train and test data is obtained with 
split number 5.

K‑nearest neighborhood

To obtain the optimal number of neighborhood K for the 
KNN classifier, the classification accuracy of the proposed 
system with K = 2 to K = 10 has been evaluated with cross-
validation and we have found that the highest classification 
accuracy was obtained with K = 9. Thus, KNN classifier 
with K = 9 is used as the optimal model.
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Artificial neural network

For implementing ANN, we used pattern recognition net-
work which is a feed-forward network, where the size of 
the input, output and output layers are initially set to zero. 
During training, according to training data, sizes of these 
parameters are adjusted. The number of hidden layers is var-
ied from 1 to 10 and best prediction performance with the 
testing set is obtained with ten hidden layers. The designed 
network used ‘Scaled Conjugate Gradient’ training function 
to train the network.

Random forest

RF is an ensemble tool that combines multiple decision trees 
to get a more accurate and stable prediction. Here, square 
root(total number of features) is used as the maximum num-
ber of features in each decision tree. For obtaining the better 
prediction performance, different number of decision trees 
are used to model the RF classifier and the maximum clas-
sification was obtained with 20 numbers of decision trees.

AdaBoost

AB constructs a robust classifier by iteratively adding mul-
tiple weak classifiers. We used AdaBoost M1 classifier for 
binary classification. In each round of training, the classi-
fication performance of the ensemble is enhanced by add-
ing a new weak learner. Here, one level decision tree also 
known as decision stump is used as weak learner to cre-
ate the ensemble and the ensemble undergoes 100 learning 
iterations to achieve the optimal performance.

As aforementioned, the classification accuracy of the 
proposed system has been evaluated with different numbers 
of SVs so that we can make a choice of optimal number of 
SVs to obtain the best classification performance. However, 
instead of using all SVs, the performance of the proposed 
system has been evaluated with maximum of 30 SVs, since 
beyond this the performance of the system gets degraded 
noticeably. The maximum of the evaluation metric values 
obtained with each classifier for different number of SVs 
over 20 iterations is demonstrated in Table 4. The set of 
observations made from Table 4 are as follows,

1. Different classifiers show their best performances either 
with 1, 2 or 5 SVs. However in most of the classifiers, 
the highest prediction performance has been obtained 
with two SVs in both the DBT-TU-JU and DMR data-
sets. The performances of all the classifiers either get 
degraded or remain same when the number of SVs gets 
increased.

2. If the classification performance of a classifier is same 
for both 1 and 2 SVs, then their value of sensitivity is 
used to break the tie and the classifier with the higher 
sensitivity is considered to be better.

3. In DBT-TU-JU dataset, SVM with Polynomial ker-
nel and ANN give the highest prediction accuracy of 
92.50% with two SVs. Moreover in this dataset, the pro-
posed system has obtained the prediction accuracy more 
than or equal to 90% with all other classifiers.

4. In DMR dataset also, the highest prediction accuracy 
of 98.00% has been obtained with SVM using polyno-
mial kernel and ANN with two SVs. Except for LDA, 
all other classifiers show the prediction accuracy > 95% 
in DMR dataset.

5. Moreover like accuracy, the sensitivity and the specific-
ity of the proposed system are also very high in both the 
datasets.

6. Thus, in both the DBT-TU-JU and DMR datasets, ANN 
and SVM with polynomial kernel give the highest clas-
sification results with two SVs.

However, while doing the performance analysis of 
the SVs in breast abnormality prediction, it is obvious to 
evaluate the prediction accuracy of the system with the 
highly correlated image complexity features so that we 
can investigate whether it is possible to substitute the SVs 
with these image complexity features in the proposed 
system. To do so, we have evaluated the prediction per-
formance of the image complexity features and listed the 
accuracy values in both datasets by using the individual 
complexity features and also by using all three complexity 
features together in Table 5. Like the SVs, the complex-
ity features are also normalized in the same way before 
feeding them to the classification algorithms. The best 
classification accuracy of each classifier is represented in 
boldface in Table 5. The listed accuracy value of each 
classifier against each feature set is the maximum of all the 
20 accuracy values obtained in 20 consecutive iterations. 
As illustrated in Table 5, it has been seen that compare to 
the SI and FD, the entropy is more discriminative and it 
provides more prediction accuracy with all classifiers than 
the SI and FD. And while all complexity features are used 
in combined way, they provide satisfactory performance 
with all the classifiers. However, when the performances 
of these complexity features with all classifiers are com-
pared with the classification performances of the set of 2 
SVs (as demonstrated in Table 5), it has been seen that the 
classification accuracy of the SVs with all classifiers is 
much better than the classification accuracies of the com-
plexity features. Thus, the SVs are more discriminative in 
nature than that of the image complexity features.
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Assessment of the grading performance of BAG 
index

This section evaluates the grading performance of the BAG 
index. The degree of abnormality or severity that a thermo-
gram bears can be predicted by observing the magnitude of 
the BAG index. By using Eq. (13), the BAG index values for 
all breast thermograms have been computed and analyzed 

to obtain the BAG index range in various categories of ther-
mograms. The boxplots of BAG index values for the normal 
(N), MA and SA thermograms have been plotted in Fig. 8. 
As depicted in Fig. 8, the dominant range of BAG index 
for N, MA and SA thermogram is 0–2, 16–22 and 36–55 
respectively and it clearly demonstrates the discriminative 
capacity of BAG index in the degree of severity prediction. 
Along with the boxplots, the mean BAG index value of each 

Table 4  The accuracy, sensitivity and specificity values of each classifier with different number of SVs

Boldface—best performance of each classifier, boldface with underline—the highest classification accuracy of the proposed system

Classifiers DBT-TU-JU DMR

Number of singular values Number of singular values

1 2 5 10 20 30 1 2 5 10 20 30

KNN
 Acc. 89.17 90.83 90.83 90.00 89.17 88.33 96.67 96.67 96.56 94.00 93.10 93.81
 Sens. 85.71 91.43 88.57 90.00 88.57 88.57 94.00 94.00 90.89 82.22 82.22 80.00
 Spec. 94.00 91.00 96.00 90.00 90.00 88.00 98.00 98.00 100.00 99.00 98.00 100.00

SVM_Linear
 Acc. 90.83 91.67 90.83 90.00 90.00 89.17 96.00 98.00 96.00 95.86 95.20 95.20
 Sens. 85.71 91.40 88.57 87.14 87.14 87.14 90.00 96.00 94.00 93.33 91.11 91.11
 Spec. 98.00 92.00 94.00 94.00 94.00 92.00 99.00 99.00 97.00 97.00 97.00 97.00

SVM_Poly
 Acc. 91.67 92.50 90.83 89.17 89.17 85.00 96.00 98.00 96.00 93.90 93.76 93.05
 Sens. 88.57 90.00 88.57 87.14 87.14 81.43 94.00 98.00 93.33 91.11 88.89 88.89
 Spec. 96.00 96.00 94.00 92.00 92.00 90.00 97.00 98.00 98.00 95.00 96.00 95.00

SVM_RBF
 Acc. 90.00 90.00 90.00 89.17 89.17 88.33 97.33 96.00 94.67 94.52 94.38 91.76
 Sens. 88.57 85.71 87.14 87.14 90.00 88.57 92.00 90.00 86.67 86.67 88.89 84.44
 Spec. 92.00 96.00 94.00 92.00 88.57 88.00 100.00 99.00 98.00 98.00 97.00 95.00

DT
 Acc. 90.83 90.83 89.17 87.50 88.33 87.50 95.33 95.33 95.33 94.52 94.52 93.14
 Sens. 90.00 92.00 90.00 85.71 88.57 88.57 92.00 92.00 92.00 91.11 91.11 91.11
 Spec. 90.00 90.00 88.00 90.00 88.00 86.00 97.00 97.00 97.00 96.00 96.00 94.00

ANN
 Acc. 92.50 92.50 91.70 91.70 91.70 89.20 97.30 98.00 98.00 96.70 96.70 95.20
 Sens. 90.00 91.40 91.40 91.40 88.60 85.70 94.00 98.00 96.00 92.00 92.00 84.40
 Spec. 96.00 94.00 92.00 92.00 96.00 94.00 99.00 98.00 99.00 99.00 99.00 100.00

RF
 Acc. 88.33 90.83 90.83 89.71 88.33 87.50 96.67 96.67 96.67 96.48 95.90 95.14
 Sens. 85.71 91.43 90.00 90.00 91.43 88.57 94.00 94.00 93.33 93.33 88.89 91.11
 Spec. 94.00 91.00 92.00 88.00 84.00 86.00 98.00 98.00 98.00 98.00 99.00 97.00

LDA
 Acc. 89.17 90.00 90.83 87.50 87.50 85.00 90.00 90.00 90.00 89.10 88.38 88.29
 Sens. 82.85 82.85 85.71 80.00 80.00 75.71 70.00 70.00 68.00 64.44 62.22 64.44
 Spec. 98.00 100.00 98.00 98.00 98.00 98.00 100.00 100.00 100.00 100.00 100.00 99.00

AB
 Acc. 91.67 90.00 89.17 88.33 88.33 86.67 96.00 96.67 96.00 95.90 95.86 95.14
 Sens. 88.57 88.57 88.00 87.14 88.57 87.14 94.00 94.00 93.33 93.33 91.11 91.99
 Spec. 96.00 92.00 90.00 90.00 88.00 86.00 97.00 98.00 98.00 97.00 98.00 97.00
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group is also plotted in Fig. 8. From the mean value also, 
we can conclude that each class of thermogram maintain a 
different range of BAG index values.

Discussion

The traditional approach of breast abnormality prediction is 
the bilateral asymmetry analysis whose accuracy relies on 
the proper separation of left and right breasts from a ther-
mogram. The proposed method on the other hand uses the 
characteristic thermal patterns within the breast regions, 
whose presence signifies the presence of breast abnormal-
ity. The experimental results show the efficiency of our pro-
posed method both in public and in-house datasets. How-
ever, to further evaluate the potentiality of the proposed 
method, this section provides a comparison of our proposed 
method with other existing works. The comparison of the 
proposed method is performed in two ways: first, the pro-
posed method is compared with the conventional method of 

breast abnormality detection known as bilateral asymmetry 
analysis as reported in [40] and then, a comparison of the 
proposed method with other existing works has been made. 
Along with the comparison, this section also incorporates 
the limitations of our proposed method.

Comparison of the proposed method 
with conventional method of breast abnormality 
detection

In this section, we compare the proposed method with 
our previously reported method of breast abnormality 
detection [40]. The breast abnormality detection method 
reported in [40] was based on the bilateral asymmetry 
analysis. For doing the bilateral asymmetry analysis, 
the extracted breast regions were further segmented into 
left and right breasts. Then, from each breast, a set of 7 
first order statistical features: mean, entropy, skewness, 
kurtosis, variance, standard deviation, maximum inten-
sity value and 17 second-order texture features: contrast, 
correlation, dissimilarity, energy, entropy, sum entropy, 
difference entropy, homogeneity, variance, sum of vari-
ance, difference variance, autocorrelation, sum average, 
information measure of correlation1 and information 
measure of correlation2 were computed. The statistical 
significance of these extracted features was carried out by 
using non-parametric Mann–Whitney–Wilcoxon (MWW) 
test [41] with significance level of 0.1%. Out of these 24 
features (7 statistical and 17 texture), 13 and 16 features 
were found to be statistically significant (p < 0.001) for the 
breast thermograms of DBT-TU-JU and DMR databases 
respectively. Then considering these statistically signifi-
cant features, three different feature sets namely: first order 
statistical features (FStat), second order texture features 
(STex) and statistically significant (SSigST) features had 
been formed. Then, the performance of these three feature 

Table 5  The prediction 
accuracy of each classifier with 
the image complexity measures

Features Classifiers

KNN SVM_L SVM_P SVM_R DT ANN RF LDA AB

DBT-TU-JU
 SV_2 90.83 91.67 92.50 90.00 90.83 92.50 90.83 90.83 91.67
 Ent 85.83 89.17 89.17 88.33 83.33 88.30 77.50 88.33 85.00
 SI 77.50 78.33 78.33 78.33 75.83 74.20 74.17 80.83 75.83
 FD 71.67 69.17 68.33 69.10 67.50 76.50 64.17 70.00 70.00
 Ent + SI + FD 75.83 74.17 75.00 74.17 89.17 73.50 86.67 75.00 88.33

DMR
 SV_2 96.67 98.00 98.00 97.33 95.33 98.00 96.67 90.00 96.67
 Ent 86.86 87.81 89.62 87.41 87.57 89.00 84.05 86.90 89.86
 SI 69.52 74.43 72.95 73.00 68.29 73.80 66.33 73.71 73.86
 FD 86.48 61.67 65.44 64.10 84.90 74.50 82.48 85.00 68.14
 Ent + SI + FD 89.57 74.17 75.00 72.50 91.10 65.50 89.14 88.95 91.05

Fig. 8  Boxplots of BAG index values for normal (N), mild abnormal 
(MA) and severely abnormal (SA) breast thermograms of DBT-U-JU 
database
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sets were evaluated by using different classifiers. Based on 
the classification performances, it was found that with all 
the classifiers the statistically significant features gave bet-
ter performance than both the FStat and STex feature sets 
in both the datasets. So, here we compare the efficiency 
of these three feature sets with the proposed breast abnor-
mality detection system to evaluate the superiority of the 
proposed method over these three sets of features. Since it 
is aforementioned that the highest classification accuracy 
is obtained with only two SVs, here for comparison we 
consider the results obtained using only two SVs.

For comparison, the classification accuracies obtained in 
20 iterations with two SVs are statistically evaluated with 
the classification accuracies of each of FStat, STex, and 
SSigST feature set in all 20 iterations. Along with the FStat, 
STex and SSigST feature sets, the classification accuracies 
of Ent, SI, FD and ESF (Combination of Ent, SI and FD) 
feature sets in each iteration is also statistically tested. The 
p-values obtained using the non-parametric MWW test with 
significance level of 1% and alternative hypothesis, Ha: The 
classification accuracy of SVs is higher than the classifica-
tion accuracy of Ent/ SI/ FD/ ESF/ FStat/ STex/ SSigST have 
been listed in Table 6. With the p-values < 0.01 for each pair 
of feature set (SVs vs. Ent/SI/FD/ESF/FStat/STex/SSigST) 
and for each classifier, the MWW test accepts the alterna-
tive hypothesis Ha and thus, it can be concluded that for 
each classifier, the classification accuracy of SVs obtained 
in each iteration is significantly (p < 0.01) greater than the 
classification accuracies obtained with all other feature sets. 
Thus, the SVs are found to provide the highest classification 
accuracy among all the feature sets.

Besides the statistical significance test, the receiver 
operating characteristics (ROC) curves for all these feature 
sets with the classifiers that give the highest classification 
performance have also been plotted in Fig. 9 and the area 
under the ROC curve (AUC) is considered for the efficiency 
measure of the feature sets. Along with the ROC curves for 
SVs, first order, second order and statistically significant 
features; the ROC curves for the image complexity features 
are also plotted here for comparison. As reflected in Fig. 9, it 
has been seen that for both the ANN and SVM_Polynomial 
classifiers, the SVs return the higher AUC values than the 
remaining feature sets in both the DBT-TU-JU and DMR 
datasets, which indicates the superiority of the SVs over the 
other feature sets. However, even though the classification 
accuracies of the ANN and SVM_Polynomial are same, the 
AUC values of SVM_Polynomial are higher than the AUC 
values of the ANN in both the datasets. In a disease diagno-
sis system, the higher AUC value (AUC > 0.9) indicates the 
better prediction accuracy of the system [42, 43]. Hence, by 
considering both the accuracy and AUC values, it can be 
concluded that the prediction performance of SVM with pol-
ynomial kernel is better than the ANN in both the datasets. Ta
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Comparison with other reported methods

In this section, the comparison of the proposed method is 
made with the previously reported IBT based breast abnor-
mality detection methods. As described in the literature 
section of this article, several bilateral asymmetry analysis 
based breast abnormality detection methods with different 
degree of efficiency had already been reported. However, 
it is worth mentioning that due to the unavailability of the 
breast thermogram databases used in existing research 
works, we are not able to provide the comparative study 
of our proposed method in those respective databases. But, 
there are some bilateral asymmetry analysis based breast 
abnormality detection methods whose performances were 
evaluated by using the publically available DMR database. 
Hence, for comparison purpose, we have also evaluated our 
proposed system in the publically available DMR database 
and report the same in Table 7.

As summarized in Table 7, the proposed method out-
performs the other existing techniques. Unlike the bilateral 
asymmetry analysis based methods, the key advantages of 

the proposed method is that its accuracy does not rely on the 
accurate separation of left and right breasts of a thermogram, 
instead it uses the SVs to characterize the candidate thermal 
patches whose presence within breast region indicates the 
breast anomaly. Moreover in contrary to the bilateral asym-
metry analysis, the proposed method can detect the presence 
of breast abnormality even when the abnormality is present 
in both breasts of a thermogram and thus, improves the accu-
racy by increasing the number of true positives. Above all, 
instead of using a large number of features, the proposed 
method can detect the presence of breast abnormality by 
using only two SVs and based on these two SVs, it can also 
predict the degree of abnormality of any thermogram.

Limitation of our proposed method and future work

Although with regard to the obtained performance meas-
ures, the proposed method outperforms the existing meth-
ods, the ranges of the BAG index for predicting the degree of 
abnormality is dataset dependent for which the BAG index 
range for normal, mild abnormal and severely abnormal 

Fig. 9  a, b The ROC curves for ANN and SVM_P obtained using the DBT-TU-JU dataset and c, d the ROC curves for ANN and SVM_P 
obtained using the DMR dataset
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may slightly vary depending on the datasets. Moreover, the 
accuracy of the proposed method depends on the deline-
ation of breast regions from the thermograms so that the 
thermal patches within the breast region gets characterized 
but not the thermal patches of the non-breast regions. But, 
in our proposed method, the delineation of breast region is 
done by using a semi-automatic segmentation method that 
needs human-interaction for selection of lower parabolic 
boundaries. Hence, a potential area for future improvement 
of our proposed method is to delineate the breast regions 
automatically from breast thermogram images without the 
human intervention.

Conclusion

This paper describes a new approach for computer-aided 
diagnosis of breast abnormality in asymptomatic patients. 
The task is to automatically distinguish the abnormal ther-
mograms from the normal one to identify the cases that 
require urgent medical attention. Due to the fact that the 
thermograms having physiological dysfunction bear more 
high-temperature regions than that of the healthy breast ther-
mograms, the proposed approach is based on the analysis 
of the thermal patterns of the breast thermograms. For this 
purpose, the SVD is used for characterization of these ther-
mal patterns and to distinguish the abnormal thermograms. 
The experimental results show that the proposed system per-
forms better than other recently reported breast abnormality 
detection methods. In this paper, our contribution is twofold. 
First, we have used a single channel of the color channels 
instead of the three channeled RGB image to represent the 

candidate thermal patches and then, we have proposed to 
use the SVs to characterize the thermal patterns and it has 
brought a remarkable improvement in breast abnormality 
detection accuracies. We also demonstrate that although 
the image complexity features are highly correlated with 
the SVs, the SVs are more efficient in distinguishing the 
abnormal thermograms from the normal ones. Secondly, 
based on the extracted SVs, a BAG index has been designed 
to investigate the degree of abnormalities these abnormal 
thermograms bear.
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Table 7  Prediction performances of the proposed and other reported IBT-based breast abnormality detection methods

Acc. accuracy, Sens. sensitivity, Spec. specificity, N normal, B benign, C cancer, M malignant, Cy cyst, L left, R right, Ab abnormal

Authors Method used Dataset Classifier used Performance measures

Acc. Sens. Spec.

Araujo et al. [21] Temperature based 
interval symbolic 
features

DMR: 50 (14M, 19B, 
17Cy)

Distance based classifier – 85.70% 86.50%

Garduno-Ramon et al. 
[22]

Temperature features DMR: 454 (414N, 
40Ab)

– – 86.84% 89.43%

Gaber et al. [23] Statistical, Gabor, tex-
ture features

DMR: 63 (29 N, 34M) SVM Average Acc. of four scenarios: 
88.41%

Sathish et al. [25] Statistical and texture 
features

DMR: 80 (40N, 40Ab) SVM 90.00% 87.50% 92.50%

Borchartt et al. [26] Range temperature, 
mean temperature, 
standard deviation, 
quantization of higher 
tone

DMR: 28 SVM 85.71% 95.83% 25.00%

Our proposed method 1st and 2nd rank singu-
lar values

DMR (45Ab, 100N) SVM (polynomial) 98.00% 98.00% 98.00%
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