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Abstract
The basis and reliability for timely diagnosis of cardiovascular diseases depend on the robust and accurate detection of 
QRS complexes along with the fiducial points in the electrocardiogram (ECG) signal. Despite, the several QRS detection 
algorithms reported in the literature, the development of an efficient QRS detector remains a challenge in the clinical envi-
ronment. Therefore, this article summarizes the performance analysis of various QRS detection techniques depending upon 
three assessment factors which include robustness to noise, computational load, and sensitivity validated on the benchmark 
MIT-BIH arrhythmia database. Moreover, the limitations of these algorithms are discussed and compared with the standard 
signal processing algorithms, followed by the future suggestions to develop a reliable and efficient QRS methodology. Fur-
ther, the suggested method can be implemented on suitable hardware platforms to develop smart health monitoring systems 
for continuous and long-term ECG assessment for real-time applications.
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Introduction

The report of World Health Organization (WHO) places 
the cardiovascular diseases (CVDs) as the leading cause 
of mortalities across the globe and will remain in the near 
future [1]. In 2008, the CVDs caused 17.3 million deaths, 
representing 30% of the mortalities worldwide [1]. In 2018, 
the deaths in United States alone has increased to 836546 
(with an average of one death in every 38 s) [1, 2]. By 2030, 
the expected number of deaths can increase up to 23.3 mil-
lion globally [3]. As a consequence of the increased rate in 
mortalities due to CVD’s, cardiac health research has gained 
significant importance by the researchers. The most common 
clinical technique utilized for cardiac disorder analysis is 
an electrocardiogram (ECG). An ECG is a simple, reliable, 
low-cost and non-invasive tool commonly used to diagnose 
cardiac disorders [4]. An ECG records the electrical signals 
originating from the myocardium by placing the electrodes 

on the surface of the body which is later analyzed by a car-
diologist. The term ECG was introduced by Augustus D. 
Waller (a British physiologist) in 1887 when he recorded the 
first human ECG using a capillary electrometer [5]. In 1893, 
Einthoven used an improved electrometer and a correction 
formula to distinguish five deflections later named as P, Q, 
R, S and T [5] waves. These waves are generated by heart 
that undergoes three processes, namely atrial depolariza-
tion, ventricular depolarization and ventricular repolariza-
tion resulting in the generation of P wave, QRS complex, 
and T wave respectively. These different waves comprising 
the standard ECG cycle are depicted in Fig. 1 while their 
clinical significance is summarized in Table 1. In Fig. 1, 
the U wave is shown, however it is seen occasionally. It is a 
positive wave occurring after T-wave having an amplitude 
of one-fourth of the T wave. The U wave is found in subjects 
having more prominent T waves and slow heart rates (most 
frequently seen in leads V2–V4). Therefore, the genesis of 
U wave is elusive. All of these waves exhibit specific char-
acteristics (such as in time, amplitude or morphology) and 
carry sufficient amount of information for diagnosing CVDs. 
Further, various other features such as frequency, entropy 
distribution and energy, event intervals (like the RR-inter-
val) are also extracted for reliable diagnosis. Any change in 
either of the features of these P, QRS, T waves may indicate 
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cardiac abnormalities or arrhythmias leading to stroke or 
sudden cardiac death. Therefore, an efficient diagnosis of 
these waves is clinically essential for reliable analysis of 
heart health, such as arrhythmia classification [6–15], diag-
nosing breathing disorders [16, 17], study of cardiac func-
tioning during sleep and hypertension [18, 19], epilepsy [20] 
and for examining various other heart disorders [21].

Among these waves, the QRS wave exhibits the most strik-
ing feature in terms of morphology, amplitude and time of 
occurrence and therefore, plays a significant role in an effi-
cient analysis of ECG recordings of subjects. In the past few 
decades, the detection of QRS complexes has been thoroughly 
studied by various researchers. In fact, the study of P and T 
wave detection is not explored much in comparison to QRS 
complex detection due to the factors including low signal-to-
noise ratio (SNR), variation in amplitude and morphology, 
and overlapping nature of P and T wave. In spite of various 
studies and research works in the domain of QRS complexes 
detection, the development of a reliable universal solution is 
still a challenge. These challenges mainly arise due to low 
SNR, variability (i.e. inter and intra) in the morphology of 
QRS complex and the rest of the waves as well as the artifacts 
inherent in the ECG signal. The most commonly used data-
base for validating the research works has been the benchmark 
Massachusetts Institute of Technology—Boston’s Beth Israel 
Hospital (MIT-BIH) arrhythmia database [22] (described in 
detail in “MIT-BIH arrhythmia database” section). However, 

detailed analysis of the cardiac events is possible only if the 
QRS event is detected efficiently. Therefore, the development 
of fast, robust, efficient and reliable QRS detector becomes 
clinically important for timely diagnosis of CVDs.

The objective of this review article lies in the thorough 
analysis of QRS detection algorithms available in the litera-
ture. In order to prepare this manuscript, the literature are 
searched and reported using the databases such as Google 
Scholar, Scopus, web of science and the keywords searched 
is QRS and detection. The analysis is divided in two stages, 
i.e., the pre-processing stage and the QRS detection stage. In 
the preprocessing stage, the QRS complex feature is made 
more prominent or emphasized with respect to the rest of the 
waves. The output of this stage is followed by the QRS detec-
tion stage where the onset and offset points are demarcated 
and the corresponding R-peak is located in the ECG signal. 
The contribution of this study is to evaluate the performance 
of algorithms or techniques depending upon three criteria, 
i.e., (a) sensitivity towards the noise, (b) computational load 
and (c) accuracy for both the stages. Further, the current 
study also provide suggestions to develop a fast, efficient and 
robust QRS detector methodology for real-time applications.

The rest of the article is summarized as follows. “MIT-
BIH arrhythmia database” section briefly describes the most 
commonly used ECG database studied in the literature. “Pre-
processing stage” section presents the evaluation of the pre-
processing algorithms while “QRS detection techniques” sec-
tion presents the evaluation of the QRS detection algorithms. 
“Performance evaluation and discussion” section presents a 
brief discusses the challenges of the evaluated pre-processing 
and QRS detection stages on together followed by future sug-
gestions to develop an efficient QRS methodology. Final sec-
tion presents the conclusion of the study.

MIT‑BIH arrhythmia database

Most of the research works are evaluated and validated on 
the benchmark Massachusetts Institute of Technology—Bos-
ton’s Beth Israel Hospital (MIT-BIH) arrhythmia database 

Fig. 1  Cardiac cycle representing the waves

Table 1  Significance of different waves in ECG signal [5]

Segment/ wave Duration (ms) Amplitude (mV) Clinical significance

P wave 80–100 0.25 Atrial enlargement, fibrillation, flutter
PR segment 120–200 Baseline Pericarditis, heart blocks, atrial tachycardia
QRS complex 80–120 1.60 (R-wave) Ventricular hypertrophy, myocardial Infraction
QT interval 200–400 25% of R wave (Q-wave) Electrolyte abnormalities, coronary heart disease
ST segment 80–120 Baseline Coronary ischemia, myocardial infraction
T-wave 120–160 0.1–0.5 Coronary ischemia, wellens syndrome, left 

ventricular hypertrophy, hyperkalemia
U-wave 20–40 0.3–0.7 Hypokalemia, hypercalcemia, thyrotoxicosis
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[22] developed during 1975 and 1979 by the BIH arrhyth-
mia laboratory. The database contains two channel ambula-
tory ECG recordings of 47 different subjects comprising 48 
records. A modified limb lead II (MLII) is the lead A signal 
in 45 recordings; a modified lead V1 (often V2 or V5, and 
V4 in one excerpt) is the lead B. Whereas V5 is the lead A 
signal in the other three excerpts and V2 is the lead B (two 
excerpts) or MLII (one excerpt). The heartbeats signal in 
lead A have more prominent peaks than lead B signal. The 
database includes 110109 beat labels while the data is band-
pass filtered at 0.1 H–100 Hz. The excerpts are digitized 
with a sampling frequency of 360 samples per second and 
acquired with 11-bit resolution over 10 mV range. The data-
base is open-access available on-line that can be accessed 
for performing the experiments.

Pre‑processing stage

In this stage, the acquired raw ECG signal is pre-processed 
to remove various kinds of noise and artifacts [23] associ-
ated with them. These various kinds of noise include the 
baseline wander, artifacts due to muscle contraction, elec-
trode movement and power-line interference. The pre-pro-
cessing stage improves the SNR of the ECG signals. Hence, 
the pre-processing of the ECG signal is highly instrumental 
for an efficient QRS detection. Otherwise, it results in the 
generation of false alarms and degraded performance of the 
QRS detector. This section presents the performance evalu-
ation of the various pre-processing techniques based on two 
factors, i.e. computational load and robustness to noise. A 
summary of the evaluation done is presented in Table 2 at 
the end of this section.

For reader’s point of view, this section uses two variables, 
i.e. A[m] which refers to the raw input ECG signal and B[m] 
refers to the output filtered signal.

Amplitude technique

The amplitude technique is one of the commonly used 
algorithms used for the R-peak detection within the ECG 
signals. Initially, a differentiation step is applied to sup-
press the P and T event influence in order to highlight the 
QRS complex, which is followed by the amplitude thresh-
old. Later, this algorithm is used by Sufi et al. [24] to 
detect the heart rate on mobiles. Moreover, the amplitude 
threshold followed by the first derivative to make the slope 
of QRS complex more prominent. The amplitude threshold 
for a fragment of the ECG signal is determined as:

where � is the amount of ECG signal eliminated in percent-
age whose value vary from 0 < 𝛼 < 1 . Moreover, the value 
of � is optimized once before the pre-processing while the 
thresholds are kept constant throughout the analysis. Vari-
ous amplitude thresholds are employed for subsequent QRS 
detection. Morizet et al. [25] introduced a QRS scheme using 
Ath = 0.3max{A[m]}, where below 30% of the peak ampli-
tude of the signal is truncated for A[m], whereas Fraden [26] 
employed Ath = 0.4max{A[m]}.

The main advantage of this technique is that it involves 
less computational load among all the existing pre-pro-
cessing techniques which is due to smaller length of ECG 
signal used for processing. The disadvantage being the 
length of ECG segments processed are fixed and deter-
mined empirically [25–27]. If the length of ECG is longer, 
the performance may degrade until it divided into shorter 
lengths but the ECG segment may lose the starting and 
end of ECG beats.

First order derivative

Generally, a differentiator of first-order is utilized as a 
high-pass filter which removes unwanted low-frequency 
noise and the baseline wander of A[m]. Moreover, it cre-
ates zero crossings at the R-peak location and modifies the 
phase in the ECG signals. Several algorithms implemented 
the first derivative by the following equation [28]:

Moreover, Holsinger et al. [29] used a central finite-differ-
ence approach as:

while Okada et al. used a backward difference scheme [30]:

An optimal threshold is chosen and applied to B[m] along 
with the first-order derivative technique for subsequent QRS 
complex detection within the ECG signals. The length of 
ECG signal processed and the thresholds applied during the 
ECG analysis are fixed. The main advantage being this tech-
nique involves less computational load. The disadvantage 
being the technique is not able to remove high-frequency 
noise completely.

First and second derivative

The first and second order derivatives are calculated separately 
for A[m] (i.e. input ECG signal) in the QRS enhancement algo-
rithms. These derivatives magnitudes are linearly combined 

(1)Ath = � ×max{A[m]}

(2)
B[m] = −2A[m − 2] − A[m − 1] + A[m + 1] + 2A[m + 2]

(3)B[m] = A[m + 1] − A[m − 1]

(4)B[m] = A[m] − A[m − 1]
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to highlight the QRS wave region with respect to other ECG 
features. The first and second order derivatives computed by 
Balda et al. [31] are defined as:

Here, B0[m] is the first while B1[m] is the second order deriv-
atives of A[m]. Further, both of these derivatives are linearly 
combined as:

In [32], Ahlstrom et al. computed the first derivative as:

Thenafter, the rectified first derivative is smoothed as:

A rectified second derivative is then calculated:

At last, this smoothed rectified first and second derivative 
are combined together as:

These linear combinations of derivatives are followed by a 
proper threshold criterion for the subsequent QRS detection.

The advantage of this technique is that it involves less com-
putational load. However, the computational load is more than 
first derivative algorithms. The disadvantage being the noise is 
not reduced significantly. The length of ECG signal processed 
and the parameters utilized are fixed. However, the usage of 
several differentiators (i.e the advantage of each step) for pre-
processing is not justified in literature.

Digital filters

In the literature, the digital filter techniques are efficiently 
utilized for pre-processing the ECG signals [33–42]. Several 
algorithms are implemented to realize complex digital filters 
[30, 33, 43–54]. Among them, the most cited are highlighted 
here.

Engelse et al. [33] applied a differentiator initially to pro-
cess the input ECG A[m] as

Further, a digital low-pass filter (LPF) is applied to B0[m] as:

Another technique based on the digital filters has been pro-
posed by Okada [30] in which a three-point moving average 
filter is used to smoothen A[m] as:

(5)B0[m] = |A[m + 1] − A[m − 1]|

(6)B1[m] = |A[m + 2] − 2A[m] + A[m − 2]|

(7)B2[m] = 1.3B0[m] + 1.1B1[m]

(8)B0[m] = |A[m + 1] − A[m − 1]|

(9)B1[m] =
1

4
(B0[m − 1] + 2B0[m] + B0[m + 1])

(10)B2[m] = |A[m + 2] − 2A[m] + A[m − 2]|

(11)B3[m] = B1[m] + B2[m]

(12)B0[m] = A[m] + A[m − 4]

(13)
B
1
[m] = (B

0
[m] + 4B

0
[m − 1] + 6B

0
[m − 2] + 4B

0
[m − 3]

+ B
0
[m − 4])

Further, a LPF is applied to B0[m]

The input and output of this LPF are subtracted and squared, 
to remove waves of low amplitude with respect to R peak as:

Thenafter, filtering is applied to this square of difference 
which makes the QRS area enlarged relative to another ECG 
features:

Suppappola [55] proposed another digital filter based on 
the multiplication of backward difference (MOBD) [6, 55, 
56] which consists of AND-combination (i.e multiplication 
operation) of the adjacent derivative values. A MOBD of 
Mth order is defined as:

where C[m] represents the QRS features extracted that can 
be detected by the use of an proper threshold.

Dokur et al. [36] used two different band-pass filters and 
multiplied the outputs X[m] and Y[m] as:

where C[m] carries the extracted features of the QRS com-
plex. This procedure assumes that for each filter the occur-
rence of frequency components within the pass-bands 
characterizes each of the QRS wave. Here, the AND-com-
bination executes the multiplication operation. Particularly, 
if the outputs of both the band-pass filters are ’high’ and the 
feature output (i.e AND combination) is ‘true’, then only a 
QRS event is detected and the maximum amplitude is the 
R wave location.

In fact, Pan et al. [34] applied a band-pass digital filter 
followed by derivative to filter and measure the slope of 
ECG signals. A high-pass filter ( B2[m] ) is used after a low-
pass filter ( Y1[n] ) to constitute a band-pass filter given as:

The band-pass filter output is followed by the first derivative 
which is given by:

(14)B0[m] =
1

4
(A[m − 1] + 2A[m] + A[m + 1])

(15)B1[m] =
1

2n + 1

m+n∑

k=m−n

B0[p]

(16)B2[m] = (B0[m] − B1[m])
2

(17)B3[m] = B2[m]

{
m+n∑

p=m−n

B2[p]
2

}

(18)C[m] =

M−1∏

p=0

(X[m − p] − X[m − p − 1])

(19)C[m] = X[m] × Y[m]

(20)
B1[m] = 2B1[m − 1] − B1[m − 2] + A[m] − 2A[m − 6] + A[m − 12]

(21)
B2[m] = 32B1[m − 16] − (B2[m − 1] + B1[m] + B1[m − 32])
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Differentiation is followed by the band-pass filtered signal 
( Y2[n] ) to emphasize QRS slope, suppress the baseline wan-
der and smoothing ECG signals.

However, the MOBD algorithm is more suitable for real-
time implementation due to its better trade-off between 
computational load and accuracy. The squaring operation 
amplifies the smaller differences less than the larger differ-
ences in an exponential fashion.

The advantage of the digital filter based technique is that it 
is able to reduce noise properly. However, its computational 
load more than derivative based algorithms. The length of 
ECG processed and parameters utilized are fixed.

Wavelet transform (WT)

The wavelet transform (WT) [57] is a mathematical tool for 
analyzing non-stationary signal localized in both time and 
scale representation.

The continuous wavelet transform (CWT) provides a vari-
able resolution in both the time and frequency domains for 
various frequency bands by using a set of analyzing func-
tions which bears an advantage on Fourier transform (FT) 
and short-time Fourier transform (STFT).

However, the CWT is more redundant than the discrete 
wavelet transform (DWT) that can be deduced by discretiz-
ing the scale and translation parameters. It is usually imple-
mented using the high-pass and low-pass filters as shown in 
Fig. 2. This choice of scale ( a = 2k ) and translation parameters 
( b = m(2k) ) leads to the dyadic WT (DyWT) as:

where j and n are integers. The DyWT is implemented 
using a dyadic filter bank, in which the filter coefficients 
are obtained from the mother wavelet function employed 
for analysis of non-stationary signals [58–66] like an ECG.

The choice of the mother wavelet (like Haar, Daubeche-
sis, Mexican hat and many more), length of processed ECG 

(22)
B3[m] =

1

8
(−B2[m − 3] − 2B2[m − 1] + 2B2[m + 1] + B2[m + 2])

(23)CWT(a,b) =
1
√
a

+∞

∫
−∞

x(t)
�
t − b

a

�
dt, a > 0

(24)Wf (2
k, b) =

∞

∫
−∞

f (t)Ψ ∗2k ,b (t) dt

(25)Ψ2k ,b(t) =
1

2k∕2
Ψ
(
t − b

2k

)

(26)Ψ2k ,b(t) =
1

2k∕2
Ψ
(
t

2k
− m

)

segment and wavelet scale varies in the literature [68–71]. 
However, the selection of mother wavelet depends upon the 
similarity to the QRS complex. The ECG signals are divided 
into 2.4 s and 11 s segments by Ahmed et al. [68] and Xiuyu 
et al. [69] respectively. The scales vary from 23 to 24 and 22 
to 24 , which is used by Szilagyi [70] and Xu et al. [71] to 
detect the QRS complexes. Moreover, the input ECG signal 
is re-sampled at 250 Hz by Martinez et al. [72].

The advantage of WT is that it improves the signal quality 
by choosing the coefficients of high amplitude. The disad-
vantage of this technique is that it involves high computa-
tional load.

Matched filters

The matched filter provides an optimal SNR and more essen-
tially, a symmetrical output pulse waveform. Digital filter-
ing is used prior to the use of matched filters [73, 74]. The 
matched filter output for the filter impulse response of length 
M = 128 is computed as

where q(t) is an output sample and r(t − j) are input sam-
ples of the matched filter. For every patient, the filter coef-
ficients pj are selected to optimize the matched filter impulse 
response. The filter output coefficients are chosen in such 
a way that resembles to the bandpass-filtered QRS com-
plex. Further, the dc component of sampled QRS complex 
is removed and windowed and normalized to have a gain 
of one for the matched filter used as an impulse response. 
Basically, the matched filter impulse response is the time-
reversed version of a template QRS complex. In matched 
filters, the length of the template processed is fixed; while 
the type of filter utilized and length of the template is deter-
mined empirically. However, its efficient implementation 
is available in [75]. The disadvantage of this technique is 

(27)q(t) =

127∑

j=0

pj × r(t − j)

Fig. 2  Block diagram of DWT implementation
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that the analysis of ECG requires more complexity than the 
derivative based algorithms.

Filter banks (FB)

A FB typically contains a set of analysis filters. It decom-
poses the signal bandwidth into sub-band signals having uni-
form frequency bands of constant length. These sub-bands 
provide information for processing the input signal in both 
the time and frequency domain from different frequency 
ranges [76]. The analysis filters Hj(z) bandpass the input 
ECG signal A(z) [76] to produce the subband signals vj(z) as:

where j = 0, 1,… , N − 1 . The effective bandwidth of sub-
band vj(z) can be downsampled to decrease the total rate 
which is �∕N . One sample is kept out from the N samples 
by utilizing this downsampling process N ↓ . Hence, down-
sampled signal dj(z) is given by:

where X = e−k(2�∕N). The sub-band vj(z) has a higher sam-
pling rate than dj(z) . The process of filtering is done using 
downsampling at 1 / N of the input rate. This technique 
reduces the computational load of filter bank algorithms 
[76] and referred as polyphase implementation. The sub-
bands of interest are combined to form a variety features that 
represent the QRS complexes [76]. For example, a sum-of-
absolute values feature can be computed using sub-bands, 
j = 1,… , 4 in the range of [5.6, 22.5] Hz. Six features ( a1 , 
a2 , a3 , a4 , a5 , and a6 ) are derived from these sub-bands as:

These features contain a range of values being proportional 
to QRS wave energy. Ultimately, heuristic beat-detection 
logic [76] is utilized to incorporate some above features rep-
resenting the QRS wave.

This technique significantly increases the SNR, which 
can be considered as an advantage. The computational load 
of filter banks depends on four parameters, i.e. the filter 
length, transition-band width, number of sub-bands and the 
stop-band attenuation having fixed values and are deter-
mined experimentally [77]. It involves high computational 
load which is more than the derivative based techniques. 

(28)vj(z) = Hj(z)A(z)

(29)dj(z) =
1

N

N−1∑

p=0

vj(z
1∕NXp)

(30)

a1[m] =

3∑

j=1

|||dj(z)
|||, a2[m] =

4∑

j=1

|||dj(z)
|||, a3[m] =

j=4∑

j=2

|||dj(z)
|||

(31)

a4[m] =

3∑

j=1

(dj(z))
2, a5[m] =

4∑

j=1

(dj(z))
2, a6[m] =

j=4∑

j=2

(dj(z))
2

Afonso et al. [78] introduced finite impulse response (FIR) 
filters having fixed length i.e. 32. The filters are employed 
to decompose the noisy input ECG into eight constant sub-
band frequencies. A sub-band signal within the range of 
0–12.5 Hz is not changed, while in the range of (12.5–25 Hz) 
the sub-band signal is removed outside the region of QRS 
wave. The high-frequency components outside the QRS 
region are considered as noise. The sub-band signal within 
the rest of six bands of range (25–100 Hz) is considered as 
zero. The main challenge is the selection of combination of 
optimal filter banks to highlight the QRS wave.

Hilbert transform (HT)

Zhou et al. [79] and Nygards et al. [80] used Hilbert trans-
form (HT) for QRS detection. In the time domain, the HT 
of the input signal A is:

In the frequency domain, the input signal can be transformed 
with a filter of response:

where ⊗ denotes the convolution operator and the transfer 
function of the Hilbert transform H(j�) is given by:

The use of fast Fourier transform (FFT) reduces the compu-
tational load of Hilbert transform. The HT i.e. AH[m] of the 
ECG signal A[m] is used to compute the signal envelope [80] 
for band-limited signals which is given by:

Further, the envelope [80] is approximated which involves 
less computational load as:

Then after, the envelope is low-pass filtered [80] to eliminate 
the ripples and to avoid uncertainty in peak detection. More-
over, a waveform adaptive scheme is proposed to remove 
ECG components of low frequencies. Zhou et al. [79] pro-
posed a method to approximate the envelope of input signal 
based on HT given as:

where B1[m] and B2[m] are orthogonal filter outputs given as:

(32)AH(t) = H{A} =
1

�

+∞

∫
−∞

A�

t − �
d�

(33)AH(j𝜔) = A(j𝜔)⊗ H(j𝜔)

(34)H(j𝜔) =

{
−k, 0 ≤ 𝜔 < 𝜋

+k, − 𝜋 ≤ 𝜔 < 0

(35)Be[m] ≈

√
A2[n] + A2

H
[m]

(36)Be[m] ≈ |A[m]| + ||AH[m]
||

(37)Be[m] ≈
||B1[m]

|| + ||B2[m]
||

(38)B1[m] =A[m]| − A[m − 6],
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Further, the noise is removed from the envelope signal 
Be[m] by using a four-tap moving average filter. A few works 
[81–83] have reported the use of a first derivative before 
applying the HT. The ECG is differentiated which modifies 
the phase and creates zero crossings the R-peak location. 
Hence, it requires a transformation which rectifies the phase 
to mark the true R-peak location in a signal. In [84], the 
output of Hilbert transform is followed by adaptive Fourier 
decomposition for enhancing the QRS complex in the ECG 
signal.

This technique involves high computational load and does 
not able to reduce noise by itself. The use of FFT for the cal-
culation of HT makes the envelope independent of the frame 
width. During experiments moving average and digital filters 
are utilized whose selection is done empirically while the 
length of ECG signal processed are constant.

Empirical mode decomposition (EMD)

EMD technique is widely used for nonlinear and non-sta-
tionary signal analysis [85]. It decomposes a signal into a 
sum of intrinsic mode functions (IMFs). The EMD process 
can also be utilized for adaptive filtering. As such, the com-
bination of number of the IMFs obtained after decomposing 
the ECG signal generates more prominent QRS wave. The 
EMD can be explained by sifting process. J modes wp[m] 
and a residual term g[m] [86–88] are obtained and given by:

The various steps involved in EMD algorithm are as follows:

1. Given a signal wp=1[m] = r[m] ; with the sifting 
rk[m] = wp[m] , k = 0.

2. Detect all extrema of input rk[m].
3. Calculate the lower and upper envelopes from the max-

ima and minima by using cubic spline interpolation.
4. Compute the mean of upper and lower envelopes, 

n[m] =
1

2
(EnvMax[m] + EnvMin[m]).

5. Extract the detail rk+1[m] = rk[m] − n[m].
6. If rk+1[m] is an IMF, go to step 7; otherwise, iterate steps 

2–5 on the signal rk+1[m] , k = k + 1 . (An IMF satisfies 
two conditions i.e (a) the number of the extrema equals 
the number of zeros and (b) the upper and lower enve-
lopes should have the same absolute value.)

7. Extract the mode wp[m] = rk+1[m].
8. Calculate the residual gp[m] = r[m] − wp[m].
9. The extraction is finished g[m] = gp[m] if gp[m] has less 

than two extrema, otherwise, the algorithm is iterated 

(39)B2[m] =A[m]| − A[m − 2] − A[m − 6] − A[m − 8]

(40)A[n] =

J∑

p=1

wp + g[m]

from step 1 on the residual gp[m] , p = p + 1 . The two 
conditions must be satisfied for an IMF: (a) The mean 
value of the envelopes defined by maxima and minima 
should be zero at every point. (b) The difference between 
number of zero crossings and number of extrema should 
be zero or one.

The length of ECG signals processed is fixed which generates 
the IMF’s i.e. the number of IMF’s is proportional to the length 
of ECG. The selection of number IMF’s is selected empiri-
cally. An ensemble empirical mode decomposition (EEMD), 
an advanced EMD is also used to pre-process the ECG signal. 
This technique involves high computational load and reduces 
noise significantly.

Mathematical morphology

Chu et al. [89] proposed an enhancement technique, namely 
mathematical morphology for removing the noise associ-
ated with the ECG signal and latter used by Trahanias et al. 
[90] for QRS detection. It depends on the idea of dilation 
and erosion. Assume that u : U → K and p ∶ P → K repre-
sent discrete functions, where U and P sets are denoted by 
U = 0, 1,… , M − 1 and P = 0, 1,… , N − 1 . K represents a 
set of integers here. Erosion of a function u [89] can be defined 
in terms of function p as:

where p refers to a structuring element also, and defined as 
n = 0,… ,M − N . The values of u are always smaller than 
function ( u⊖ p ). Dilation of a function u [89] is defined in 
terms of function p as:

where in this case n = N − 1, N,… , M − 1 . Values of u 
are always less than function ( u⊕ p ). Additional steps are 
performed by combining the dilation and erosion opera-
tions. Closing, (indicated as ∙ ) is defined as dilation after 
erosion operation while Opening (indicated as ◦ ) is defined 
as erosion after dilation operations. These operators exploits 
the input signals, comparatively in such a way that for a 
sequence u, opening eliminates the peaks while closing 
eliminates the negative peaks with the structuring element 
p. Chu and Delp [89] used these opening and closing opera-
tions [90] to suppress noise given as:

where p is the structuring element. The features are gener-
ated for the QRS wave as

(41)(u⊖ p)[n] = min
m=0,…,N−1

(u[n + m] − p[m])

(42)(u⊕ p)[n] = minm=0,…,N−1(u[m] − p[n − m])

(43)r̃ =
[(r◦p) ∙ p] + [(r ∙ p)◦p]

2

(44)d = r̃ −

(
[(r̃◦p) ∙ p] + [(r̃ ∙ p)◦p]

2

)
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Zhang et al. [91] utilized the first derivative (Okada’s equa-
tion [30]) after multi-scale mathematical morphology filter-
ing to remove base-line drifts and artifacts associated with 
the A[m].

During experiments, the length of ECG segments pro-
cessed are fixed and equal [25, 26, 31–33, 92]. The fixed 
length of the structuring element is used for the analysis of 
A[m] i.e 3. This structuring element length is determined 
empirically and shorter than the multiplication of sampling 
frequency and the length of A[m] [93]. The advantage of the 
multiplication operations used in literature [25, 26, 31–33, 
92] is not discussed. The use of low-pass filter along with 
this approach increases the SNR significantly.

Sparsity filtering

The sparse representation (SR) model for a time-domain 
input signal a ∈ ℜn can be approximated as a ≈ D� . Here, 
D ∈ Ren×m is a dictionary matrix � ∈ ℜm that provides coef-
ficients representing the input signal. In SR, the input signal 
is approximated as a weighted sum of each columns of the 
dictionary matrix D known as atoms and their weights (as 
given by the coefficients in � ). Generally, the dictionary D 
is redundant, where the number of atoms in the dictionary is 
greater than the length of the input signals. The coefficients 
� are sparse i.e. there are only few non-zero weights (coef-
ficients) in � . Hence, the SR of the input signal a is approxi-
mated using only few atoms (with corresponding weights 
that are not equal to zero) from the dictionary matrix D.

In [94], second and third order derivatives of the input 
signal were computed to smoothen the ECG signal. To 
reduce the artifacts by solving a convex �1 optimization 
problem where the clean input signal is modeled as a sum of 
two signals whose second and third-order derivatives (differ-
ences) are sparse respectively. In [95], �1-sparsity filter with 
overcomplete hybrid dictionaries is used to emphasize the 
QRS complex and suppress the baseline drifts, power-line 
interference and large P/T waves. In [96], the input signal is 
modeled as superposition of atoms which is learned from a 
training set plus additive random noise to remove noise and 
other artifacts such as baseline wandering.

Among all the pre-processing algorithms discussed in 
this section, none of them are completely efficient when all 
kinds of noise are considered [27] for analyzing the ECG 
signals. The amplitude and slope based techniques have a 
significant advantage over electromyogram (EMG) noise (i.e 
muscle noise) and are sensitive to changes in the baseline 
of A[m]. However, the performance of these algorithms is 
degraded if they are applied to composite noise. Rather, a 
higher performance is reported by the high-pass and cubic 
spline approaches used to correct the baseline wander. The 
filtering of the signal to remove EMG noise is more difficult 

as the frequency spectrum overlaps the QRS wave. As such, 
pre-processing algorithms based on filtering based algo-
rithms are sensitive to high-frequency noise but insensitive 
to baseline changes. Further, the amplitude and derivative 
based techniques involve less computational load in their 
implementation, despite being noise sensitive. However, 
the various stages involved in the amplitude and derivative 
based algorithms are not justified for pre-processing the 
ECG signal for their validation on the MIT-BIH arrhyth-
mia database. As such, the parameters of these techniques 
employed are purely data dependent and may yield varying 
results, if analyzed on a different database (or on data of dif-
ferent patients). A brief comparison of these pre-processing 
techniques is summarized in Table 2 in terms of computa-
tional load and noise sensitivity. From Table 2, it is con-
cluded that the amplitude and derivative based techniques 
should be developed properly for pre-processing the ECG 
signals. Once A[m] is filtered, it is passed through the detec-
tion stage for reliable QRS detection.

QRS detection techniques

The filtered ECG signal is passed through the QRS detec-
tion stage. This section presents a brief description of the 
QRS detection techniques used for the localization of the 
R-peak in the input ECG signal. Among several detection 
algorithms include the thresholding [50, 117–120], syntactic 
methods [121–123], neural networks [105, 124–126], zero-
crossing [127], hidden Markov model [128], matched fil-
ters [129, 130], and singularity techniques [131–133]. These 
detection algorithms are also evaluated on the basis of two 
parameters, i.e. computational load and robustness to noise 
which is summarized in Table 3.

Thresholding

The thresholds are fixed values that are used to determine 
a boundary above which a R-peak is detected in A[m]. 
The thresholds may be fixed or adaptive depending on the 
approach employed. Numerous works have been reported 
in which the threshold based approach is utilized that is 
determined experimentally in [28, 31, 33, 34] to detect the 
R-peak. A peak is defined as a local maximum when the sig-
nal changes its direction within a pre-defined time interval, 
i.e. to be signal peak, the peak should exceed the threshold. 
The approach is considered as simple while the choice of 
optimal threshold is quite difficult. If the input ECG signal 
contains maximum SNR, then it is possible to utilize the 
lower thresholds. In Pan et al. [34] improved the SNR by 
using bandpass filter and used the adaptive thresholds. The 
thresholds are allowed to float over the noise. The two types 
of thresholds are applied to the R-peak i.e higher and lower 
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thresholds. The higher thresholds among them are allowed 
to first analyze the signal. While the lower threshold is used 
when the no QRS complex is detected within a certain time 
which is followed by a search back technique to find the 
QRS complexes back in time. The main advantage of this 
approach is that it involves less computational load in com-
parison to all the detection techniques utilized. However, 
this method requires specification and adjustment of numer-
ous parameters for adequate detection accuracy remains a 
challenge.

Neural networks (NN’s)

Neural networks have the ability to learn patterns in response 
to newly input patterns. Those learning and self-organizing 
abilities are appropriate for QRS-wave recognition [134], 
because the QRS-wave will change its shape according to 
the patient’s physical condition. Suzuki et al. [135] used 
an ART2 (adaptive resonance theory) network employed 
in this self-organizing neural-network system to detect the 
QRS complex. In this approach, the category of neural net-
works should be selected and modified during analysis. The 
architecture of an ART2 newtwork is shown in Fig. 3, where 
LTM is the long-term memory, F1 and F2 are layers con-
necting the neurons and wi , xi , ui , qi , pi qi are the nodes that 
characterize the F1 layer. A neural network with N number 
of inputs is developed, where the sample taken from the 
window is fixed for each input [136]. Garcia-Berdone’s et al. 
[136] utilized 20 samples as input, thereby emphasizing that 
the input for NN’s should be chosen within a range of sam-
ples. In the NN hidden layer, the choice of optimal number 
of neurons is difficult and determined empirically. A typical 
neural network architecture is depicted in Fig. 3.

The disadvantage of the technique is that involves high 
computational load and is highly noise sensitive. The aver-
age accuracy of this technique is also lesser than the thresh-
olding based techniques.

Hidden Markov model (HMM’s)

A hidden Markov model (HMM) characterizes an observed 
data sequence by a probability density function which var-
ies according to the state of an underlying Markov chain. In 
this approach the output function, a number of states and 
transition probabilities are determined empirically. The 
HMM parameters are fixed and cannot be approximated 
from training data by employing maximum likelihood 
methods due to the fact that data produced from the state 
sequence remains unknown [137]. The parameters of a hid-
den Markov model are not directly estimated when the data 
is unknown. A hidden Markov model is depicted in Fig.4, 
where q1, q2, q3,… , q6 are the number of sets of states. The 
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model consists of two Markov sub-sources, i.e. one for non-
QRS segments and one for QRS segments.

The advantage of this technique is that it provides auto-
matic estimation of all the parameters in the decision rule 
stage from each ECG file undergoing analysis. However, the 
search for parameters involves huge computational load. The 
accuracy results show that a simple HMM detector achieves 
accuracy which is very close to adaptive threshold based 
detection techniques.

Syntactic techniques

The syntactic approach is applied after the digital deriva-
tive operator [121]. The method utilizes a very simple look-
up table for coding. The sequences of energy peaks of the 
derivatives of ECG waveforms corresponding to different 
leads are coded into the string of messages. For each lead 
waveform, the strings which correspond to QRS complexes 
are considered as a sample of positive information and are 
processed by a grammatical inference algorithm. Analo-
gously the strings which correspond to non-QRS complexes 
are saved and considered as a negative information, sample 
to be eventually used in a further generalization step. Con-
sequently, two grammars are built [121]; the first one gener-
ates only positive sequences (corresponding to QRS events) 
while the second one generates sequences corresponding to 
hypotheses that may or may not correspond to a QRS com-
plex. This learning algorithm infers linear grammars based 
upon formal derivatives.

The syntactic method enables the detection of the QRS 
wave of an ECG signal by itself [121–123]. The ECG 

fragments length processed are uniform throughout the 
analysis. Belforte et al. [121] used segment of 30-s. The 
syntactic method [122] utilizes four attributes, i.e. the chord 
length, arc symmetry, arc length and degree of curvature that 
are computed empirically.

The disadvantage of the technique is that involves high 
computational load and is highly noise sensitive. However, 
it yields a comparable accuracy with the rest of the detect-
ing techniques.

Singularity methods

Most of the ECG signal information is carried by its irregu-
lar morphology and singular points (fiducial points). In 
mathematics, a singularity is often considered as the oppo-
site of smoothness and can be measured by Lipschitz expo-
nent. Using the nth derivative of a so-called smoothing func-
tion, the singular points can be detected by modulus maxima 
of the wavelet. In this approach thresholding is employed 
on individual modulus maxima of WT to reduce the white 
noise from ECG signals. The wavelet scales are chosen 
experimentally to search for singular points [138, 139]. The 
use of thresholds per ECG fragment is constant [138] and 
computed empirically.

The disadvantage of the technique is that involves high 
computational load due to searching the singular points and 
is highly noise sensitive. However, it yields an accuracy 
(i.e. 99.22% [139]) which is approaching to the threshold-
ing based techniques.

(a) (b)

Fig. 3  Neural network models for QRS detection
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Zero‑crossing (ZC)

Zero crossing methods are robust against noise and are par-
ticularly useful for finite precision arithmetic. This detection 
method inherits the robustness and provides a high degree of 
detection performance even in very noisy ECG signals. In 
this technique, the beginning of an event is identified when 
the features of the signal (i.e. number of zero crossings per 
segment) fall below a signal adaptive threshold while the 
end is identified when the signal rises above the threshold 
[127, 140]. This beginning and end of the event determine 
the boundaries of the search interval for the temporal locali-
zation of the R-wave. If adjacent events are temporally very 
close (multiple events), they will be combined into one 
single event. The beginning of the combined event is the 
beginning of the first event and the end of the combined 
event is the end of the last event. The threshold per segment 
employed for determining the number of zero crossings is 
fixed [127] and calculated empirically. In literature [127, 
141], the search for zero-crossings depend on the choice of 
wavelet scale.

The disadvantage of the technique is that involves high 
computational load and is highly noise sensitive. How-
ever, it yields an accuracy (i.e. 99.70%) which is approxi-
mately same with those achieved by the thresholding based 
techniques.

The different algorithms involved in the detection of QRS 
complexes are summarized in Table 3. Among all the algo-
rithms presented, the thresholding approach involve low 
computational load. Since, the study aims to highlight the 
development of efficient algorithms for a robust and reli-
able QRS detector, the use of threshold based technique is 
suggested because of its simplicity and efficiency. These 
thresholds are used in time [25, 26, 153] and time-frequency 
domain both [154–156]. There are two types of thresholds 
used to detect the QRS complexes which include the fixed 
and adaptive thresholds. The use of fixed threshold is simple 
and efficient for stationary input signals only having simi-
lar morphologies. In fact, movement of patients, baseline 
drift and variation in morphology of ECG signals results in 
highly inaccurate detection of QRS complexes using fixed 
thresholds. Rather, the usage of adaptive thresholding [71, 

157–159], increases the correct detection of QRS com-
plexes; however, the adjustment of multiple thresholds cho-
sen empirically is a drawback. Most of the QRS detection 
presented in Table 3 perform well on the clean or filtered 
signals. Rather, their performance degrades in the noisy 
environment or signals containing arrhythmias. Therefore, 
these QRS detection techniques lacks in providing a general-
ized solution.

Performance evaluation and discussion

The R-peak detection is followed by the performance evalu-
ation of the subsequent algorithms. The performance evalua-
tion of various algorithms discussed in the earlier sections is 
estimated on the basis of two statistical parameters i.e. sensi-
tivity and positive predictivity. The sensitivity is defined as 
the rate of correctly detected events among the total number 
of events detected by the algorithm, while positive predic-
tivity refers to the rate of correctly classified events in all 
detected events which can be represented as: 

 where TP (true positives) is termed as the number of cor-
rectly classified events into a particular class, FN (false 
negatives) refers to events of a particular class which have 
not been detected, and FP (false positives) refers to the 
number of events of another class detected in a particular 
class. The overall performance of the existing QRS detec-
tion algorithms reported in the current study have not been 
analyzed relative to computational load and noise sensitiv-
ity. Further, a standard database is not used for testing these 
QRS detection algorithms which makes the analysis difficult 
to evaluate and compare i.e. some of works utilized different 
databases or signals from patients demanding the develop-
ment of an efficient QRS detector algorithm. An algorithm 
or technique can be termed as efficient, if it satisfies the 
following factors such as low computational load, evaluated 
on common standards of data and high accuracy. As such, 
the QRS detection algorithms reporting high classification 
performance in terms of accuracy, computational load along 
with the other factors responsible are summarized in Table 4 
and discussed subsequently to develop a fast and robust QRS 
detector.

A high overall performance is reported by Li et al. [160] 
(records 214 and 215 are excluded) achieving a sensitivity 
of 99.89% and specificity of 99.94% respectively, evalu-
ated on the benchmark MIT-BIH arrhythmia database 
[22]. The features of the different waves are extracted using 

(45a)Sensitivity (Se) =
TP

TP + FN
× 100

(45b)Positive predictivity (Pp) =
TP

TP + FP
× 100

Fig. 4  HMM model for QRS detection [137]
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wavelet-based approach and singularity technique for clas-
sification of these features. However, this technique involves 
high computational load and hence cannot be considered 
superior in terms of performance. Moreover, the experi-
ments are performed by excluding some of the records from 
the MIT-BIH arrhythmia database [22] to reduce the noise 
in the processed ECG signals and reported an improved per-
formance in the detection of QRS complexes. While several 
investigators also performed their experiments by excluding 
paced beats [139] and ventricular flutter beats [72] from the 
patient’s data. Rather, such kind of evaluation of algorithms 
based on the variability in the utilization of data cannot be 
justified. Thus, a reliable algorithm is needed for the analy-
sis of ECG signals yielding better overall performance on 
the overall dataset (i.e. without excluding any fragments of 
ECG).

In Table 4, each of the QRS detection algorithm is cat-
egorized as low, medium or high in terms of its compu-
tational load. The computational load of the algorithm is 
determined by computing the total number of operations 
involved (in terms of addition, multiplication and differ-
entiation) and the number of iterations. The algorithms 
with more number of operations (i.e., higher computa-
tional load) is categorized as high while the algorithms 
with lesser number of operations is termed as low. The 
algorithms having low computational load are faster and 
vice-versa. Therefore, faster algorithm is more suitable 
for hardware implementation and can be used in real-time 
monitoring of ECG signals. Table 4 shows that the Christov 
[157], Chiarugi et al. [162] and Elgendi [166] algorithms 
involve low computational load. In the preprocessing stage, 
the application of first order derivative is promising, par-
ticularly if it is followed by a suitable detection stage [167] 
such as dynamic and/or moving average threshold. The 
computational load of a first order derivative is O(m) i.e. 
for m length of ECG data, O(m) number of operations are 
required, i.e. of linear order. Similarly, the computational 
load for second order derivative require additional O(m) 
operations. In fact, the sole application of first order deriva-
tive in the preprocessing stage is noise sensitive, and hence, 
it must be followed by an efficient detection scheme [27]. 
However, the implementation of the first and second order 
derivative schemes used for preprocessing the signal is 
slower than the amplitude based schemes. Rather, a faster 
(or simple) technique cannot be considered as efficient for 
QRS detection.

Prior to the development of a fast and robust QRS detec-
tor, these efficient algorithms are evaluated on the perfor-
mance parameters such as noise sensitivity, computational 
load and accuracy as mentioned in each of the earlier sec-
tions. In addition, these efficient algorithms are required to 
be implemented on the suitable hardware platforms such as 
microcontrollers or field programmable gate arrays (FPGA). 

However, the processing speed of the algorithms depends on 
the operating frequency of these hardware platforms. It is to 
note that the higher is the processing speed of the hardware 
platforms, faster is the processing and vice-versa. Some of 
the works reported usage of mobile phones [24] to evalu-
ate the performance of the three QRS detection techniques. 
Here, the QRS pre-processing stage consists of amplitude, 
first and second order derivative algorithms, whereas the 
detection stage consists of a thresholds only. The simplicity 
of the combination of these methodologies can be confirmed 
from Table 4 in terms of computational load. It is concluded 
from Table 4, the combination of first derivative with thresh-
old can be considered as efficient in terms of computational 
load for detecting the QRS complexes.

While processing the ECG signals, the consumption 
of power [166] will be a limitation in battery operated 
devices. The case of classical Pan–Tompkins technique 
[34] is an example which shows a significant power util-
ity [167], though it uses first order derivative. The total 
computational load of Pan–Tompkins algorithm is O(mkn) 
where ‘n’ is the number of stages through which the ECG 
signal is passed, ‘k’ is the order of the individual filters 
(in this case it is 1) and m is the length of the ECG sig-
nal. When n and k are very small compared to m, the total 
complexity would be O(m). Due to more stages involved 
in the Pan–Tompkins algorithm, more power is required 
in the detection of QRS complexes. In this study, the 
standard Pan–Tompkins algorithm is suggested as a ready 
made solution that can be implemented on suitable hard-
ware platforms to develop an efficient QRS detector. The 
experiments are validated on the benchmark of the MIT-
BIH arrhythmia database and performed using the MAT-
LAB software package with hardware configuration of 
Intel CoreTM i5-processor CPU 3.30 GHz and 4.00 GB of 
RAM. The different stages involved in the Pan–Tompkins 
algorithm is depicted in Fig. 5.

The complete analysis of the QRS detection algorithms 
depending on the factors such as noise sensitivity, com-
putational load and accuracy is presented in this study 
prior to their implementation. The algorithms employed 
in real-time analysis should be simple (in terms of compu-
tational load) without resulting in degraded performance 
i.e., accuracy. If the algorithm is simple, the processing 
of larger databases is faster and requires less hardware 
leading to low-power consumption and reduced cost. It 
is also suggested to process the input data at higher oper-
ating frequencies as it can be helpful to process larger 
databases within the less amount of time. From Table 4, it 
can be concluded that the combination of first derivative 
and threshold are efficient if developed properly. Moreo-
ver, the Pan–Tompkins can be considered as a complete 
ready-made solution in the efficient detection of QRS com-
plexes which satisfies all the factors like noise sensitivity, 
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computational load and accuracy which is evaluated on 
all the records (without excluding of any segment) of the 
MIT-BIH arrhythmia database. An efficient QRS detector 
can be integrated with the feature extraction and the clas-
sification algorithms for arrhythmia classification [12, 168, 
169]. Moreover, a fast and robust detector can easily be 
employed for breathing disorders and various other cardiac 
disorders to enhance the lifestyle of patients for CVDs.

Despite of the several algorithms reported in literature 
their clinical utility is not discussed. It is however difficult 
for an algorithm that mentions its significance and util-
ity from a clinical point of view. It is best of the author’s 
knowledge that none of the discussed algorithms are 
implemented and verified in a clinical environment or hos-
pitals. Hence, it is also suggested that the new algorithms 
developed for robust and reliable QRS detector based on 
the factors (i.e. as mentioned in the aim of the study) must 
be implemented and verified in the clinical environment.

Conclusion

This article presents a brief study of QRS complex detec-
tion algorithms based on the literature, to figure out the 
best-suited algorithm for cardiac analysis based on the fac-
tors like robustness to noise, computational load and sensi-
tivity. For pre-processing the filtered ECG, the first-order 
derivative is suggested because it involves less computa-
tional load with high accuracy. However, this approach 
is noise sensitive and therefore, the approach should be 
followed by a suitable detection algorithm such as adap-
tive thresholding. Both these techniques can be developed 
firmly for detecting the QRS waves because the combina-
tion involves less computational load and achieves higher 
accuracy suitable real-time applications. However, the 
classical Pan–Tompkins approach is also a good ready-
made alternative which is employed in most of the works 
in arrhythmia classification and implemented in this study. 
The developed QRS detectors based on the suggested algo-
rithms can be helpful for detecting several cardiac disor-
ders to lead a healthy and secure lifestyle.

Table 4  Overall performance analysis of QRS detection algorithms

BPF bandpass filter, FD first derivative, LPF low pass filter, MA moving average, HT Hilbert transform, WT wavelet transform, DWT discrete 
wavelet transform, SD second derivative

Previous works Year Detection technique Preprocessing technique Computational load +P S
e

Pan and Tompkins [34] 1985 Thresholds (> 2) BPF + FD + squaring + MA Medium 99.56 99.76
Li et al. [160] 1995 Singularity + thresholds (> 2) WT + digital filter High 99.84 98.89
Afonso et al. [161] 1996 Thresholds (> 2) Filter banks High 99.56 99.59
Moraes et al. [139] 2002 Threshold ( = 1) LPF + FD + spatial velocity Medium 99.88 99.69
Martinez et al. [72] 2004 Thresholds (> 2) + ZC WT Medium 99.86 99.8
Chiarugi et al. [162] 2007 Thresholds (> 2) BPF + first derivative Low 99.81 99.76
Ghaffari et al. [154] 2008 Threshold ( = 1) Hybrid complex WT High 99.89 99.79
Zheng and Wu [155] 2008 Threshold ( = 1) DWT + cubic spline + interpolation 

+ MA
High 99.59 98.68

Ghaffari et al. [154] 2008 Threshold ( = 1) Complex frequency B-spline WT High 99.89 99.29
Arzeno et al. [81] 2008 Thresholds ( = 2) First derivative + Hilbert transform Medium 99.24 99.29
Arzeno et al. [81] 2008 Thresholds (> 2) F.D + squaring + BPF Medium 99.58 99.57
Arzeno et al. [81] 2008 Thresholds variation SD + squaring + BPF Medium 99.58 99.57
Chouhan and Mehta [163] 2008 Threshold ( = 1) Digital filters Medium 99.49 99.55
Benitez et al. [82] 2000 Threshold ( = 1) FD + HT Medium 99.31 99.13
Ghaffari et al. [154] 2008 Threshold ( = 1) WT Medium 99.72 99.91
Elgendi et al. [158] 2008 Thresholds (> 2) Digital filters Medium 99.9 97.5
Ghaffari et al. [154] 2008 Threshold WT (complex morlet) Medium 99.29 99.49
Christov [157] 2004 Thresholds (> 2) Multiple MA + FD Low 99.81 99.76
Choukari et al. [164] 2011 Thresholds ( = 2) WT + histogram + MA High 97.24 98.68
Zidelmal et al. [165] 2012 Thresholds ( = 2) WT + multiplying coefficients Medium 99.82 99.64
Elgendi [166] 2013 Thresholds ( = 2 M.A) BPF + FD + squaring Low 99.87 99.78
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