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Abstract
Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture 
brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection 
are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been 
proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and 
classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns 
the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and 
cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection 
in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern cor-
relation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure 
EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark 
epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different 
experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross 
validation. The classification results of the proposed approaches have been compared with the results of some of existing 
techniques proposed in the literature to establish the claim.

Keywords  Electroencephalogram (EEG) signal · Principal component analysis (PCA) · Subpattern based PCA (SpPCA) · 
Cross-subpattern correlation-based PCA (SubXPCA) · Support Vector Machine (SVM) · Feature extraction · Classification

Introduction

Epilepsy is a neurological disorder characterized by seizures 
that can affect humans of all ages. Over 40–50 million peo-
ple of the world population have this disorder as reported 
by World Health Organization [1]. Electroencephalogram 
(EEG) was introduced by Berger [2] and it is used for meas-
uring brain’s electrical activity. One of the major application 
of EEG in the field of clinical diagnosis is the detection of 
epileptic seizure [3, 4].

Analysis of an EEG signal is a challenging task. Visual 
inspection for seizure detection in EEG signal is time con-
suming and it can lead to error as well. Hence, an automated 

framework for seizure detection with a high accuracy is sig-
nificantly required. The basic two steps involved for seizure 
detection in the various methods proposed in the literature 
are feature extraction and classification. In the feature extrac-
tion step, important attributes of the signal are collected and 
then these extracted features are given as input to the clas-
sifier. Some of the methods proposed in the literature are 
discussed below.

A combined approach with time–frequency (t–f) domain 
features and Elman neural network was proposed by Srini-
vasan et al. [5]. In the combined approach various t–f fea-
tures like frequency, dominant frequency, spike rhythmicity 
etc. were extracted. The system was tested with different 
combinations of these extracted features for seizure detec-
tion. Adeli and collegues [6] used wavelet analysis based 
feature extraction technique and wavelet-chaos-neural 
network. Polat et  al. [7] introduced a hybrid model for 
seizure detection. In the hybrid model, fast Fourier trans-
form and decision tree was used for feature extraction and 
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classification respectively. Wavelet transform with different 
classifiers and the use of entropies with extreme learning 
machine have been reported by many researchers [8–14]. 
Computation of Prediction error and power spectral density 
have been suggested for seizure detection [15, 16]. Principal 
component analysis (PCA) is used for dimensionality reduc-
tion by projecting data in the direction of maximum varia-
tion. For seizure detection, PCA with neural network has 
been proposed [14]. Wavelet transform, PCA, independent 
components analysis (ICA) and linear discriminant analysis 
(LDA) with SVM have been reported for the EEG signal 
classification [18]. Local binary pattern (LBP) is a feature 
extraction technique and mostly used in the field of text clas-
sification. Recently, it has been applied with different clas-
sifiers for EEG signal classification [19]. Features extracted 
through fractional linear prediction (FLP) and HilbertHuang 
transform (HHT) were fed to SVM for classification of EEG 
signals. FLP has been used for the computation of predic-
tion error energy. This error energy along with signal energy 
were formed the feature vectors for classification [20]. Mean, 
skewness, etc. features were extracted through HHT in EEG 
signals and then used for classification [11].

Even though in recent years, a number of methods have 
been proposed for seizure detection, the subpattern correla-
tion between EEG signals has not been explored in a broad 
manner. Subpattern correlation plays an important role 
in capturing informative features in a local subpattern set 
which could be used further in the decision making process. 
While recording an EEG signal, each action or abnormality 
possess some unique pattern. SpPCA and SubXPCA can be 
used to extract these hidden patterns for signal classifica-
tion. The effectiveness of subpattern based feature reduction 
techniques for seizure detection in EEG signals has not been 
investigated so far. In this study, two effective approaches 
called SpPCA and SubXPCA are applied for feature extrac-
tion [21, 22]. Both the methods explores the subpattern cor-
relation between EEG signals in each subpattern set. Once 
the feature extraction step is over, the feature vectors are 
fed to SVM and the classification is performed. SVM has 
been widely used for classification of non-stationary sig-
nals, including EEG signals [18, 23]. The experiment has 

been carried out with the benchmark epilepsy dataset. For 
evaluating the performances of the proposed approaches, 
ten fold cross validation is used and classification accuracy 
is recorded.

The remaining content of the paper is presented in the 
following sections. The methodology and materials used are 
described in “Methodology and materials”. Experimental 
results are shown in “Experimental results and discussion”. 
Finally, “Conclusions and future work” concludes the article 
with future direction.

Methodology and materials

Since the invention of PCA, it has been used in many appli-
cations including EEG signal processing. The abnormality 
or disorder recorded in EEG signal posses certain unique 
patterns. It is very crucial to capture these hidden patterns 
for correct diagnosis. PCA focus on the extraction of global 
features and hence its capability for detecting these unique 
patterns becomes limited. On the other hand, SpPCA and 
SubXPCA divide the input pattern set into subpattern sets 
and extracted features from each of the subsets locally. As 
a result of which, both the techniques capture the hidden 
unique patterns and the chances for the correct diagnosis of 
a disorder is maximized. Along with this, time and space 
complexities also play an important role in evaluating the 
effectiveness in real time applications. PCA is well-known 
to have a high time and space complexities. Whereas, the 
time and space complexities of these partition based PCA 
techniques are less as compared to PCA.

In this study, we have applied these two techniques with 
SVM for classification of seizure and non-seizure EEG sig-
nals. In both these techniques the input patterns are divided 
into subpattern sets. One example of subpattern is shown 
in Fig. 1. 

In the case of SpPCA, features are extracted by applying 
PCA on each of subpattern sets. Once the feature extrac-
tion from these subpattern sets is over, the extracted features 
are combined in accordance with the partition sequence of 
patterns to form the final feature vectors. The first step of 

Fig. 1   An EEG signal is divided into L subpatterns, where L=4
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SubXPCA is done identically with SpPCA which focus on 
extracting the local variation of these subpattern sets [24]. 
SubXPCA is a two step process. The first step is constituted 
by SpPCA (Fig. 2). In the second step, PCA is performed on 
the features extracted in the previous step to further reduce 
the dimensionality and to extract the global features (Fig. 3). 

SubXPCA

The steps involved in SubXPCA are as follows:

1.	 The mean corrected input EEG signals XN∗d are divided 
into L ( L ≥ 2 ) non overlapping subpattern sets of equal 
size. So, the dimension of each subpattern reduces to 
r = d∕L. For each subpattern set Xi, where i = 1…L, 
repeat the following operations:

Fig. 2   Step 1 of SubXPCA

Fig. 3   Step 2 of SubXPCA
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(a)	 Find the covariance matrix, (Ci)r∗r.

(b)	 Calculate the eigenvalues ( �i
j
 ) and corresponding 

eigenvectors ( ei
j
 ), for j = 1… r.

(c)	 Select k ( k ≤ r ) largest eigenvalues and find cor-
responding eigenvectors. Let Ei denotes the set of 
these k selected eigenvectors.

(d)	 The local PCs for the subpattern set Xi is obtained 
by projecting it onto Ei. The local PCs set ( Yi ) is 
obtained as, 

(e)	 Concatenate Yi, ∀i = 1…L, in accordance with the 
partition sequence followed in step 1.

	   Let Y be the set obtained after concatenation. 

2.	 This step constituted of applying PCA on data obtained 
in step 1.

(a)	 Find the covariance matrix, (CF)Lk∗Lk for the data 
Y.

(b)	 Calculate eigenvalues ( �F
j
 ) and corresponding 

eigenvectors ( eF
j
 ), for j = 1…Lk.

(c)	 Select w ( w < Lk ) largest eigenvalues and find 
corresponding eigenvectors. Let EF denotes the 
set of these w selected eigenvectors.

(d)	 The final projection Z is obtained by projecting Y 
onto EG, i.e.  

Subpattern formation

The partition of patterns into equal size subpattern sets must 
be carried out such that, the loss of pattern is avoided or 
minimized. The subpattern formation can be done in a con-
tiguous manner or randomly. In this research, a contiguous 
partitioning approach has been followed (Fig. 1).

Selection of projection vectors (k, w)

In both the approaches, i.e., SpPCA and SubXPCA, there 
is a selection of number of eigenvectors of the covariance 
matrix. The basic two approaches for selecting the num-
ber of PVs are as follows: (1) selecting a fixed number of 
eigenvectors for projection (2) setting a threshold ( � ) on total 
variation.

(1)(Yi)N∗k = (Xi)N∗r(Ei)r∗k

(2)YN∗Lk = concatenate((Yi)N∗k)

(3)(Z)N∗w = YN∗Lk(E
F)Lk∗w

SpPCA

As mentioned earlier, SpPCA consists of all set of operations 
performed in step 1 of SubXPCA. After applying SpPCA, 
the features set Y (Fig. 2) obtained is used for classification. 
However, in case of SubXPCA the features set Z (Fig. 3) is 
used for classification.

Time complexity of PCA, SpPCA and SubXPCA

Let X1, X2, …, XN be the input patterns of N classes each 
having dimension d. For PCA, the time complexity of deter-
mining the covariance matrix is given by:

In case of SpPCA and SubXPCA, the input patterns are 
divided in to L number of subpattern sets. So, the dimen-
sion of each subpattern set is N ∗ r, where r = d∕L. The 
time complexity of computing the covariance matrix using 
SpPCA is:

The second step of SubXPCA involves the computation of 
an additional covariance matrix of dimension L.k ∗ L.k. So 
the time complexity of SubXPCA is:

From the above three equations it can be proved that 
T(SpPCA) ≤ T(PCA) and T(SubXPCA) ≤ T(PCA).

Space complexity of PCA, SpPCA and SubXPCA

As Xi represents the set of N input patterns with each pattern 
having dimension d,where i = 1…N, the space complexity 
of PCA for including input patterns set ( N ∗ d ), covariance 
matrix ( d ∗ d ), eigenvalues and eigenvectors ( d ∗ d ) and 
principal components ( N ∗ p ) is given as:

where p is the number of principal components.
In case of SpPCA, the input patterns set is divided into L 

number of subpattern sets, reducing the dimension of each 
pattern in subpattern set to r, where r = d∕L. The space com-
plexity of SpPCA is:

The first step of SubXPCA is done identically with SpPCA. 
However, in the second step of SubXPCA, it involves the 
computation of an additional covariance matrix of the fea-
tures set obtained in step one. The dimension of the features 
set obtained after step one is N ∗ L.k. The size of the covari-
ance matrix is L.k * L.k. If the w number of eigenvectors are 
chosen in the second step for projection, then the dimension 

(4)T(PCA) = O(Nd2 + d3)

(5)T(SpPCA) = O(L(Nr2 + r3))

(6)T(SubXPCA) = O(L(Nr2 + r3)) + O(N(L.k)2 + (L.k)3)

(7)S(PCA) = O(N.d + d2)

(8)S(SpPCA) = O(N.r + r2)
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of the final features set obtained by SubXPCA is N ∗ w. The 
space complexity of SubXPCA is given by,

From the above three equations, it can be proved that 
S(SubXPCA) ≤ S(PCA) and S(SpPCA) ≤ S(PCA).

Support Vector Machine (SVM)

SVM is a supervised classification methodology and used 
for binary classification [25].

Let S be the set of training data having dimension d,

Here n represents the number of samples, ci is the class label 
of input feature vector xi ∈ Rd with ci ∈ {1,−1}. The deci-
sion boundary satisfies the following equation,

The optimal hyperplane can be obtained by solving the fol-
lowing equation:

The decision function can be expressed as follows [21]:

where �i is the Lagrange multiplier and F(x, xi) is the kernel 
function.

For linear separation between classes, the kernel func-
tion performs the transformation of input feature vector to 
a high dimensional feature space. There are different kernel 
function used for SVM. We have used radial basis function 
(RBF) kernel for the classification. For RBF kernel,

where � is a free parameter that controls the width of the 
kernel.

Dataset

This research is carried out with the publicly available EEG 
dataset [27] provided by the Department of Epileptology1 
at Bonn University, Germany. The dataset comprised of five 

(9)
S(SubXPCA) = max(S(SpPCA),O[N ∗ (L.K) + +(L.K)2])

S =
{
(xi, ci)

}n

i=1

(10)w ⋅ x + b = 0

(11)
Minimize

1

2
‖w‖2

Subject to ci(w ⋅ xi + b) ≥ 1, i = 1… n

(12)f (x) = sign

(
n∑

i=1

ci�iF(x, xi) + b

)

(13)F(x, xi) = e
−

||x−xi||2

2�2

groups. The groups are named from A to E. The standard 
10–20 system electrode placement was followed for signal 
capturing. Each group contains 100 single-channel EEG 
signals. Each signal was recorded for 23.6 s duration with 
an 128 channel amplifier system using a common average 
reference. All signals were digitized through 12 bit A/D con-
verter and the sampling frequency was 173.6 Hz. Groups 
A and B were taken from surface EEG recordings of five 
healthy volunteers Set A and B were taken from surface 
EEG recordings of five healthy volunteers while their eyes 
were opened and closed, respectively. The signals in groups 
C and D were recorded on patients before epileptic attack 
at hemisphere hippocampal formation and from the epilep-
togenic zone respectively. The EEG signals within group E 
were recorded from patients during the seizure activity. We 
have used all the five groups for classification of seizure and 
non-seizure EEG signals. The EEG signal of each group is 
shown in Fig. 4.

Experimental results and discussion

This section includes the experimental outcomes and analy-
sis of results after applying PCA, SpPCA, and SubXPCA.

Results

The subpattern sets are formed by dividing the EEG signals 
into L non-overlapping parts of equal size. Once the subpat-
tern sets are obtained, we have applied SpPCA and SubX-
PCA for feature extraction. These extracted feature vectors 
are then fed to SVM for classification of seizure and non-
seizure signals. k number of projection vectors from each 
subpattern set are selected in SpPCA and in the first step of 
SubXPCA. The second step of SubXPCA is performed by 
applying PCA on the features set obtained in its previous 
step. The selection of projection vectors in the second step 
of SubXPCA is done by setting a threshold � on the variation 
of features set obtained from its step one. In this study, we 
have used the epilepsy time series EEG dataset. The dataset 
has five groups (A–E). The experimental classification is 
performed for ten different cases.

k-fold cross validation k-fold cross validation is well 
known technique for evaluating the model performance. 
k-fold cross validation is performed by partitioning the entire 
dataset into k number of equal subparts. One out of the k 
subparts is taken as the testing set and the remaining k − 1 
subparts as the training set. In the next iteration, another 
subpart is taken as testing set and the remaining subparts as 
training set. In this way the training and testing is repeated k 
times [28]. For each experimental case, we have performed 
tenfold cross validation.1  EEG time series dataset http://epileptologie-bonn.de/cms/front_

content.php?idcat=193&lang=3&changelang=3

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
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In this research, we have used the built-in MATLAB 
functions svmtrain and svmclassify for training and classi-
fying the feature vectors of EEG signals respectively. The 
SVM is trained with RBF kernel. The best classification 
accuracy is obtained when the RBF parameters (C and � ) are 
set to 1. The crossvalind function has been used for random 
selection of training set and testing set for the cross valida-
tion. we have tested the proposed approaches with different 
number of subpattern sets, including 4, 8, 16, etc. The high-
est classification accuracy is obtained when the number of 
subpattern sets is equal to 8.

The classification accuracy achieved by SpPCA and Sub-
XPCA, taking different number of projection vectors (PVs) 
are presented in Tables 1, 2, 3, 4, 5, 6, 7.

The classification accuracy of SubXPCA, SpPCA, and 
PCA for different experimental cases is shown in Fig. 5.

The various statistical parameters like sensitivity (Sen) and 
specificity (Spe) for the highest classification accuracy (Acc) 
achieved with with SpPCA and SubXPCA for different experi-
mental cases have been shown in Table 8.

Fig. 4   Epilepsy data set
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Table 1   Classification accuracy of SpPCA and SubXPCA with SVM 
for A–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

A–E 1 8 7 (99.00%) 90.00 94.50
2 16 14 (99.00%) 94.00 98.00
3 24 19 (99.00%) 98.00 99.25
4 32 25 (99.00%) 98.50 99.50
5 40 29 (99.00%) 99.00 99.50
6 48 32 (99.00%) 99.50 99.80
7 56 35 (99.00%) 99.50 100
8 64 37 (99.00%) 99.50 100
9 72 40 (99.00%) 100 100

10 80 42 (99.00%) 100 100
11 88 44 (99.00%) 100 100

Table 2   Classification accuracy of SpPCA and SubXPCA with SVM 
for B–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

B–E 1 8 7 (98.50%) 88.50 91.50
2 16 12 (98.50%) 93.00 95.00
3 24 18 (98.50%) 97.00 97.25
4 32 23 (98.50%) 97.00 97.50
5 40 29 (99.00%) 98.50 99.00
6 48 32 (99.00%) 99.00 99.10
7 56 35 (99.00%) 99.00 99.25
8 64 35 (98.50%) 99.20 99.50
9 72 37 (98.50%) 99.50 99.50

10 80 38 (98.50%) 99.50 99.50
11 88 40 (98.50%) 99.50 99.50
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where Tp (True Positive): correctly identified seizure sig-
nals, Tn (True Negative): correctly identified non-seizure 
signals, Fp (False Positive): incorrectly marked as seizure 
signals and Fn (False Negative): incorrectly marked as non-
seizure signals. 

Sen (%) =
Tp

Tp + Fn
× 100

Spe (%) =
TN

Tn + Fp
× 100

Acc (%) =
Tp + Tn

Tp + Tn + Fp + Fn
× 100

Performance comparison between different classifiers

Nearest Neighbor (NN), Decision Tree (DT), SVM, and 
Naive Bayes (NB) are some of the popular classifiers in 
machine learning and data mining [29]. The mean or aver-
age classification accuracy of all the seven different experi-
mental cases (A–E, B–E, C–E, D–E, AB–E, CD–E, and 
ABCD–E) is computed for each of these classifiers (NN with 
Euclidean distance measure, SVM with rbf kernel, DT, and 
NB). The experimental results are shown in Fig. 6. It can be 
seen in Fig. 6 that SpPCA and SubXPCA achieved the best 
classification accuracy with SVM than any other classifier.

Table 3   Classification accuracy of SpPCA and SubXPCA with SVM 
for C–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

C–E 1 8 7 (98.00%) 89.50 93.00
2 16 12 (98.00%) 92.50 96.00
3 24 17 (98.00%) 97.00 97.50
4 32 22 (98.00%) 98.00 98.50
5 40 25 (98.00%) 98.50 98.50
6 48 28 (98.00%) 98.50 98.50
7 56 32 (98.50%) 99.00 99.50
8 64 34 (98.50%) 99.50 99.50
9 72 36 (98.50%) 99.50 99.50

10 80 36 (98.00%) 99.50 99.50
11 88 37 (98.00%) 99.50 99.50

Table 4   Classification accuracy of SpPCA and SubXPCA with SVM 
for D–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

D–E 1 8 7 (98.00%) 88.50 90.50
2 16 12 (98.00%) 90.50 93.00
3 24 19 (98.50%) 94.50 95.00
4 32 23 (98.50%) 95.00 95.50
5 40 26 (98.00%) 95.00 95.50
6 48 28 (98.00%) 95.50 95.50
7 56 29 (97.50%) 95.00 95.50
8 64 33 (98.00%) 94.00 94.50
9 72 35 (98.00%) 94.00 94.50

10 80 37 (98.00%) 94.00 95.00
11 88 38 (98.00%) 93.50 95.00

Table 5   Classification accuracy of SpPCA and SubXPCA with SVM 
for AB–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

AB–E 1 8 7 (99.00%) 94.66 95.00
2 16 14 (99.00%) 97.33 97.66
3 24 20 (99.00%) 98.33 98.66
4 32 25 (99.00%) 98.33 99.00
5 40 27 (98.50%) 99.33 99.33
6 48 28 (98.00%) 99.33 99.66
7 56 29 (98.00%) 99.66 99.66
8 64 32 (98.00%) 99.66 99.66
9 72 34 (98.00%) 99.33 99.66

10 80 36 (98.00%) 99.66 99.66
11 88 38 (98.00%) 99.00 99.66

Table 6   Classification accuracy of SpPCA and SubXPCA with SVM 
for CD–E

Case PCs per 
subpattern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

CD–E 1 8 7 (98.50%) 93.00 94.66
2 16 14 (98.50%) 95.00 95.66
3 24 19 (98.50%) 95.66 96.00
4 32 22 (98.00%) 96.00 96.66
5 40 26 (98.00%) 96.66 96.66
6 48 28 (98.00%) 96.00 96.33
7 56 29 (97.50%) 95.66 96.33
8 64 31 (97.50%) 95.33 96.00
9 72 33 (97.50%) 95.33 95.66

10 80 35 (97.50%) 95.33 95.66
11 80 37 (97.50%) 94.66 95.66
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SpPCA and SubXPCA for multi‑class classification

As mentioned earlier, epileptic seizure detection is a 
binary classification problem where the task is to clas-
sify the input EEG signal to either as a seizure or as a 
non-seizure signal. In addition to the above seven different 

experimental cases considered in this study, another set 
of experiments has been conducted by involving multi-
ple classes to find the effectiveness of the proposed meth-
ods. The classification accuracy obtained are shown in 
Tables 9, 10, 11. The classification accuracy of SubXPCA, 
SpPCA, and PCA for these experimental cases is shown 
in Fig. 7.

Discussion

The following observations were made from the experimen-
tal results. For classification of seizure and non-seizure EEG 
signals, SpPCA and SubXPCA have shown better classifica-
tion accuracy than PCA. A comparison between PCA and 
SpPCA (Fig. 5) shows that, in most of the cases, with the 
same number of projection vectors SpPCA usually achieved 
a better classification accuracy than PCA. It could also be 
observed that, with the variation in number of projection 
vectors the classification accuracy achieved by SpPCA is 
more consistent than that of PCA. SubXPCA has shown 
superiority over PCA and SpPCA with being able to achieve 
better classification accuracy with less number of projec-
tion vectors. Even though setting a single threshold ( � ) for 
the selection of projection vectors is a challenging task, it 
was found that a small variation of the threshold ( � ) in the 
second step of SubXPCA could result in better accuracy 
than SpPCA. In both the techniques, partitioning the input 

Table 7   Classification accuracy of SpPCA and SubXPCA with SVM 
for ABCD–E

Case PCs per 
subpat-
tern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

ABCD–E 1 8 6 (94.00%) 96.20 96.50
2 16 10 (94.00%) 97.20 97.40
3 24 13 (94.00%) 97.20 97.40
4 32 16 (94.00%) 97.20 97.50
5 40 18 (94.00%) 97.40 97.60
6 48 20 (94.00%) 97.20 97.40
7 56 22 (94.00%) 96.80 97.20
8 64 24 (94.00%) 96.80 97.40
9 72 25 (94.00%) 96.40 97.60

10 80 26 (94.00%) 96.00 97.60
11 88 28 (94.00%) 95.60 97.60

Fig. 5   Classification accuracy 
for different experimental cases 
with PCA + SVM, SpPCA + 
SVM, and SubXPCA + SVM
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Table 8   Hightest classification 
accuracy with corresponding 
sensitivity and specificity of 
different experimental cases

Number Case SpPCA + SVM SubXPCA + SVM

Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%)

1 A–E 100 100 100 100 100 100
2 B–E 99.00 100 99.50 99.00 100 99.50
3 C–E 99.00 100 99.50 99.00 100 99.50
4 D–E 95.00 96.00 95.50 95.00 96.00 95.50
5 AB–E 99.00 100 99.66 99.00 100 99.66
6 CD–E 96.00 97.00 99.66 96.00 97.00 99.66
7 ABCD–E 99.00 97.00 97.40 97.00 99.00 97.60

Fig. 6   Mean classification 
accuracy (%) of all experimen-
tal cases with SVM, NB, DT, 
and NN
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Table 9   Classification accuracy of SpPCA and SubXPCA with SVM 
for A–D–E

Case PCs per 
subpat-
tern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

A–D–E 1 8 7 (98.50%) 91.72 93.20
2 16 11 (98.40%) 94.90 94.90
3 24 17 (97.60%) 95.65 96.10
4 32 22 (97.90%) 95.90 96.75
5 40 29 (99.00%) 96.25 97.20
6 48 33 (99.00%) 96.25 97.20
7 56 36 (98.50%) 96.25 97.20
8 64 37 (98.50%) 96.25 96.75
9 72 37 (98.50%) 95.95 96.75

10 80 38 (98.50%) 95.95 96.75
11 88 41 (98.50%) 94.85 96.50

Table 10   Classification accuracy of SpPCA and SubXPCA with 
SVM for AB–CD–E

Case PCs per 
subpat-
tern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

AB–CD–E 1 8 8 (98.30%) 91.10 92.15
2 16 12 (98.60%) 92.85 93.23
3 24 16 (97.80%) 96.13 97.25
4 32 23 (97.90%) 96.05 97.43
5 40 28 (99.10%) 96.33 97.43
6 48 32 (99.10%) 96.33 97.43
7 56 35 (98.50%) 96.33 97.10
8 64 36 (98.60%) 95.71 97.10
9 72 36 (98.80%) 94.93 96.98

10 80 37 (98.70%) 94.19 97.00
11 88 42 (98.90%) 92.76 96.66
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patterns into subpattern sets has the advantage of reduced 
in time and space complexities while calculating the covari-
ance matrix. It is found that in most of the experimental 
cases, SpPCA achieved the best classification accuracy with 
40–80 features. Similarly, SubXPCA achieved the best accu-
racy with 18–40 features. Several methods have been sug-
gested in the literature for epileptic seizure detection in EEG 
signal. The comparison of highest classification accuracy of 
the proposed approaches and accuracy of different methods 
suggested in the literature has been presented in Table 12.

For A–E, the highest classification accuracy achieved by 
SpPCA and SubXPCA are both 100%. Srinivasan et al. [33] 
achieved 100% classification accuracy for this case with the 
combination of entropy and neural network. Similarly, Iscan 

et al. [36] achieved the same classification accuracy through 
different time and frequency domain features. Recently, 
Kumar et al. [39] achieved 100% classification accuracy with 
fuzzy entropy and SVM.

For B–E, C–E, and D–E, the best classification accu-
racy (%) achieved by SpPCA and SubXPCA are 99.50, 
99.50, 95.50 and 99.50, 99.50, 95.50 respectively. [38] 
reported the classification accuracy of 82.88, 88.00, and 
78.98 for these experimental cases with permutation 
entropy and SVM. Kumar et al. [39] achieved the clas-
sification accuracy of 100, 99.6 and 95.85% respectively 
for these experimental cases.

For AB–E, CD–E, and ABCD–E, SpPCA achieved the 
best accuracy (%) of 99.66, 96.66, and 97.40 respectively. 
Similarly, with SubXPCA the best accuracy (%) is found 
to be 99.66, 96.66, and 97.60 respectively.

For cases 8–10, SpPCA achieved the highest classifica-
tion accuracy (%) of 96.25, 96.33, and 94.25, respectively. 
On the other hand, the classification accuracy achieved by 
SubXPCA for these experimental cases are 97.20, 97.43, 
and 94.60, respectively. For case 8 (A–D–E) and case 9 
(AB–CD–E), Hasan and Subasi [44] reported a high clas-
sification accuracy of 99.00 and 97.40, respectively with 
the application of linear programming boosting technique. 
For case 10, Tawfic et al. [41] achieved 93.75% classifica-
tion accuracy with the combination of weighted permuta-
tion entropy and SVM.

Even though the classification accuracy achieved by the 
proposed approaches are not 100% for all cases, still SpPCA 
and SubXPCA have been able to achieve better accuracy 
than some of the existing methods proposed in the literature. 
Furthermore, it can be seen from Table 12 that even though 
a number of methods have been proposed in the literature, 
none of these methods addressed the issue of subpattern 
correlation between the EEG signals. Subpattern correlation 

Table 11   Classification accuracy of SpPCA and SubXPCA with 
SVM for A–B–C–D–E

Case PCs per 
subpat-
tern

No. of PVs Accuracy (%)

k SpPCA SubXPCA SpPCA SubXPCA

kL w (�)

A–B–C–
D–E

1 8 7 (98.00%) 90.90 91.22
2 16 11 (98.00%) 92.80 93.40
3 24 19 (98.50%) 93.70 93.96
4 32 24 (98.50%) 94.00 94.30
5 40 25 (98.00%) 94.00 94.60
6 48 27 (98.00%) 94.20 94.60
7 56 29 (97.50%) 94.20 94.60
8 64 34 (98.00%) 94.20 94.60
9 72 36 (98.00%) 94.20 94.55

10 80 38 (98.00%) 94.15 94.60
11 88 39 (98.00%) 93.50 94.55

Fig. 7   Classification accuracy 
with PCA + SVM, SpPCA + 
SVM, and SubXPCA + SVM
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Table 12   Authors, year, methods and classification accuracy obtained for some cases in the literature

Authors Year Methods Cases Accuracy (%)

Case 1
 [10] 2016 DWT+PSR+ SVM A–E 100
 [39] 2014 DWT based fuzzy entropy and SVM A–E 100
 [36] 2011 Time and frequency features A–E 100
 [18] 2010 Wavelet transform, LDA, and SVM A–E 100
 [37] 2011 Wavelet entropy A–E 99–100
 [12] 2010 Approximate entropy and ANN A–E 99.85
 [41] 2015 Permutation entropy and SVM A–E 99.50
 [18] 2010 Wavelet transform, ICA, and SVM A–E 99.50
 [21] 2014 Time–frequency image using HHT and SVM A–E 99.125
 [18] 2010 Wavelet transform, PCA, and SVM A–E 98.50
 [33] 2007 Approximate entropy and ANN A–E 100
 [5] 2005 Time–frequency domain features with neural network A–E 99.60
 [7] 2007 Fast Fourier transform and decision tree classifier A–E 98.70
 [40] 2014 Wavelet transform, phase-space reconstruction with Euclidean distance A–E 98.17
 [30] 2004 Neural network A–E 97.50
 [34] 2009 Wavelet energy and ANN A–E 95.20
 [35] 2009 Cross correlation and SVM A–E 95.50
 [9] 2009 Discrete wavelet transform and approximate entropy A–E 96.00
 [8] 2007 Wavelet feature extraction and a mixture of expert model A–E 94.50
 [38] 2012 Permutation entropy and SVM A–E 93.55
 [31] 2005 Entropies A–E 92.22
 [32] 2007 Time–frequency analysis with artificial neural networks(ANN) A–E 85.90
 [11] 2016 DWT+ ABC+ ANN A–E 72.60

SpPCA and SVM (proposed work) A–E 100
SubXPCA and SVM (proposed work) A–E 100

Case 2
 [39] 2014 DWT based fuzzy entropy and SVM B–E 100
 [41] 2015 Permutation entropy and SVM B–E 85.00
 [38] 2012 Permutation entropy and SVM B–E 82.88

SpPCA and SVM (proposed work) B–E 99.50
SubXPCA and SVM (proposed work) B–E 99.50

Case 3
 [39] 2014 DWT based fuzzy entropy and SVM C–E 99.60
 [41] 2015 Permutation entropy and SVM C–E 93.50
 [38] 2012 Permutation entropy and SVM C–E 88.00

SpPCA and SVM (proposed work) C–E 99.50
SubXPCA and SVM (proposed work) C–E 99.50

Case 4
 [11] 2016 DWT+ ABC+ ANN D–E 98.00
 [41] 2015 Permutation entropy and SVM D–E 96.50
 [39] 2014 DWT based fuzzy entropy and SVM D–E 95.85
 [38] 2012 Permutation entropy and SVM D–E 79.94

SpPCA and SVM (proposed work) D–E 95.50
SubXPCA and SVM (proposed work) D–E 95.50

Case 5
 [43] 2016 Key-point based local binary pattern AB–E 100

SpPCA and SVM (proposed work) AB–E 99.66
SubXPCA and SVM (proposed work) AB–E 99.66
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extracts informative features from each subpattern set and 
these features can be used in order to uniquely identify the 
activity and abnormality recorded in the EEG signals. This 
paper aims to strengthen the research in the direction of 
exploring the sub-pattern correlation in EEG signals and 
showing the potential for the possible application in process-
ing other biomedical signals as well.

Conclusions and future work

This study proposed two effective approaches, namely, 
SpPCA and SubXPCA with SVM for automated seizure 
detection in EEG signal. In both the approaches EEG sig-
nals were divided into subpattern sets. Feature extraction 
was performed by applying PCA on each subpattern set in 
SpPCA. SubXPCA include an additional step of applying 
PCA on the feature extracted in the previous step. Once the 
feature extraction step was over, these extracted feature vec-
tors were given as input to the SVM for classification. Both 
the approaches achieved 100% accuracy for the classification 
of normal and epileptic EEG signals. Along with this seven 
different experimental cases for classification have been 

conducted. By observing the experimental results it could 
be interpreted that the proposed schemes achieved better 
classification accuracy as compared to some of the existing 
techniques proposed in the literature. Hence, both the tech-
niques could be considered for epileptic seizure detection 
in EEG signals.
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Table 12   (continued)

Authors Year Methods Cases Accuracy (%)

Case 6
 [42] 2015 IMFs and LS–SVM classifier CD–E 98.67
 [20] 2014 Fractional linear prediction CD–E 95.33

SpPCA and SVM (proposed work) CD–E 96.66
SubXPCA and SVM (proposed work) CD–E 96.66

Case 7
 [12] 2010 Approximate entropy and ANN ABCD–E 98.27
 [39] 2014 DWT based fuzzy entropy and SVM ABCD–E 97.38

SubXPCA and SVM (proposed work) ABCD–E 97.60
SpPCA and SVM (proposed work) ABCD–E 97.40

Case 8
 [44] 2016 Linear programming boosting A–D–E 99.00
 [41] 2015 Permutation entropy and SVM A–D–E 97.25

SpPCA and SVM (proposed work) A–D–E 96.25
SubXPCA and SVM (proposed work) A–D–E 97.20

Case 9
 [43] 2016 Key-point based local binary pattern AB–CD–E 98.80
 [44] 2016 Linear programming boosting AB–CD–E 97.60
 [32] 2007 Time–frequency analysis and ANN AB–CD–E 97.72

SpPCA and SVM (proposed work) AB–CD–E 96.33
SubXPCA and SVM (proposed work) AB–CD–E 97.43

Case 10
 [41] 2015 Permutation entropy and SVM A–B–C–D–E 93.75

SpPCA and SVM (proposed work) A–B–C–D–E 94.25
SubXPCA and SVM (proposed work) A–B–C–D–E 94.60
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