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ECG signal. Non-invasive fetal ECG database and set A of 
2013 physionet/computing in cardiology challenge data-
base (PCDB) are used for validation of the proposed meth-
odology. The proposed methodology shows a sensitivity of 
94.21%, accuracy of 90.66%, and positive predictive value 
of 96.05% from the non-invasive fetal ECG database. The 
proposed methodology also shows a sensitivity of 91.47%, 
accuracy of 84.89%, and positive predictive value of 
92.18% from the set A of PCDB.

Keywords  Adaptive neuro-fuzzy inference system 
(ANFIS) · Differential evolution (DE) · Extended Kalman 
Smoother (EKS) · Fetal electrocardiogram (FECG) · Non-
local mean (NLM) algorithm · R peak detection using 
Shannon energy envelope

Introduction

The popular technique, used for detection of fetal heart 
rate before delivery is fetal electrocardiogram (FECG). It 
shows the muscular function and electrical activity of the 
fetus heart. It represents the characteristics such as dynamic 
behaviours, waveform and heart rate of the fetus. These 
characteristics help to determine the fetal development, the 
existence of fetal distress, fetal life, fetal maturity or con-
genital heart disease. So these above characteristics can 
be used for conduction of appropriate treatment [1]. The 
non-invasive fetal ECG extraction technique can theoreti-
cally be performed at almost any point in the pregnancy 
[2–5]. In this method, fetal ECG is recorded by attaching 
the electrode to the mother’s abdomen. The difficulties of 
extracting the fetal ECG from the single channel abdominal 
ECG, are due to the low amplitude and power of the fetal 
ECG signal and its contamination with noise from various 

Abstract  This paper proposes a five-stage based method-
ology to extract the fetal electrocardiogram (FECG) from 
the single channel abdominal ECG using differential evo-
lution (DE) algorithm, extended Kalman smoother (EKS) 
and adaptive neuro fuzzy inference system (ANFIS) frame-
work. The heart rate of the fetus can easily be detected 
after estimation of the fetal ECG signal. The abdominal 
ECG signal contains fetal ECG signal, maternal ECG com-
ponent, and noise. To estimate the fetal ECG signal from 
the abdominal ECG signal, removal of the noise and the 
maternal ECG component presented in it is necessary. The 
pre-processing stage is used to remove the noise from the 
abdominal ECG signal. The EKS framework is used to esti-
mate the maternal ECG signal from the abdominal ECG 
signal. The optimized parameters of the maternal ECG 
components are required to develop the state and measure-
ment equation of the EKS framework. These optimized 
maternal ECG parameters are selected by the differential 
evolution algorithm. The relationship between the mater-
nal ECG signal and the available maternal ECG component 
in the abdominal ECG signal is nonlinear. To estimate the 
actual maternal ECG component present in the abdominal 
ECG signal and also to recognize this nonlinear relation-
ship the ANFIS is used. Inputs to the ANFIS framework 
are the output of EKS and the pre-processed abdominal 
ECG signal. The fetal ECG signal is computed by subtract-
ing the output of ANFIS from the pre-processed abdominal 
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sources [6]. The sources of noise are maternal electromyo-
gram (EMG), maternal ECG, baseline wander, random 
electronic noise and 50 Hz powerline interference. For the 
appropriate prediction of the fetal ECG signal, removal of 
these noise components from the abdominal ECG signal 
is required. We can use multiple electrodes or single elec-
trode (channel) for the fetal ECG extraction. The advan-
tages of using a single electrode over multiple electrodes 
for extraction of the fetal ECG are, the fewer electronic 
components required. So single channel (electrode) can be 
used as portable and convenient device for the long-term 
monitoring system [1, 7]. The multi channel fetal ECG 
extraction technique is unpartical for ambulant household 
fetal monitoring, because large number of electrodes have 
to be placed on the body surface of the pregnant woman. 
Where as single channel fetal ECG technique is needed for 
the fetal monitoring at home, which provides the possibility 
of the pregrannat women completing the fetal monitoring 
by themselves [8].

Various signal processing methods have been used 
to extract the fetal ECG signal using the abdominal and 
or the maternal ECG signals. These proposed methods 
are discrete Fourier transform method [9], adaptive filter 
[10], correlation technique [11], singular value decompo-
sition [12, 13], sequential processing method (modified 
template subtraction) [14], non-parametric method [15], 
wavelet transform [16, 17], neural network technique [18, 
19], polynomial network [20], adaptive neuro fuzzy infer-
ence system (ANFIS) [21], blind source separation (BSS) 
[22–24], periodic component analysis (πCA) [25], template 
subtraction method [26], combination of geometric features 
and wavelet based technique [27], independent component 
analysis (ICA) with πCA [28], ICA, πCA with extended 
Kalman smoother (EKS) [29], subset of extended Kalman 
filter (EKF), principal/independent component analysis, 
and template subtraction [30]. The techniques described in 
references [28–30] are conceded as outstanding methods 
to extract the fetal ECG signal using multiple abdominal 
leads. However, the main target of the work is to extract 
the fetal ECG signal using the single abdominal lead, these 
methods described in the references [28–30] do not give 
good performance using the single lead abdominal ECG 
signal. The reason for not showing good performance using 
single channel is as, the existing methods described in the 
references [28–30] consider the relationship between chan-
nels to be linear but actually a nonlinear relationship exists 
between the maternal ECG components present in the sin-
gle channel abdominal ECG and the maternal ECG signal. 
Other techniques [10, 18] also do not give good results 
using the single channel abdominal ECG signal [6].

In this work, an addition of the differential evolution 
(DE) algorithm to EKF [7, 31] with ANFIS has been 
developed to extract the fetal ECG signal from the single 

channel abdominal ECG signal. The EKS with ANFIS 
based technique shows a promising result for extraction 
of the fetal ECG signal [1]. But the EKS with ANFIS 
technique sometimes require operator interaction to 
give better performance, because nlinfit (nonlinear fit-
ness function) is used to assign the parameters and state 
equation of the EKS to estimate the maternal ECG com-
ponent. The main task of this study is to develop an effi-
cient ECG signal processing method, which can extract 
the fetal ECG signal from the single channel abdominal 
ECG signal and has better performance metrics than the 
existing methods without the requirement of operator 
interaction.

Materials and methods

Database

The actual abdominal ECG signals used for the perfor-
mance evaluation and comparison are taken from non-
invasive fetal ECG database [32] and set A of 2013 
physionet/computing in cardiology challenge database 
(PCDB) [33, 34]. The non-invasive fetal ECG database 
has been made by collecting the ECG signals from a 
mother between 21 and 40 weeks of her pregnancy. It 
consists of 55 multichannel records. Each record con-
sists of five or six ECG signals. First two signals in each 
record are maternal ECG signals, and remaining ECG 
signals in each record are abdominal ECG signals. The 
sampling frequency of each ECG signal is 1  KHz [32]. 
The set A of PCDB consists of 75 multichannel data 
record from different databases (non-invasive fetal ECG 
database, abdominal and direct foetal electrocardiogram 
database and foetal ECG synthetic database). Each record 
consists of 4 abdominal ECG signals. The sampling fre-
quency of the database is 1  KHz. The duration of each 
abdominal ECG signal is 1 min. The reference R peak of 
fetal ECG also provided in the database for evaluation of 
the algorithm [33, 34].

Eighteen records (18 × 3 = 54 channels) have been 
selected for the performance validation using the non-
invasive fetal ECG database, where, in any one of the 
channel of the record, shows clearly visible fetal QRS 
complex after the removal of the baseline wander and the 
powerline interference noise [1, 35]. One hundred fifty 
channels (Where maternal R peaks are visible) have used 
for performance matrix calculation using set A of PCDB. 
The detected R peak of the estimated fetal ECG signal 
by the techniques have been compared with the annota-
tion available for each record for performance matrix 
calculation.
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Performance measurement

The performance metrics (accuracy, sensitivity (Se), posi-
tive predictive value (PPV) and F1 statistic) are computed 
for extracted fetal ECG using one minute of the abdomi-
nal ECG signals have been collected from the non-invasive 
fetal ECG database and PCDB. F1 statistic is a harmonic 
mean. The R peaks of the estimated fetal ECG have been 
detected using the improved method for R peak detection 
using Shannon energy envelope [36] as explained in the 
phase assignment subsection with the window length of 
130 and 155 number of samples of the two moving aver-
age filters respectively. To determine the performance 
metrics, three parameters such as false positive (FP), false 
negative (FN) and true positive (TP) are calculated. Here, 
FP denotes the noise peaks detected as fetal R-peaks, FN 
denotes the fetal R-peaks missed by the proposed tech-
nique and TP denotes the fetal R-peaks detected correctly 
[6]. Each fetal extraction technique has been run 50 times 
by using the same abdominal channel for evaluation of the 
performance (positive predictive value, accuracy, sensitiv-
ity, and F1 statistics.

Proposed fetal ECG extraction methodology

The proposed methodology extracts the fetal ECG signal 
and also able to calculate the heart rate of the fetus from the 
single channel abdominal ECG signal without the involve-
ment of the operator. The schematic representation of the 

(1)Se =
TP

TP + FN
× 100 %

(2)PPV=
TP

TP+FP
× 100%

(3)Accuracy=
TP

TP+FP+FN
× 100%

(4)F1= 2
PPV×Se

PPV+Se

proposed methodology for extraction of the fetal ECG sig-
nal is shown in Fig.  1. The proposed technique has been 
divided into five stages. Pre-processing stage is the initial 
stage of the methodology. Phase assignment stage, template 
estimation stage are second and third stage respectively, 
the fourth stage is optimized parameters of maternal ECG 
estimation stage, and final stage is fetal ECG estimation 
logic stage. In the first stage, the noises (baseline wander, 
and powerline interference noise) interfered with the fetal 
ECG signal, are removed from the abdominal ECG signal. 
The phase calculated for every sample of the abdominal 
ECG signal is according to the detected maternal R peaks 
in the phase assignment stage. In the template estimation 
stage, mean amplitude, mean phase and standard devia-
tion of amplitude of the abdominal ECG signal is com-
puted. In the fourth stage, the amplitude, width, and phase 
of the maternal ECG components are estimated using the 
differential evolution algorithm. In the final stage, the fetal 
ECG signal is estimated using EKS, ANFIS, and non-
local mean (NLM) framework. The output of the EKS is 
passed through the ANFIS network to estimate the actual 
amount of the maternal ECG signal present in the abdomi-
nal ECG signal. To estimate the fetal ECG signal, output 
of the ANFIS is subtracted from the pre-processed abdomi-
nal ECG signal. The estimated fetal ECG signal is passed 
through NLM to remove noises in the estimated fetal ECG 
signal. The illustration of every stage of the proposed tech-
nique is introduced in subsequent subsections.

Stage 1: Pre‑processing

In this stage, baseline wander, powerline interference noise 
are eliminated from the abdominal ECG signal. The two 
stage moving window median filter with window length 
200 and 600  ms respectively is used for removal of the 
baseline wander in the abdominal ECG signal [35]. The 
reason behind the use of the two stage moving window 
median filter is, the performance evaluation using Monte 
Carlo simulation of this filter shows better signal to noise 
ratio (SNR) improvement than band pass filter, two stage 
moving window average filter, single stage moving window 

Fig. 1   Schematic representation of proposed methodology to extract fetal ECG from single channel abdominal ECG
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median filter, and low pass filter at different input SNR 
using Physikalisch-Technische Bundesanstalt diagnostic 
ECG database [32] and MIT-BIH noise stress database 
[32] for creation of ECG signal is shown in [31]. The out-
put of each median filter in this stage and baseline wander 
removed abdominal ECG signal is shown in Fig. 2.

The last part of the first stage is the removal of the pow-
erline interference noise. A notch filter having center fre-
quency at 50 Hz is used for removal of the powerline inter-
ference noise [35]. The notch filter is designed by 50 tap 
finite impulse response (FIR) filter. The baseline wander 
removed abdominal ECG signal passes through the notch 
filter to remove the powerline interference noise. The pow-
erline interference noise free abdominal ECG signal is pre-
sented in Fig. 3.

Stage 2: Phase assignment

The phase of the abdominal ECG signal is calculated 
with respect to the identified maternal R peaks to provide 
the extra support for the fetal ECG signal estimation. The 

assigned phase is used to estimate the standard deviation 
of amplitude, mean phase, and mean amplitude (template) 
of the abdominal ECG signal. The phase information of the 
abdominal ECG signal will also help to synchronize the 
EKS with the abdominal ECG signal, without the need for 
manual synchronization.

In the second stage, the maternal R peak is identified from 
the abdominal ECG signal, and using the identified maternal 
R peaks, phase for every instance of the abdominal ECG sig-
nal is calculated. The EKS framework requires locations of 
the true maternal R peaks for better performance to estimate 
the fetal ECG signal. So, an improved method for R peak 
identification by using Shannon energy envelope as explained 
in [36, 37] is used to identify the maternal R peaks using 
the pre-processed abdominal ECG signal. The used R peak 
detection technique does not require the amplitude threshold 
and previous detected R peaks. The R peak detection method 
shows a sensitivity of 99.95% and an accuracy of 99.84% 
using MIT-BIH arrhythmia database, 360  Hz is the sam-
pling frequency of the MIT-BIH arrhythmia database [36]. 
The databases (non-invasive fetal ECG database [32], and 

Fig. 2   The output of each stage 
of median filter and baseline 
wander noise free abdominal 
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PCDB [33, 34]) are used to evaluate the performance of the 
fetal ECG extraction technique have a sampling frequency 
of 1000 Hz. So, the length of moving average filters used in 
the R peak detection technique are 196 and 257 number of 
samples respectively for detection of maternal R peak in the 
pre-processed abdominal ECG signal. The maternal R peak 
of the pre-processed abdominal ECG is shown in Fig. 4.

The phase of each sample of the abdominal ECG signal 
is calculated with respect to the locations of the identified 
maternal R peaks.

Here �k = phase value of ECG sample in the range of −� 
to �.

The calculation of phase for every sample instant of the 
abdominal ECG signal is a linear warping process by using 
the detected maternal R peaks from the abdominal ECG sig-
nal as explained in [6]. The allotted phase value to every sam-
ple instant of the normalized pre-processed abdominal ECG 
signal is represented in Fig. 5. The formula used for calcula-
tion of the normalized pre-processed abdominal ECG signal 
is as follows: 

Normalized pre-processd abdominal ECG signal =
Pre-processed abdominal ECG signal

Maximum amplitude of the pre-processed abdominal ECG signal

 The description of the phase allocation process with the 
help of an example is expressed in the paper [38].

Stage 3: Template estimation

In the third stage (template estimation stage) of the pro-
posed methodology, templates (mean phase, mean ampli-
tude, and standard deviation of the amplitude) of the 
abdominal ECG signal are calculated. The mean phase 
and mean amplitude of the abdominal ECG signal are 
helpful to predict the maternal ECG component param-
eters (P, Q, R, S and T wave of the maternal ECG sig-
nal) with the help of the differential evolution algorithm. 
The calculation of mean amplitude along with mean 
phase supress the amplitude of noise and fetal ECG sig-
nal, because the amplitude of fetal ECG signal and noise 
are very small compared to the maternal ECG compo-
nent present in the abdominal ECG signal. The calculated 
mean amplitude of the abdominal ECG signal is similar 
to the maternal ECG component present in the abdominal 

Fig. 4   Maternal R peaks of the 
pre-processed abdominal ECG 
signal (1st channel of a05m of 
set A of PCDB)
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ECG signal for one cycle. So maternal ECG component 
parameters can be calculated by using the DE algorithm 
with the help of mean amplitude and mean phase of the 
abdominal ECG signal. These optimized phase values 
of the maternal ECG components and it’s corresponding 
amplitude related to mean amplitude of the abdominal 
ECG signal, optimized width of the maternal ECG signal 
are used to develop the state equation and also to initial-
ize the process noise covariance matrix of the EKS algo-
rithm. The measurement equation of the EKS framework 
(measurement noise covariance matrix) is initialized by 
the standard deviation of the amplitude of the abdominal 
ECG signal.

The mean phase, mean amplitude and standard devia-
tion of amplitude of the abdominal ECG signal consist of 
sampling frequency ( fs) number of samples. The mean 
phase of the abdominal ECG signal consists of the fs num-
ber of samples evenly spaced between −π to π. The mean 
amplitude and the standard deviation of amplitude of the 
abdominal ECG signal are calculated by using the pre-pro-
cessed abdominal ECG signal, the assigned phase and the 
mean phase of the abdominal ECG signal with the help of 
mean and standard deviation operations respectively. The 
detail description with an example for calculation of the 
mean phase, mean amplitude and standard deviation of the 
amplitude of the ECG signal is described in [7, 38]. The 
mean amplitude, the mean phase and the standard deviation 
of amplitude of the abdominal ECG signal is displayed in 
Fig.  6. The X-axis of the figure corresponds to the mean 
phase of the abdominal ECG signal. The error bar in this 
figure corresponds to the standard deviation of amplitude 
of the abdominal ECG signal around the mean amplitude of 
the abdominal ECG signal.

Stage 4: Optimized parameters (maternal ECG 
components) estimation

The primary target of this stage is to estimate the optimized 
parameters of the maternal ECG components. These opti-
mized parameters of the maternal ECG components are 

amplitude (�P, �Q, �R, �S, �T), width (bP, bQ, bR, bS, bT) and 
phase (�P, �Q, �R, �S, �T) of the five waves (P, Q, R, S, and 
T) of the maternal ECG signal. These optimized parameters 
of the maternal ECG components are used for modelling of 
the state equation of the EKS. The DE algorithm is used to 
estimate these optimized parameters of the maternal ECG 
components by minimizing the objective function.

The DE technique is a population based search technique 
[39]. The DE algorithm selects “D” number of optimized 
parameters from the NP, D dimensional parameter vectors 
within the maximum 

(
Xmax

)
 and minimum 

(
Xmin

)
 param-

eter bound corresponding to the objective function using 
initialization, mutation, crossover, and selection stage, with 
the help of proper value of scaling factor (F), user specified 
parameter (CR). Here NP is the number of population, DE/
rand/1 is used as a basic mutation strategy and the binomial 
crossover is used in the crossover stage [38, 39].

In the proposed methodology, the computation of the 
mean square error is the objective function of the DE algo-
rithm. The mean square error is computed using the syn-
thetic ECG dynamic model [40], the mean amplitude and 
the mean phase of the abdominal ECG signal. In this work, 
the synthetic ECG dynamic model described in [30], is 
employed for the determination of the maternal ECG com-
ponents from the abdominal ECG signal. A typical ECG 
signal can be expressed as a combination of five waves, 
which are defined by their magnitude, duration (width), and 
phase position expressed as �i, bi,�i respectively [6].

Here w = angular frequency = 1
T
, where T =  Time inter-

val between 2 consecutive R peaks.
Here W represent five waves of the maternal ECG signal.
In this stage, �k is the phase of the mean of the abdom-

inal ECG (ECG). bi is the width of the five waves of the 

(5)

Amplitude of ECG signal = Zk = −
∑

i∈W={P,Q,R,S,T}

�iw(�k − �i)

b2
i

exp

(
−(�k − �i)

2

2b2
i

)
+ Zk−1

Fig. 6   Calculated mean phase, 
mean and standard deviation 
of amplitude of the abdominal 
ECG signal (1st channel of 
a05m of set A of PCDB)
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maternal ECG signal. To estimate the optimized width 
(duration) of five waves of the maternal ECG signal 
(bP, bQ, bR, bS, bT), width of the five waves of the maternal 
ECG signal in the differential evolution algorithm is var-
ied in the range 0.1 to 0.4, 0.01 to 0.25, 0.01 to 0.25, 0.01 
to 0.25 and 0.1 to 0.5 [40] respectively. Similarly to pre-
dict the optimized maternal phase 

(
�P, �Q, �R, �S, �T

)
, the 

phase of five waves of the maternal signal is varied in the 
range −�

3
± 0.6,

−�

12
± 0.4, 0 ± 0.4,

�

12
± 0.4,

�

3
± 0.6 [40] 

respectively. The optimized amplitude of the fives waves 
of the maternal ECG components 

(
�P, �Q, �R, �S, �T

)
 are 

the amplitude of mean of the abdominal ECG signal 
(ECG) correspond to the phase value of the five waves of 
the maternal ECG signal 

(
�P, �Q, �R, �S, �T

)
 respectively 

and Z0 = 0. Finally, the objective function (mean square 
error) is calculated after computation of Zk for k = 1 to 
N, where N = length of mean amplitude of the abdominal 
ECG signal. 

In the proposed methodology, differential 
evolution algorithm is used to estimate ten opti-
mized parameters, with minimum parameters bound = 
Xmin = [

−�

3
− 0.6,

−�

12
− 0.4,−0.4,

�

12
− 0.4,

�

3
− 0.6, 0.1,

0.01, 0.01, 0.01, 0.1]. And maximum parameters bound = 
Xmax = [

−�

3
+ 0.6,

−�

12
+ 0.4, 0.4,

�

12
+ 0.4,

�

3
+ 0.6, 0.4, 0.25,

0.25, 0.25, 0.5].

After initialization, the differential evolution algorithm 
is executed by using mutation, crossover and selection 
steps of the differential evolution algorithm with the help 
of the objective function as explained in [38]. Finally, the 
optimized width of five waves of the maternal ECG signal 
such as bP, bQ, bR, bS, bT, the optimized maternal phase 
components value of five waves (�P, �Q, �R, �S, �T), and 

errork = ECGk − Zk

Objective function = mean square error =
1

N

N∑

k=1

(
error

k

)2

its amplitude correspond to ECG such as �P, �Q, �R, �S, �T 
are obtained.

The choice of the parameters [user specified param-
eter (CR), positive control parameter for scaling (F), and 
number of population (NP)] (parameter selection) can 
have a large impact on the optimization performance [41, 
42]. For the selection of these parameters (NP, F and CR) 
the following process was performed using the abdomi-
nal ECG signal (channel 1 of a05 of set A of PCDB) [41, 
42]. Initially NP, then F and finally CR were selected. For 
selection of the NP, the objective function (fitness func-
tion) was evaluated 50 times, and fitness value (the mean 
square error) was calculated for each NP (from NP = 10 
to NP = 110) with fixed F (F = 0.4) and CR (CR = 0.6) and 
we got optimized NP is 110 using the abdominal ECG sig-
nal. Similarly, for the selection of F, the objective func-
tion was evaluated 50 times, and fitness value was calcu-
lated for each F (from F = 0.1 to F = 1) with the optimized 
NP (NP = 110) and the fixed CR (CR = 0.6) and we got 
the optimized F is 0.6. Similarly, for the selection of CR, 
the objective function was evaluated 50 times, and fitness 
value (average of the mean square error) was calculated for 
each CR (from CR = 0.1 to CR = 1) with the optimized NP 
(NP = 110) and the optimized F (F = 0.6) and we got the 
optimized CR is 0.8. Finally, using these selected values 
of NP, F and CR the objective function was evaluated 50 
times, and fitness value was calculated, we got convergence 
at 613 iterations as shown in Fig. 7.

Stage 5: Fetal ECG estimation logic

The primary target of the fifth stage is to estimate the fetal 
ECG signal. In this stage, EKS, ANFIS, and NLM frame-
work is applied to estimate the true fetal ECG signal using 
the outputs of the previous stages (stage 1–4) of the pro-
posed technique. The schematic representation of the fetal 
ECG estimation logic stage is shown in Fig. 8. Here EKS 
estimates the maternal ECG component. ANFIS predicts 

Fig. 7   Estimation of iteration 
at which convergence occurs, 
using NP = 110, F = 0.6and 
CR = 0.8 for 50 run using the 
preprocessed abdominal ECG 
signal (1st channel of a05m of 
set A of PCDB)
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the actual maternal ECG component present in the pre-pro-
cessed abdominal ECG signal. After subtracting the output 
of ANFIS from the pre-processed abdominal ECG signal, 
the fetal ECG signal is estimated. The estimated fetal ECG 
signal is passed through NLM to preserve the edges and 
also to cancel any other noises present in the fetal ECG sig-
nal. The output of the NLM gives the true fetal ECG signal. 
The explanation of every block of the stage is described in 
the subsequent subsections.

Application of EKS for estimation of maternal ECG

The main aim of this block is to predict the maternal ECG 
component present in the abdominal ECG signal. The EKS 
is used to predict the hidden state of a nonlinear system 
with the help of the appropriate dynamic model and the 
measured data. The EKS is a combination of forward EKF 
with backward recursive smoother [38].

The EKF is an algorithm for estimation of the hidden 
state using the model consist of state equation and meas-
urement equation. The state equation and the measurement 
equation of the EKF is as follows:

Here Sk is state vector, Yk is measurement vector at 
instant k, g(.) is the state evaluation function and h(.) shows 
the relationship between the measurement vectors and the 
state vectors. The process noise vector is Ak. Measurement 
noise vector is Bk. The process noise covariance matrix = 
Qk = E

{
AkA

T

k

}
. The measurement noise covariance 

matrix = Rk = E
{
BkB

T

k

}
. In the EKF or EKS, the initial 

state vector is assumed, and it’s error covariance is 
P0 = E

{(
S0 − Ŝ0

)(
S0 − Ŝ0

)T}
. The computation steps for 

solving the above equations are as described in the paper 
[43].

(6)State equation = Sk+1 = g
(
Sk
)
+ Ak

(7)Measurement equation = Yk+1 = h
(
Sk+1

)
+ B k+1

Here k varies from 0 to N where N = number of samples.
The predictable part of Sk+1Sk+1g(Ŝ k)

�. Where Ŝ k
′is an 

optimal estimate of Sk.
Finally, Sk+1 is estimated by using the EKF algorithm. 

The backward recursive smoothing stage is applied on the 
output of the EKF (Sk+1). This process is recognized as 
EKS, and it provides the better prediction of the current 
state. Here fixed interval smoothing stage has been used as 
the backward recursive smoothing stage [43].

The application of the EKS to predict the maternal ECG 
component is described as follows:

The reason behind the use of EKS for the estimation 
of fetal ECG is due to the nonlinear transformation of the 
maternal ECG as a dominated component present in the 
abdominal ECG. State equation is the initial step of the 
EKS. In the proposed methodology, the simplified dynamic 
ECG model is used to create the state equation. The simpli-
fied dynamic model used in the state equation small sam-
pling period of � [44] is as displayed in Eqs. (8) and (9).

Here Δ�i,k = (�k − �i) mod (2�) and w =angular fre-
quency, � is an additive random noise. It is used to repre-
sent inaccuracies of the dynamic synthetic ECG model. 
The summation i is taken over the values of five waves 
maternal ECG component as estimated in the stage 4, to 
model the shape of desired maternal ECG signal present 
in the abdominal ECG signal. Here, �k and Zk are the state 
variables, and w, �i, �i, bi and � are process noises. To 
map the notation of Eq. (1), the state vector and the process 
noise vectors are represented as follows: Sk = [�k,Zk]

T ,

Ak = [�P, �Q, �R, �S, �T , bP, bQ, bR, bS, bT , �P, �Q, �R, �S, �T ,

w, �], and the process noise covariance matrix is given as 
Qk = E

{
Ak A

T
k

}

(8)�k+1 = (�k + w�) mod (2�)

(9)

Zk+1 = −
∑

i∈W={P,Q,R,S,T}

�i(Δ�i,k)w�

b2
i

exp

(
−(Δ�i,k)

2

2b2
i

)
+ Zk + �

Fig. 8   Block diagram of the fetal ECG estimation logic stage
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�i, �i, bi are the values of maternal ECG estimated by 
using DE are used in Eq. (9).

The second step of the EKS is a measurement equation 
as presented in Eq. (7) which consists of measurement data 
and measurement function.

Measurement data Yk+1 =
[
�k+1 Mk+1

]T, here �k+1 = 
phase of the abdominal ECG at instant k + 1 and Mk+1 = 
magnitude of the ECG sample at instant k + 1.

The measurement function h(Sk+1) = Sk+1. The first 
diagonal entry of the covariance of measurement noise Rk 
correspond to the time varying variance of the measure-
ment phase noise.

Before computation of EKS, initial state Ŝo and initial 
covariance P0 values of the EKS are initialized. The initial-
ization values for these parameters are shown as follows:

here M = amplitude (magnitude) of abdominal ECG signal.
After initialization of the parameters of EKS, the next 

step is computation. The description of the computation 
of the EKS is described in [44]. The output of the EKS 
technique using the abdominal ECG signal (1st channel of 
a05m of set A of PCDB) is shown in Fig.  9. The output 
of the EKS algorithm, in the proposed methodology is the 
estimated maternal ECG component. To get exact amount 
of maternal ECG signal present in the pre-processed 
abdominal ECG signal the ANFIS technique is used after 
the EKS.

Application of ANFIS for estimation of the fetal ECG 
signal

The primary target of this block is to estimate the fetal 
ECG signal from the abdominal ECG signal. ANFIS con-
sists of neural network with fuzzy rules using input vector 

Ŝo =
[
−𝜋 0

]T

P0 =

[
(2�)2

0

0

10max (|M|)2
]

and target vector for fitting the input vector with the target 
vector [45]. In the proposed methodology, ANFIS consists 
of bell type membership function with Sugeno type fuzzy 
inference system and the combination of least square algo-
rithm and gradient descent method as back propagation is 
used to train and test the dataset [1, 45]. The description of 
each step of the ANFIS used in the proposed methodology 
is explained in detail in [1]. The reason behind the use of 
the ANFIS in the proposed methodology is due to the non-
linear transformation of the maternal ECG signal present in 
the abdominal ECG signal [1, 21].

In the proposed methodology, input vector to the ANFIS 
consists of the estimated maternal ECG component using 
the EKS technique and a delayed by fifteen samples of the 
estimated maternal ECG component using the EKS tech-
nique, target vector of the ANFIS technique is the pre-pro-
cessed abdominal ECG signal. The output of the ANFIS 
is the estimated maternal ECG component present in the 
pre-processed abdominal ECG signal. After estimation of 
the actual maternal ECG component present in the abdomi-
nal ECG signal using ANFIS, the estimated actual mater-
nal ECG component is subtracted from the pre-processed 
abdominal ECG signal to get the fetal ECG signal, as the 
pre-processed abdominal ECG signal is a combination of 
the maternal ECG component and the fetal ECG signal.

We got the best estimation of the fetal ECG signal by 
using four membership function and 50 iterations of the 
ANFIS. The estimation of the fetal ECG signal using EKS 
with ANFIS approach from the abdominal ECG signal (1st 
channel of a05m of set A of PCDB) is shown in Fig. 10.

Application of NLM technique to estimate the true fetal 
ECG signal

The main target of the NLM block is to estimate the true 
fetal ECG signal. NLM denoises the signal by averag-
ing different regions with similar characteristic. The 

estimated fetal ECG signal = pre-processed abdominal

ECG-output of ANFIS

Fig. 9   The output of the EKS 
using the abdominal ECG signal 
(1st channel of a05m of set A 
of PCDB)
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explanation of application of the NLM to denoise the ECG 
signal is described in [46]. The main reason behind the use 
of the NLM technique in the proposed methodology is to 
denoise the estimated fetal ECG signal if any noise is pre-
sent in it, and also to preserve the edges of the estimated 
fetal ECG signal. The estimated fetal ECG after ANFIS 
process passes through the NLM technique is the true fetal 
ECG signal. Here parameters used in the NLM is same 
as the parameter used in the paper [46] for denoising the 
ECG signal. Figure 11 show the estimation of the true fetal 
ECG signal from the abdominal ECG signal (1st channel of 
a05m of set A of PCDB).

The R peaks of the estimated fetal ECG have been 
detected using the improved method for R peak detection 
using Shannon energy envelope [36] as explained in the 
phase assignment subsection with the window length of 
130 and 155 number of samples of the two moving average 
filters respectively. After successful estimation of the fetal 

ECG signal, the fetal heart rate (FHR) can be determined 
by utilizing the locations of the two nearest fetal R-peaks 
[47].

where fs=sampling frequency, n = number of samples 
between the two nearest fetal R peaks, t = time interval 
between two nearest fetal R peaks.

Results

In this section, performance evaluation and comparison of 
the proposed technique on the actual abdominal ECG sig-
nals are presented. This section is divided in to qualitative 
analysis subsection, and quantitative analysis subsection. 

FHRbetween two nearest fetal R peaks =

60 f
s

n
beats/min =

60

t
.

Fig. 10   Estimation of the 
fetal ECG using the EKS with 
ANFIS technique from the 
abdominal ECG signal (1st 
channel of a05m of set A of 
PCDB)
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Fig. 11   Estimation of the 
true fetal ECG signal from the 
abdominal ECG signal (1st 
channel of a05m of set A of 
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In the qualitative analysis subsection, the proposed algo-
rithm (EKS + DE + ANFIS, EKF + DE + ANFIS) have 
been compared with EKS + ANFIS and EKF + ANFIS for 
extraction of the fetal ECG signal. In the quantitative analy-
sis subsection, performance of the proposed methodology 
(EKS + DE + ANFIS, EKF + DE + ANFIS) is validated. 
To validate the performance, the estimated fetal ECG sig-
nal using proposed methodology (EKS + DE + ANFIS and 
EKF + DE + ANFIS) have been compared with eight other 
existing fetal ECG estimation technique using single chan-
nel abdominal ECG in the quantitative analysis subsec-
tion. These techniques are extended Kalman smoother with 
adaptive neuro-fuzzy inference system (EKS + ANFIS) [1], 
extended Kalman filter with adaptive neuro-fuzzy infer-
ence system (EKF + ANFIS) [1], EKS [31], non-paramet-
ric method [15], EKF [31], template subtraction method 
with principal component analysis (TSPCA), singular value 
decomposition (SVD) [13], sequential processing method 
(modified template subtraction) [14], and ∏CA (multi-
channel method) [25].

The proposed method is implemented in MATLAB R 
2012 A.

Qualitative analysis

Figures  12, 13, 14, and 15 present the comparison of 
the estimated fetal ECG signal by the proposed tech-
nique (EKS + DE + ANFIS, EKF + DE + ANFIS) with 
the estimated fetal ECG signal by the EKS + ANFIS and 
EKF + ANFIS using first channel of a01m, a04m, a15m, 
a22m of set A of PCDB respectively.

Figures  16, 17, and 18 present the extracted fetal 
ECG by the proposed technique (EKS+DE+ANFIS, 
EKF+DE+ANFIS) using the third channel of ecgca290, 
fourth channel of ecgca308, and fifth channel of ecgca445 
of non-invasive fetal ECG database respectively.

All the seven figures (Figs. 12, 13, 14, 15, 16, 17, 18) 
exhibit that the extracted fetal ECG using the proposed 
technique (EKS + DE + ANFIS) is similar to the actual 
fetal ECG signal with very less noise compared to the 
EKS + ANFIS and the EKF + ANFIS techniques. The fig-
ures show that the EKS + DE + ANFIS properly extract 
the fetal ECG signal from the single channel abdominal 
ECG signal.

Quantitative analysis

In this subsection performance parameters [accuracy, 
sensitivity (Se), positive predictive value (PPV), and F1 
statistics] of the proposed fetal ECG extraction method-
ology (EKS + DE + ANFIS, EKF + DE + ANFIS) is com-
pared with other existing methodology.

Table  1 shows the performance comparison of 
the proposed methodology (EKS+DE+ANFIS, 
EKF+DE+ANFIS), and other existing techniques, using 
54 channels of abdominal ECG from the non-invasive 
fetal ECG database of 1  min from the beginning of the 
sample for extraction of the fetal ECG signal. The table 
shows that EKS + DE + ANFIS method has a superior 
performance compared to the other fetal ECG extraction 
methodologies

Fig. 12   Comparison of the 
extracted fetal ECG by using 
different techniques from the 
abdominal ECG signal (1st 
channel of a01m of set A of 
PCDB)
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Table  2 shows the performance comparison of 
the proposed methodology (EKS + DE + ANFIS, 
EKF + DE + ANFIS), and other existing techniques, using 
150 channels of abdominal ECG from the set A of PCDB 
for extraction of the fetal ECG signal. The table shows 
that the EKS + DE + ANFIS method has a superior per-
formance to extract the fetal ECG signal compared to the 
other fetal ECG extraction methodologies.

Discussion

Extraction of the fetal ECG signal from the abdominal ECG 
signal is important to determine the fetal development, 
the existence of fetal distress, fetal life, fetal maturity or 

congenital heart disease. Hence these features can be used 
for conduction of appropriate treatment. Extraction of the 
fetal ECG signal from the single channel abdominal ECG 
signal is complicated because the abdominal ECG signal 
consists of fetal ECG signal, noise, and non-linear trans-
formed maternal ECG signal and dominated by the non-
linear transformed maternal ECG signal. Different tech-
niques such as extended Kalman smoother with adaptive 
neuro-fuzzy inference system (EKS + ANFIS), extended 
Kalman filter with adaptive neuro-fuzzy inference system 
(EKF + ANFIS), EKS, non-parametric method, EKF, SVD, 
template subtraction method with principal component 
analysis (TSPCA), sequential processing method (modified 
template subtraction) have been proposed to extract the 
fetal ECG signal from the single channel abdominal ECG, 

Fig. 13   Comparison of the 
extracted fetal ECG by using 
different techniques from the 
abdominal ECG signal (1st 
channel of a04m of set A of 
PCDB)

-50
0

50
Abdominal ECG signal (1st channel of a04m of set A of PCDB)

-10
0

10

Extracted fetal ECG using EKS+DE+ANFIS

-10
0

10

Extracted fetal ECG using EKF+DE+ANFIS

-10
0

20
Extracted fetal ECG using EKS+ANFISA

m
pl

itu
de

 (
µ

V
)

0 1 2 3 4 5 6 7 8 9 10
-10

0
20

Time (sec)----------->

Extracted fetal ECG using EKF+ANFIS

Fig. 14   Comparison of the 
extracted fetal ECG by using 
different techniques from the 
abdominal ECG signal (1st 
channel of a15m of set A of 
PCDB)
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but these techniques sometimes contains the maternal ECG 
components with the estimated fetal ECG signal. The pro-
posed method (EKS + DE + ANFIS) shows reduction of the 
maternal ECG component and noise significantly as dis-
played in the qualitative analysis subsection.

The EKS + DE + ANFIS technique uses the process 
noise covariance matrix (Qk), the simplified dynamic model 
equation (Eqs.  (8) and (9)), the state and measurement 
equation (Eqs.  (6) and (7) respectively) to estimate the 

maternal ECG component using the single channel abdom-
inal ECG signal. The state equation of the EKS in the 
EKS + DE + ANFIS technique is modelled by the process 
noise covariance matrix and the simplified synthetic ECG 
dynamic model, and they consist of parameters [width, 
amplitude, and phase (bi,�i,�i)] of five of five waves of 
the maternal ECG signal. The exact initialization of these 
parameters (bi,�i,�i) in the process noise covariance matrix, 
the simplified dynamic model, and the state equation is 

Fig. 15   Comparison of the 
extracted fetal ECG by using 
different techniques from the 
abdominal ECG signal (1st 
channel of a22m of set A of 
PCDB)
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Fig. 16   Extraction of the fetal 
ECG using EKS + DE and 
EKF + DE on 3rd ECG signal 
of ecgca290 from non-invasive 
fetal ECG database
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Fig. 17   Extraction of the fetal 
ECG using EKS + DE and 
EKF + DE on 4th ECG signal 
of ecgca308 from non-invasive 
fetal ECG database
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needed for better prediction of the maternal ECG compo-
nents. However, in the EKS + ANFIS technique, the non-
linear fitness function (nlinfit) algorithm is applied to ini-
tialize the maternal ECG parameters (bi,�i,�i), hence the 
technique sometimes needs operator involvement to initial-
ize of these parameters depend upon the abdominal ECG 
signal. Whereas the EKS + DE + ANFIS technique com-
putes the parameters (bi,�i,�i) from the abdominal signal 
itself using the differential evolution algorithm, hence the 
proposed technique (EKS + DE + ANFIS) provides the bet-
ter estimation of the parameters of the maternal ECG com-
ponents than EKS + ANFIS and EKF + ANFIS techniques. 

The EKS + DE + ANFIS framework applies forward EKF 
by using the differential evolution algorithm and followed 
by backward recursive smoothing stage then ANFIS. Hence 
EKS + DE + ANFIS provides smoother fetal ECG signal 
compared to the EKF + DE + ANFIS framework.

The proposed methodology (EKS + DE + ANFIS) has 
been evaluated on non-invasive fetal ECG database, and 
only training set (set A) of 2013 physionet/computing in 
cardiology challenge database. But the proposed method-
ology has not been evaluated on test set (set B) of 2013 
physionet/computing in cardiology challenge database. 
The EKS + DE + ANFIS shows better accuracy, sensitivity, 

Fig. 18   Extraction of the fetal 
ECG using EKS + DE and 
EKF + DE on 5th ECG signal 
of ecgca445 from non-invasive 
fetal ECG database -40
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Table 1   Performance comparison of extracted fetal ECG using different methods from non-invasive fetal ECG database (1 min)

Method Se (%) Range (Se)/
�Se

PPV (%) Range (PPV)/
�PPV

Accuracy (%) Range (accuracy)/
�accuracy

F1
(%)

EKS + DE + ANFIS 94.21 88.5–98.8/
 2.89

96.05 90.1–98.9/ 
2.10

90.66 85.22–97.61/
2.78

95.121

EKF + DE + ANFIS 93.03 83.8–98.9/
 3.34

95.05 89.5–98.9/
 2.17

88.41 82.1-94.18/
 2.84

94.03

EKS + ANFIS [1] 93.81 85.36–98.7/
 3.38

95.97 89.14–98.7/
 2.42

90.20 83.8–97.6/
 3.05

94.87

EKF + ANFIS [1] 92.75 83.52–98.6/
 3.62

94.85 88.37–98.7/
 2.78

88.21 81.1–94.2/
 3.05

93.79

EKS (Par-EKS) [7] 92.56 88.2–97.6/
 2.91

93.57 85.9–98.8/
 3.60

86.95 79.1–92.5/
 3.14

93.06

Non-parametric method [15] 93.24 88.2–96.7/
 2.97

92.06 84.9–98.8/
 3.44

86.25 79.1–92.3/
 3.18

92.65

EKF [31] 91.49 88.2–98.8/
 3.24

93.29 82.1–98.9/
 3.89

85.83 78-97.6/
 4.27

92.38

TSPCA [5] 92.41 86.4–96.3/
 3.01

91.22 81.4–96.4/
 3.42

84.61 72.3–91.9/
 3.47

91.79

Sequential processing method (modified template 
subtraction) [14]

92.01 86.1–96.3/
 3.10

90.89 80.5–96.8/
 3.51

84.25 71.3–91.9/
 3.55

91.45

Singular value decomposition (SVD)(method 3) 
[13]

90.19 86.1–94.8/
 3.05

89.21 80.5–96.3/
 2.80

81.33 70.6–88.3/
 3.28

89.70

Periodic component analysis (∏CA) [25] 92.70 84.7–98.7/
 2.89

96.79 88.2–98.9/
 3.12

89.91 97.6–83.7
 2.89

94.70
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and positive predictive value compared to other exist-
ing technique using the single channel abdominal ECG 
signal as shown in the quantitative evaluation subsection. 
The performance of the EKS + DE + ANFIS displays bet-
ter sensitivity, positive predictive value, F1 statistics and 
accuracy for extraction of the fetal ECG signal because 
of assignment of perfect values to the measurement noise 
covariance matrix (Rk). The measurement noise covariance 
matrix is a diagonal matrix consist of the standard devia-
tion of the abdominal ECG signal. Which is calculated 
from the abdominal ECG signal itself. The measurement 
noise covariance matrix is computed without any adapta-
tion strategy, this avoids the overestimation of the measure-
ment noise covariance matrix.

The EKS + DE + ANFIS framework is depended upon 
the phase assignment as an extra support addition to the 
abdominal ECG signal for good performance of the EKS 
and the automatic synchronization. The assignment of phase 
depends upon the perfect maternal R peaks detection. Hence 
indirectly, the automatic synchronization and performance 
of the fetal ECG extraction using the EKS + DE + ANFIS 
based upon the detected maternal R peaks. Here an 
improved method based on the Shannon energy envelope 
has been used to detect the maternal R peaks from the 
abdominal ECG signal. The improved Shannon energy 
based R peak detection technique displays better sensitivity, 
and accuracy to detect the maternal R peak from the noisy 
abdominal ECG signals like abdominal ECG signals with 
varying QRS complex of the maternal ECG signal, the mus-
cle artifact and noise, wide maternal QRS complex, abdom-
inal ECG signals with low amplitude. The R peak detection 
method does not need prior knowledge of the past detected 
maternal R peak and any amplitude threshold. The improved 
R peak detection method exhibits better accuracy and sensi-
tivity to detect maternal R peaks than other techniques. As 
the EKS + DE + ANFIS uses the improved Shannon energy 
based R peak detection method for detection of the maternal 
R peaks, so it gives better sensitivity, accuracy, and positive 

predictive value by using noisy abdominal ECG signal and 
varying maternal QRS complex.

The ANFIS in the proposed methodology 
(EKS + DE + ANFIS) estimates the fetal QRS complex in 
the extreme case like where fetal QRS complex overlaps 
on the maternal QRS complex and in any condition. As 
the ANFIS assumes the nonlinear relationship between 
the input signal (maternal ECG signal) and the target 
signal (pre-processed abdominal ECG signal), so it can 
estimate the true maternal ECG component present in the 
abdominal ECG signal in any situation.

The NLM technique is used in the proposed method-
ology (EKS + DE + ANFIS) estimates the true fetal ECG 
signal by removing the noise if present in the estimated 
fetal ECG signal after the ANFIS process. The NLM 
technique also preserves the edges, it means the NLM 
technique smoothen the fetal ECG signal.

The limitation of the proposed methodology 
(EKS + DE + ANFIS) is, it may give a lower performance 
for extraction of the fetal ECG signal at lower sampling 
frequency compared to the extraction of the fetal ECG 
signal at the higher sampling frequency.

The results have signified that the proposed technique 
(EKS + DE + ANFIS) can perform as the new framework 
to extract the fetal ECG signal from the single channel 
abdominal ECG signal. Furthermore, the results of this 
study have recommended that the clinical information can 
be kept by the proposed fetal ECG estimation methodology. 
After fetal ECG extraction, FHR can be calculated by using 
the interval between two consecutive R peaks of extracted 
fetal ECG signal. When FHR is between 120 and 160 bits/
min and ventricular rhythm is regular, it is known as nor-
mal sinus rhythm of fetus heart. When FHR is more than 
160 bits/min it is known as tachycardia of fetus heart, when 
FHR is less than 120 bits/min is known as bradycardia of 
fetus heart. When FHR is between 120 and 160 bits/min 
and ventricular rhythm is irregular is known as arrhythmia. 
Tachycardia, bradycardia, arrhythmia of the fetus heart is 

Table 2   Performance 
comparison of extracted fetal 
ECG using different methods 
from set A of PCDB database

Method Se (%) PPV (%) Accuracy (%) �accuracy F1 (%)

EKS + DE + ANFIS 91.47 92.18 84.89 2.89 91.82
EKF + DE + ANFIS 88.88 91.80 82.35 3.01 90.32
EKS + ANFIS [1] 91.47 90.07 83.09 3.65 90.76
EKF + ANFIS [1] 88.18 91.05 81.85 3.65 89.59
EKS (Par-EKS) [7] 88.28 89.68 80.14 4.05 88.97
Non-parametric method [15] 87.59 88.97 79.02 4.25 88.27
EKF [31] 86.50 89.34 78.41 5.14 87.89
TSPCA [5] 88.2 86.5 75.21 4.7 87.34
Sequential processing method (modified template 

subtraction) [14]
86.17 88.48 75.17 4.95 87.32

Singular Value Decomposition (SVD)(method 3) [13] 82.53 83.79 73.75 4.77 83.15



206	 Australas Phys Eng Sci Med (2017) 40:191–207

1 3

known as abnormal FHR. An abnormal FHR may mean 
that the fetus is not getting enough oxygen or there are 
other problems. Sometimes an abnormal pattern also may 
mean that an emergency or cesarean delivery is needed. 
Our proposed method with EKS can be applied to detect 
FHR so that typically asphyxia can be recognized, with suf-
ficient warning to enable intervention by the clinician.

Conclusion

In this paper, five stage based methodology has been pro-
posed to extract the fetal ECG signal from the single chan-
nel abdominal ECG signal. The initial stage of the method 
is pre-processing, and this stage is used for removal of the 
baseline wander and the powerline interference noises from 
the single channel abdominal ECG signal. The estimation 
of the maternal ECG components and other noise compo-
nents present in the single channel abdominal ECG signal 
is calculated by using phase assignment, optimized param-
eters estimation using the differential evolution algorithm, 
EKS, and ANFIS framework. The fetal ECG is extracted 
by subtracting the output of ANFIS framework from the 
pre-processed abdominal ECG signal. Finally, the true fetal 
ECG signal is estimated by passing the estimated fetal ECG 
signal through the NLM technique.

The advantage of the proposed methodology is, it does not 
require operator interaction for initialization of the parameters 
depend on the abdominal ECG signal. The proposed method-
ology (EKS + DE + ANFIS) has been evaluated on non-inva-
sive fetal ECG database, and only training set (set A) of 2013 
physionet/computing in cardiology challenge database. But 
the proposed methodology has not been evaluated on test set 
(set B) of 2013 physionet/computing in cardiology challenge 
database. The described technique (EKS + DE + ANFIS) 
yields preferred accuracy, sensitivity and positive predictive 
value compared to other well existing methods for extraction 
of the fetal ECG signal from the single channel abdominal 
ECG signal using non-invasive fetal ECG database, and set A 
of PCDB. The presented method also shows better accuracy 
than periodic component analysis method, which uses multi-
ple channels for extraction of the fetal ECG signal.
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