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the characterization of the backscattered RF ultrasound sig-
nals from the emboli. Several features are evaluated from 
the detail coefficients. It should be noted that the features 
used in this study are the same used in the paper by Aydin 
et al. These all features are used as inputs to the classifica-
tion models without using feature selection method. Then 
we perform feature selection using differential evolution 
algorithm with support vector machines classifier. The 
experimental results show clearly that our proposed method 
achieves better average classification rates compared to the 
results obtained in a previous study using also the same 
backscatter RF signals.

Keywords Microemboli · Gaseous embolus · Solid 
embolus · Radio frequency signals · Ultrasound · 
Differential evolution

Introduction

Embolism is intravascular migration of an insoluble body 
such as gas bubble, a fat globule, a blood clot, an atheroma-
tous plaque, or a piece of thrombus. Embolus formation 
inside the body could be attributed due to different physi-
ological, physical, and intervention mechanisms [1]. It can 
travel to any part of the body, accounting for many serious 
(and sometimes life-threatening) disorders thus the impor-
tance of an automatic classification system.

Transcranial Doppler (TCD) [1] is a non-invasive ultra-
sound approach employed to assess blood flow velocity in 
the major basal intracranial arteries on a real time basis. In 
order to evaluate the ability of TCD to detect and classify 
intracranial emboli, several experimental studies have been 
carried since the early 1960s. One of the approaches relies 
on detecting the appearance of abrupt changes (known as 

Abstract Embolic phenomena, whether air or particulate 
emboli, can induce immediate damages like heart attack or 
ischemic stroke. Embolus composition (gaseous or particu-
late matter) is vital in predicting clinically significant com-
plications. Embolus detection using Doppler methods have 
shown their limits to differentiate solid and gaseous embo-
lus. Radio-frequency (RF) ultrasound signals backscattered 
by the emboli contain additional information on the embo-
lus in comparison to the traditionally used Doppler signals. 
Gaseous bubbles show a nonlinear behavior under specific 
conditions of the ultrasound excitation wave, this nonlinear 
behavior is exploited to differentiate solid from gaseous 
microemboli. In order to verify the usefulness of RF ultra-
sound signal processing in the detection and classification 
of microemboli, an in  vitro set-up is developed. Sonovue 
micro bubbles are exploited to mimic the acoustic behav-
ior of gaseous emboli. They are injected at two different 
concentrations (0.025 and 0.05 µl/ml) in a nonrecirculating 
flow phantom containing a tube of 0.8 mm in diameter. The 
tissue mimicking material surrounding the tube is chosen to 
imitate the acoustic behavior of solid emboli. Both gaseous 
and solid emboli are imaged using an Anthares ultrasound 
scanner with a probe emitting at a transmit frequency of 
1.82 MHz and at two mechanical indices (MI) 0.2 and 0.6. 
We propose in this experimental study to exploit discrete 
wavelet transform and a dimensionality reduction algorithm 
based on differential evolution technique in the analysis and 
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high intensity transient signals) in the TCD waveform with 
higher amplitudes than the other recorded signal. These 
abrupt changes are exploited as indicators of the presence 
of emboli, in several clinical areas: carotid and cardiac sur-
gery [2, 3], cerebral angiography and following prosthetic 
heart valve insertion [4–6]. Many reports emphasized the 
ability of TCD, combined with signal processing methods 
for example discrete wavelet transform (DWT), to detect 
microemboli in the brain circulation [7–10]. Aydin et  al. 
[7]. used a signal-processing algorithm based on DWT to 
characterize embolic signals (ES), Doppler speckle, or arti-
facts. In their work, they showed that the detection param-
eters derived from DWT coefficients are likely to improve 
the sensitivity of an automated system [7]. Unfortunately, 
this technology presents today some limitations to deter-
mine the embolus composition [11, 12]. Especially, before 
performing interventional procedures for neuroprotection 
where the nature of the emboli is a vital diagnostic criteria. 
This is the case during cardiac surgery and carotid endar-
terectomy where solid and gaseous embolus are strongly 
intricate. TCD can detect a high intensity transient signals 
indicating a presence of emboli but it is very difficult to dif-
ferentiate gaseous from solid microemboli. Solid emboli 
involve different therapeutic approaches than gaseous 
emboli [13] and they are potentially far more damaging.

Indeed, when solid emboli are identified, an antiagregant 
or anticoagulant treatment will be employed. However, 
gaseous emboli are considered as a risk indicator and their 
detection involves to investigate for the cause of emboli.

Recently, a new approach based on the analysis of back-
scatter radio frequency signals using the nonlinear charac-
teristics of gaseous bubbles and artificial neural network 
to classify emboli was investigated [13, 14]. A number 
of researchers have reported that DWT performs better 
than fast Fourier transform (FFT) for the analysis and the 
detection of ES [7, 15]. The existence of fast algorithms 
to implement DWT, makes also the investigation of the 
feasibility of ES detection systems based on the DWT 
worthwhile.

We suggest in this experimental study to exploit Radio-
Frequency ultrasound signals backscattered by the emboli 
since they contain additional information on the embolus 
in comparison to the classically used Doppler signals [16].

First, we employ DWT algorithm based on the Daube-
chies (db6) to decompose RF signals into different frequency 
bands and identify which features lead to a better recogni-
tion performance. Several features are evaluated from the 
detail coefficients. It should be noted that the features used in 
this study are the same used in the work by Aydin et al. [7]. 
These features are used as inputs to the classification models 
without using feature selection method. Second, and due to 
curse of dimensionality, we employ a wrapper feature selec-
tion approach based on differential evolution (DE) algorithm. 

This algorithm, referred to as differential evolution feature 
selection (DEFS).

Feature selection techniques usually fall into three main 
categories; filter, wrapper, or embedded methods. Filter 
approaches perform feature selection using the intrinsic 
properties of the data independently of the learning algo-
rithm. Wrapper approaches conduct feature selection using a 
learning algorithm as part of the evaluation function to esti-
mate the relevance of a given set of features, in embedded 
approaches the search for an optimal set of features is built 
into the learning algorithm construction [17].

DEFS utilizes the differential evolution float number opti-
mizer in a combinatorial optimization problem like feature 
selection. The DEFS highly reduces the computational cost 
while at the same time proves to present a powerful perfor-
mance [18, 19].

In order to evaluate the performance of the proposed sys-
tem, we implemented SVM classifier. For nonlinear classifica-
tion problem with limited number of samples SVMs appear 
to be advantageous compared to neural networks approaches 
[20–22]. Furthermore, in [23] a detailed comparison of SVM, 
radial basis neural network, and K-nearest neighbor is per-
formed. The results indicated that SVM approach demon-
strated superior performance compared to the other two clas-
sifiers, it was concluded that SVM has less sensitivity to the 
curse of dimensionality [23]. We use hold-out-set cross-valida-
tion strategy to fix the parameters of the classifier and to select 
the most relevant features. While there are other validation 
techniques, including, but not limited to, bootstrap and leave-
one-out, we focus on the more commonly used cross-valida-
tion approach in this paper. We randomly divide the dataset, 
into two subsets training set and test set (hold-out-set). After 
that, we apply cross-validation technique only on the training 
set to randomly generate new training and validation sets. The 
test set is used only for the assessment of the model selected by 
the cross-validation algorithm. While the validation set is used 
to tune the parameters of the classifier. The experimental evalu-
ation is performed using hold-out-set to avoid overfitting and 
assure statistical validity of the results [24].

The main purpose of this experimental study is to evaluate 
the performances of the proposed technique in the detection 
and classification of microemboli using Radio-Frequency 
ultrasound signals backscattered by the emboli instead of 
Doppler signals.

Discrete wavelet transform of backscatter RF 
signals

Discrete wavelet transform

The basic idea of the wavelet transform is to represent any 
arbitrary signal x(t) as a superposition of a set of wavelets 
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or basis functions. These basis functions are obtained 
from a single prototype wavelet called the mother wavelet 
by dilation (scaling) and translation (shifts). The wavelet 
transform of a continuous signal x(t) is defined as [7, 25]:

where, the indexes c(a,b) are called wavelet coefficients 
of signal x(t), a is dilation and b is translation, Ψ(t) is the 
mother wavelet. DWT of a signal is defined with respect to 
a mother wavelet and maps continuous finite energy signals 
to a two-dimensional grid of coefficients [7, 25]. The scale 
a in the discrete wavelet transform case becomes a = am

0
, 

and the translation b becomes b = nb0a
m
0
 [7, 25]. DWT of a 

discrete signal with length N is defined as:

DWT of a discrete signal yields a set of coefficients 
including all the detailed coefficients and the last approx-
imation coefficients [7, 25].

DWT description of backscatter RF signals

The backscatter RF signal are transformed into differ-
ent time–frequency scales through the wavelet analysis, 
DWT uses two functions as high-pass filters and low pass 
filters. The high-frequency filter generates a detailed ver-
sion of the backscatter RF signal (D), while the low-fre-
quency filter produces its approximate version (A).

In our study, we decomposed the backscatter RF signal 
x(t) into five levels, so we can write as:

Wavelet functions used for this study are standard 
DWT functions available in Matlab Wavelet toolbox [26], 
namely Daubechies (db6). An example of the decom-
position of gaseous embolus and solid embolus signals 
is shown in Fig.  1. The detail and approximation coef-
ficients are not directly used as classifier inputs. In this 
study, several features are used. All features are individu-
ally applied to the detail coefficients of each decomposi-
tion level.

Detection algorithm

The general block diagram of the detection system is shown 
in Fig. 2. The input backscatter RF signals are first detected 
and collected (signal acquisition). At the second stage, 
DWT coefficients of the signals are collected. Input signals 

(1)c(a, b) = ∫
R

x(t)
1
√
a
�
(t − b)

a
dt,

(2)c(m, n) =
1

√
am
0

N−1�

k=0

s(k) �

�
k − nb0a

m
0

am
0

�
.

(3)x(t) = A5(t) + D5(t) + D4(t) + D3(t) + D2(t) + D1(t).

are decomposed into an optimum number of frequency 
bands using DWT. Therefore, it is vital to select an appro-
priate wavelet for the signal being analyzed. Suitability of 
the wavelet filters and orders are determined experimen-
tally. It should be noted that we shown in previous work 
that the best mother wavelet on the same types of backscat-
ter RF signals is Daubechies (db6) [27]. In the third step, 
after applying DTW on the backscatter RF signals, several 
features are evaluated from the detail coefficients. It should 
be noted that the features used in this study are the same 
in the paper by Aydin et al. [7]. Table 2 shows the ten (10) 
features for each decomposition level and their formulas. 
In the last step, all these features are first used as inputs to 
the classification model without feature selection method. 
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Fig. 1  Examples of DWT using Daubechies (db6) as mother wavelet 
of backscatter RF signal at low mechanical index (MI = 0.2)
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Second, due to the curse of dimensionality, we employ a 
feature selection algorithm based on DE algorithm [18, 19]. 
The motivation for this approach is that the more power-
ful among the existing machine learning algorithms tend to 
get confused when supplied with a large number of features 
[28].

Table 1 shows the confusion matrix in which the correct 
and incorrect predictions made by the classifier compared 
with the true labels in the test data are depicted.

Before classification and feature selection tasks, and since 
the generalization performance of an algorithm should be 
estimated using unseen samples, we randomly divided the 
dataset into two subsets (training set and test set). After that, 
we applied cross-validation technique only on the training set 
to tune the classifier parameters and to rank the features. Thus 
the algorithms have only access to the training set, and the 
test set is kept unseen both to the ranking step and to the clas-
sifying step. The experimental evaluation is performed using 
hold-out-set cross-validation to avoid overfitting and assure 
statistical validity of the results [24].

The reported results are obtained with different types of 
measures, such as classification accuracy, sensitivity, and 
specificity.

Accuracy: (Number of correct predicted labels)/(Number 
of all labels)

Sensitivity: proportion of actual positives which are pre-
dicted positive it can be expressed as:

and then Specificity which is the proportion of actual nega-
tive which are predicted negative:

Feature extraction

The instantaneous power (IP) is calculated for the DWT 
coefficients of each level. A threshold value for each level is 
determined. Figure 3 illustrates the associated IP and thresh-
old values, which are used in the detection algorithm.

The threshold is calculated from the data using a statistical 
method, which depends on the data length and the standard 
deviation [29], and it is given by:

where: σn is the standard deviation of the signal power at 
the  nth level and N is the length of the observation.

The following parameters relating the threshold are 
determined:

The ratio of the embolic signal to the background signal 
(EBR) is the most widely used feature in microemboli detec-
tion [7]. EBR shows how strong an embolic signal is relative 

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP

(7)Ath = �n

√
log2N

Fig. 2  Block diagram of the 
DWT-based detection system

Detec�on and classifica�on 
without feature selec�on

Detec�on and classifica�on with feature selec�on

Feature extrac�on 
(DWT)

Feature selec�on 
using DEFS

Training different 
models

Tes�ng the selected model

Classifica�on results 
using feature 

selec�on

Training different 
models

Training 
data

Backsca�er RF 
signal 

acquisi�on

Classifica�on results 
without feature 

selec�on

Feature extrac�on 
(DWT)

Tes�ng 
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Table 1  Confusion matrix for binary classification model

Where true positive (TP): the classifier predicts a label as gaseous 
emboli and the actual class is gaseous emboli, true negative (TN): 
the classifier predicts a label as solid emboli and the actual class is 
solid emboli, false positive (FP) the classifier predicts a label as solid 
emboli and the actual class is gaseous emboli, false negative (FN): 
the classifier predicts a label as gaseous emboli and the actual class is 
solid emboli

Predicted

Gaseous emboli Solid emboli

Actual class
 Gaseous emboli TP FP
 Solid emboli FN TN
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to the background. P2TR is one of the definitions of the EBR, 
P2TR can be calculated using the measures given in Fig. 4.

Another feature, the total power to the threshold ratio 
(TP2TR) which is the quantity of power a signal has relative 
to the background energy, and it is given by:

where Atot is the total power of the signal A(k). It is calcu-
lated by integrating the IP of signal between ton and toff, as 
illustrated in Fig. 4.

Two other features, which use threshold indirectly, are rise 
rate (RR) and fall rate (FR):

where: ts is the average time of the signal and fs is the aver-
age frequency of the signal.

 ts and fs are calculated, respectively, as

(8)P2TR = 10 log
Apk

Ath

(dB)

(9)TP2TR = 10 log
Atot

Ath

= 10 log

∑toff

k=ton
Af (k)

Ath

(dB)

(10)RR =

10 log
Apk

Ath

tpk − ton
=

P2TR

tpk − ton
(dB/ms)

(11)FR =

10 log
Apk

Ath

toff − tpk
=

P2TR

toff − tpk
(dB/ms)

(12)ts =
1

Es

+∞

∫
−∞

t | s(t) |2dt

(13)fs =
1

Es

+∞

∫
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f | S(f ) |2df
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Fig. 3  Instantaneous power and corresponding threshold values for 
each level (gaseous and solid embolus signals)

Fig. 4  Instantaneous power of 
the detail coefficient and param-
eters used to calculate detection 
features

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Instantaneous Power of D4 & corresponding threshold

Time

P
ow

er

|D4|2

threshold
Apk

ton

toff



90 Australas Phys Eng Sci Med (2017) 40:85–99

1 3

where S(f) is the Fourier transform of the signal s(t).
Time spreading Ts2 and frequency spreading Bs2 are 

defined as:

 where:

The instantaneous envelope and instantaneous frequency 
of a signal [30] are used to describe a signal simultaneously 
in time and in frequency. These two parameters are defined, 
respectively, as:

where sa(t) is the Hilbert transform of s(t).

(14)T2
s
=

1

Es

+∞

∫
−∞

(
t − ts

)2|s(t)|2dt

(15)B2
s
=

1

Es

+∞

∫
−∞

(
f − fs

)2|S(f )|2df

(16)Es =

+∞

∫
−∞

|s(t)|2dt

(17)a(t) = ||sa(t)||

(18)f (t) =
1

2�

d(arg(sa(t)))

dt

(19)sa(t) = s(t) + jŝ(t).ŝ(t)

The variances of instantaneous envelope and instanta-
neous frequency (VIE and VIF) are used as other types of 
features.

Processing steps for the classification of microemboli 
can be summarized as follows:

–– Apply DWT to both solid and gaseous signals in order 
to collect DWT coefficients;

–– calculate Instantaneous power for each level;
–– from each level, derive a threshold value to be employed 

in detection;
–– evaluate previously described parameters for each DWT 

level;
–– apply: (i) classification, (ii) dimensionality reduction.

Table 2 summarizes the feature extractor methods that 
are used in this study.

As shown in Fig.  3, and unlike all the detail coeffi-
cients, the approximation coefficients does not have a 
similar shape (peak or Gaussian) thus we can’t extract the 
parameters ton and toff, therefore we discarded the approx-
imation coefficients from the feature extraction phase.

Classification

For binary classification problems with limited number of 
samples it is crucial to validate the classification model 

Table 2  The features 
used in this study for each 
decomposition level and their 
formulas

where n is the number of the detail coefficient which is used to calculate the classification parameters

Feature number (n) Formulations of detail coefficients

P2TRn n = 1,…,5 P2TR = 10 log
Apk

Ath

(dB)

TP2TRn n = 6,…,10
TP2TR = 10 log

Atot

Ath

= 10 log

∑toff

k=ton
Af (k)

Ath

(dB)

RRn n = 11,…,15
RR =

10 log
Apk

Ath
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=

P2TR
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(dB/ms)

FRn n = 16,…,20
FR =

10 log
Apk
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toff−tpk
=

P2TR

toff−tpk
(dB/ms)

tsn n = 21,…,25 ts =
1

Es

∫ +∞

−∞
t | s(t) |2dt

fsn n = 26,…,30 fs =
1

Es

∫ +∞

−∞
f | S(f ) |2df

T2
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T2
s
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(
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)2| s(t)|
2

dt

B2
sn

n = 36,…,40 B2
s
=

1
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∫ +∞

−∞

(
f − fs

)2|S(f )|2df

VIEn n = 41,…,45 var(a(t)) with a(t) = || sa(t) || 
where sa(t) = s(t) + jŝ(t).ŝ(t), 

∧
s (t) is the 

Hilbert transform of s(t) 
VIFn n = 46,…,50

var(f(t)) with f (t) =
1

2�

d arg sa(t)

dt
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with cross validation technique. Before building the clas-
sification model, the samples are subdivided into three sub-
sets training set, validation set, and test set. The test set is 
used only for the assessment of the model selected by the 
cross-validation technique, while the validation set is used 
to tune the classifiers parameter. Therefore the algorithm 
has only access to the training and validation sets, the test 
set is kept unseen in the selection process of the best model.

Our experimental data consists of 102 samples (51 solid 
embolus and 51 gaseous embolus). In order to evaluate the 
predictive ability of a model, we randomly divide the data-
set, into three subsets training set, validation set, and test 
set. The test set, approximately one-third (1/3) of the data 
(14 solid embolus and 14 gaseous embolus), is used only 
for the assessment of the model selected by the cross-val-
idation technique, while the rest of the data will belong to 
the learning set (used for building the models) which will 
be divided into a training set (approximately two-third) and 
a validation set (approximately one-third). The validation 
set is used to tune the classifiers parameter.

In order to evaluate the performance of the proposed 
system, we employ support vector machines classifier.

Support vector machines classifier

Support Vector Machines, proposed by Vapnik’s group in 
1995 [31], are supervised learning techniques based on a 
statistical learning theory. SVM has gained increasing 
interest in areas that range from regression estimation to 
pattern recognition, due to its great learning performance. 
Indeed, SVMs don’t have local extrema problems that are 
present for traditional neural networks, which involve large 
numbers of training patterns [32].

SVM was originally designed for linear binary classi-
fication problems. For nonlinear classification, a transfor-
mation maps the data from the input space into a higher 
dimensional feature space that allows linear separation. We 
then seek the optimization separation plane in feature space 
using a kernel function. In our case, radial basis kernel is 
used to differentiate between solid embolus and gaseous. 
More details about recent developments of SVM can be 
found in [31–33].

The kernel parameter γ and the penalty parameter C 
are the two major parameters of the RBF applied in SVM-
RBF which have to be set appropriately in order to improve 
SVM learning. γ is the width of RBF kernel. C is the regu-
larization parameter of error which allows one to trade off 
training error versus model complexity. In order to empiri-
cally select the best classification model, the value of each 
parameter is varied in a given predefined range according 
to a grid search [34]. We carried out experiments by trying 
exponentially growing sequences of C and γ on the train-
ing set [34]. The combination that results in a model with 

highest validation accuracy is picked as the best choice of 
the classification problem and then used to accurately pre-
dict the testing set.

Feature selection based on differential evolution 
algorithm

The feature vector cited in “Discrete wavelet transform of 
backscatter RF signals” section is too large to be handled 
properly by a classifier during training. To overcome this 
curse of dimensionality, we apply a supervised feature 
selection approach based on DE algorithm which belongs 
to the family of evolutionary algorithms. Later DE has 
been successfully applied to a large number of problems 
for example feature selection [18, 19]. To solve an optimi-
zation problem, DE starts by iteratively modifying a ran-
domly generated initial population of candidate solutions 
using a floating-point encoding instead of binary numbers 
[18, 19, 35]. This process is then enhanced using selection, 
mutation, and crossover operations. DE combines different 
randomly chosen populations (Xr0,Xr1, and Xr2) to create a 
mutant element (Vi,g) from the current generation g [19]:

where F ∈ (0, 1) is a scale factor that controls the rate at 
which the population evolves. The index g indicates the 
generation to which a vector belongs.

In addition, DE also uses discrete recombination (crosso-
ver), in order to construct trial vectors out of parameter val-
ues that have been copied from two different populations:

where Uj,i,gis the j’th trial element along i’th dimension 
from the current population g and Cr ∈ [0, 1] is the crosso-
ver probability which controls the fraction of parameter 
values that are copied from the mutant.

If the newly generated element results in a better fitness 
(classification accuracy) than the predetermined population 
member, then the resulting element replaces the vector with 
which it was compared.

The steps used in DEFS algorithm are [18, 19]:

•– Generate new population elements from the original 
population.

•– Create a new mutant vector for each position in the pop-
ulation matrix.

•– A trail vector is obtained by crossing the mutant vector 
with the original vector.

•– The corresponding position in the new population will 
contain either:

(20)Vi,g = Xr0,g + F *
(
Xr1,g − Xr2,g

)

(21)Uj,i,g =

{
Vj,i,g if rand (0 , 1) ≤ Cr or

Xj,i,g otherwise,
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–– the trial vector or its corrected version,
–– or the original target vector depending on which one 

of them achieved a better fitness.

•– The process is repeated until each of the population ele-
ments have competed against a randomly generated trial 
element.

Once the last trial element has been evaluated, the survi-
vors of the population pairwise competitions become par-
ents for the next generation in the evolutionary cycle. For 
further details on the above DEFS method, please refer to 
[18, 19].

Datasets

In order to verify the usefulness of RF ultrasound signal 
processing for microemboli classification, an in vitro set-
up is developed. It consists of a Doppler flow phantom 
containing 3 tubes of 0.2, 0.4 and 0.8  mm in diameter. 
The tube of 0.8 mm is chosen since its size approximates 
the size of a human vessel (Fig.  5). In order to imitate 
the ultrasonic behavior of gaseous emboli, contrast 
agents consisting of microbubbles are used in our experi-
mental setup. Indeed, several studies have revealed that 
the acoustic behavior of gaseous emboli and microbub-
bles are similar, mainly the nonlinear behavior [14, 36]. 
Hence, a continuous flow carries the Sonovue micro-
bubbles [37, 38] (contrast microbubbles) through the 
insonified vessel is used to mimic the ultrasonic behav-
ior (scattering) of gaseous emboli. We used Sonovue 
microbubbles since it is the only commercially available 
contrast agent in Europe. The concentration of microbub-
bles and the flow are controlled by the operator. Since 
in clinical situations the scattering amplitude of emboli 
approaches that of blood, we fixed the concentration of 
Sonovue microbubbles such as its scattering amplitude at 
the fundamental frequency is comparable to the scatter-
ing of the surrounding tissue at the same frequency.

However, solid emboli present acoustic properties 
comparable to those of biological tissue, in their scat-
tered signal no harmonic components can be seen, there-
fore the scattering of solid emboli is purely linear. Thus 
the tissue mimicking material surrounding the vessel is 
chosen to mimic the behavior of solid emboli. Moreo-
ver, the applied acoustic pressures are not sufficiently 
high to induce nonlinear propagation effects and does not 
generate any harmonic components during ultrasound 
propagation.

The ultrasound waves are generated by a VF13-5 
probe connected to a Siemens Antares scanner (Anthares, 
Siemens, MV, CA). The acquisitions are carried out at 
1.82 MHz transmit frequency in Tissue Harmonic Imag-
ing (THI) mode at 14 fps frame rate, and 20  MHz as 
the sampling rate of the signals. The acoustic focus is 
set at 2 cm which is the depth at which the flowing con-
trast microbubbles are situated. Ultrasound waves are 
transmitted at two different intensities corresponding to 
mechanical indices (MI) of 0.2 (low MI) and 0.6 (high 
MI). The User Research Interface is used to grab the 
unfiltered RF signals to a personal computer for further 
analysis. Two concentrations of contrast agent/Isoton 
were used: 0.025 and 0.05 µl/ml [13].

The regions of interests where RF signals corresponding 
to gaseous embolus and solid embolus are shown in Fig. 6.

Figure 7 illustrates two types of RF signals extracted 
from the obtained grayscale images. Panel a shows RF 
signal backscattered by gaseous and solid embolus at low 
MI (0.2). It is noteworthy that the acoustic pressure is 
not enough to create nonlinear microbubbles oscillations. 
Panel b illustrates the RF signal of each type of embolus 

Water tank

Sonovue
microbubble

US scanner

Ultrasonic probe

Flow phantom

Fig. 5  Experimental set-up

C=0.025µl/ml

C=0.05µl/ml

(a) (b)

Gaseous
embolus

Solid
embolus

Fig. 6  Grey scale images acquired: a MI = 0.2, b MI = 0.6 for two 
microbubbles concentrations
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at higher MI (0.6) in this case the propagation of an ultra-
sound wave becomes nonlinear, thus a nonlinear behavior 
of both gaseous and solid particles is observed [13].

Results

Classification performance is evaluated in terms of two 
measures, which are: (i) the overall accuracy, which is the 
percentage of correctly classified embolus among all the 
embolus independently of the classes they belong to; (ii) 
the accuracy of each class that is the percentage of cor-
rectly classified embolus among the embolus of the consid-
ered class.

Table 3 summarizes the percentage of correct classifica-
tion rates of microemboli using SVM analysis as a function 
of all input features (50 features) and mechanical indexes 
for the two microbubble concentrations (0.025 and 0.05 µl/
ml).

The average classification rate doesn’t exceed 85.71% 
for all datasets using all features as input vector. There-
fore the feature vector is too large to be handled properly 
by the classifier. To overcome this limitation, we grouped 
the input parameters into small feature vectors regarding 
the nature of each feature then we applied the classification 
algorithm on each set of features separately, the results are 
shown in Table 4.

The features  P2TRn,  RRn,  FRn, and VIFn for the two 
concentrations do not provide significant classification 
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Fig. 7  Examples of RF signals. a MI = 0.2, b MI = 0.6

Table 3  Classification rates of 
gaseous and solid emboli using 
all features

Average rate (%) C = 0.025 µl/ml C = 0.05 µl/ml

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6)

Sensitivity (gaseous emboli) 92.86 78.57 85.71 92.86
Specificity (solid emboli) 78.57 85.71 85.71 78.57
Accuracy 85.71 82.14 85.71 85.71

Table 4  Classification rates of 
gaseous and solid emboli using 
each set of features separately

The best results appear in bold

Accuracy (%) C = 0.025 µl/ml C = 0.05 µl/ml

Average rate Average rate

Features Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6)

P2TRn 71.42 60.71 82.14 82.14
TP2TRn 85.71 85.71 85.71 82.14
RRn 75.00 71.42 75.00 85.71
FRn 82.14 75.00 78.57 71.42
tsn 89.28 89.28 89.28 82.14
fsn 89.28 89.28 85.71 82.14
T2
sn

85.71 85.71 89.28 89.28

B2
sn

85.71 85.71 85.71 89.28

VIEn 89.28 92.85 89.28 82.14
VIFn 64.28 75.00 75.00 64.28
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rates neither at low MI (0.2) nor at high MI (0.6). When the 
features  TP2TRn, tsn, fsn, T2

s n
, B2

s n
, and VIEn are introduced 

as input parameters into the SVM model, the correct aver-
age rate of classification of microemboli reached 89.28%, 
thus a significant improvement in the classification rates is 
observed.

In order to reduce the dimensionality we perform fea-
ture selection using differential evolution algorithm. DEFS 
algorithm is a wrapper approach; it performs feature selec-
tion using SVM classifier. We select the set of features that 
maximizes accuracy of the classification model (refer to 
Fig. 8).

Figure  8 draws the evolution of the average classifica-
tion rate vs number of selected features at low microbubble 
concentration (0.025 µl/ml) with a higher MI (0.6), the best 
result (Accuracy = 96.42%) is obtained using four features. 
The training data set is used to select the most relevant fea-
tures and to fix the parameters of the classifier. The final 
results presented, are based on the system’s performance 
using one unseen test data set.

The output of the designed approach using DEFS algo-
rithm and SVM classifier based on hold-out-set cross vali-
dation are illustrated in Table 5.

For the concentration of microbubbles (0.025 µl/ml) at 
low MI (0.2) our proposed method achieved 96.42% clas-
sification rate using a total of 4 features. For the other three 
acquisitions the performance measures are quite similar, the 
proposed method reached a classification rate of 92.85%.

More particular parameters can also be derived, such as 
the sensitivity and the specificity of the classification system 
(refer to Eqs. 5, 6) which are used to discriminate relevant 
information that provide more insight into the characteris-
tics of the model in order to make meaningful decisions. 
Sensitivity relates to a test’s ability to correctly identify 
those patients with pathology as positive. Specificity of a 
test refers to its ability to correctly identify individuals with-
out the pathology as negative. Furthermore, we investigated 
other statistical measure which better estimates the accuracy 
of a given trial test by analyzing sensitivity and specificity 
simultaneously, this approach is the area under curve (AUC) 
associated to the receiver operating characteristic (ROC) 
curve. AUC allows to quantify the ROC curve performance 
using a single value. It is well known that the higher the 
AUC value, the more efficient the classifier.

Figure  9 shows the ROC curves of the four datasets 
using several detection thresholds in which TP rate is plot-
ted on the Y axis and FP rate is plotted on the X axis. The 
best results (that maximizes sensitivity and specificity) are 
achieved using a threshold of 0.1163. At this cut-offs, the 
sensitivity is 100% and specificity is 92.85%. The ROC 
curves in Fig.  9 indicate that the proposed model per-
forms better at identifying gaseous emboli than at iden-
tifying solid emboli for the concentrations C = 0.025  µl/

ml and C = 0.05 µl/ml at high MI (0.6), the ROC curves 
produce an AUC of 97.44 and 96.93% respectively. On 
the contrary, for the concentration C = 0.025 µl/ml at low 
MI (0.2), the classifier recognizes better solid emboli than 
gaseous emboli. The classification performances for gase-
ous and solid emboli are quite similar for the concentra-
tion C = 0.05 µl/ml at low MI (0.2).

Table  5 illustrates the analysis of ROC curves using 
DEFS algorithm. The best value of accuracy based 
on the optimal threshold is obtained for concentration 
C = 0.025 µl/ml at high MI (0.6), the ROC point at (0.07, 
1) produces its highest accuracy (96.42%), with an AUC 
of 97.44%. For all the acquisitions a significant improve-
ment in terms of accuracy, sensitivity, and specificity is 
observed when using feature selection based on DEFS 
algorithm.

Table 6 illustrates the confusion matrix of the proposed 
system. The numbers of correct and incorrect predictions 
made by the proposed model compared to the target val-
ues in the test data are shown in Table 6. For example, at 
microbubble concentration 0.025 µl/ml and high MI (0.6) 
the proposed classification model succeeded in classify-
ing 14 gaseous embolus out of 14 (Sensitivity = 100%) and 
13 solid embolus out of 14 (Specificity = 92.85%). Thus 1 
solid embolus is not recognized i.e. classified as gaseous 
embolus, the gaseous embolus are all recognized.

In order to validate the proposed approach; we compared 
the obtained results in this study with those obtained in a 
recently published study [13] on the same backscatter RF 
signals (refer to Fig.  10). The average percentage of cor-
rect classification of microemboli using DEFS algorithm 
with SVM classifier for two microbubbles concentrations 
(0.025  µl/ml and 0.05  µl/ml) at high and low mechanical 
index (0.2 and 0.6) are given in Table 7.
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Fig. 8  Classification rates vs number of selected features with con-
centration of microbubbles (0.025 µl/ml) at high MI (0.6)
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Table 5  Generalisation performances using feature selection based DEFS algorithm

The threshold of 0.1163 provides the best AUC and its corresponding accuracy represented in bold

C = 0.025 µl/ml C = 0.05 µl/ml

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6)

DEFS Nbr of selected 
features

DEFS Nbr of selected 
features

DEFS Nbr of selected 
features

DEFS Nbr of selected 
features

Sensitivity (gaseous 
emboli)

85.71% 07 100% 04 92.85% 05 100% 07

Specificity (solid 
emboli)

100% 92.85% 92.85% 85.71%

Accuracy 92.85% 96.42% 92.85% 92.85%
AUC (area under 

curve)
96.93% 97.44% 96.93% 96.93%

OT: optimal thresh-
old

0.4190 0.1163 0.0326 0.0898

C = 0.025 µl/ml

C = 0.05 µl/ml
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Fig. 9  ROC curve at different detection thresholds: a MI = 0.2, b MI = 0.6 for two microbubbles concentrations
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Discussion

In this experimental study we exploit RF signals in the 
detection and the classification of microemboli into gase-
ous or solid embolus. Several features are evaluated from 
the detail coefficients using DWT technique. It should be 

noted that the features used in this study are the same used 
in the work by Aydin et al. [7]. These features are used as 
inputs to the classification models without feature selec-
tion method. The average classification rate doesn’t exceed 
89.28% for all datasets, this can be explained by the fact 
that even the more powerful among the existing machine 

Table 6  Confusion matrix of the proposed model

C = 0.025 µl/ml

Predicted

Acquisition 1. Low MI (0.2) Nbr of selected 
features

Acquisition 2. High MI (0.6) Nbr of selected 
features

Gaseous 
emboli

Solid emboli Gaseous emboli Solid emboli

Actual class  Gaseous emboli 12 2 7 14 0 4
 Solid emboli 0 14 1 13

C = 0.05 µl/ml

Acquisition 3. Low MI (0.2) Nbr of selected 
features

Acquisition 4. High MI (0.6) Nbr of selected 
features

Gaseous 
emboli

Solid emboli Gaseous emboli Solid emboli

Actual class  Gaseous emboli 13 1 5 14 0 7
 Solid emboli 1 13 2 12

Fig. 10  Generalisation perfor-
mances using DEFS algorithm 
and comparison with the 
results obtained in Ref. [13]: 
a MI = 0.2, b MI = 0.6 for two 
microbubbles concentrations

C=0.025µl/ml

C=0.05µl/ml
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learning algorithms tend to get confused when supplied 
with a large number of features.

Building quantitative models (classifiers) using a large 
number of features most often requires using a smaller 
set a features than the initial one. Indeed, a too large num-
ber of features feed to a model (classifier) results in a too 
large number of parameters, leading to overfitting and poor 
generalization abilities [27]. It is noteworthy, in our case, 
the original data set contains d features (d = 50), an exten-
sive search of all possible combinations would involve the 
design of  2d − 1 different models. This value grows expo-
nentially, making an exhaustive search impractical even for 
moderate values of d. In order to reduce the dimensional-
ity and select a relevant set of features, we implemented 
a wrapper feature selection approach based on differential 
evolution algorithm. For all the acquisitions a significant 
improvement in the classification rates is observed when 
using feature selection based on DEFS algorithm. The 
average classification rate goes down when the number of 
selected features gets larger which validates that learning 
might be deteriorated by irrelevant features (refer to Fig. 8).

In order validate the proposed approach; we compared 
the obtained results in this study with those obtained in a 
recently published study [13] on the same backscatter RF 
signals (refer to Table 7). In Ref. [13] the authors employed 
a neural network (MLP and RBF) analysis using the funda-
mental and the second harmonic components information 
contained in the RF signal backscattered by an embolus. 
The experimental results show clearly that our proposed 
method achieves better average classification rates com-
pared to the method cited in [13] using also the same back-
scatter RF signals.

The superiority of SVM over the Neural Network 
approach can be explained by the fact that SVM has a 
high capacity for generalization using limited numbers of 
training data points; furthermore, SVMs don’t have local 
extrema problems that are present for traditional neural net-
works, which involve large numbers of training patterns. 
The performance of SVMs relies on the choice of kernel 
type and kernel parameters, but this dependence is less 
influential.

It is noteworthy that the results depicted by Tables 3, 4, 
5, 6 and 7 are reproducible. The best results appear in bold. 
The algorithm has only access to the training and validation 
sets, the test set is kept unseen in the selection process of 
the best model. The test set is used only for the assessment 
of the model selected by the cross-validation technique.

According to the obtained results, one may need to com-
bine other types of approaches (e.g., filter and embedded) in 
order to improve the discriminative power of the proposed 
method. The processing time is an essential consideration if 
we have to implement this approach in clinical decisions. It 
should be noted that the training/feature selection phase lasts 

for a few minutes while the processing time for the test phase 
(classification) is less than 1 s. The implementation of such 
algorithm in real time applications makes also the investi-
gation of the feasibility of emboli signals detection systems 
using RF signals worthwhile.

Conclusion

Emboli detection and classification remain promising 
research due to the correlation between embolism conse-
quences and embolus nature (gaseous or solid emboli). The 
detection and classification of circulating microemboli is 
nowadays considered as a main challenge in the field of 
emboli detection.

The results presented in this experimental study demon-
strate the usefulness of RF ultrasound signal processing in 
detection and classification of microemboli. A first proof of 
the concept of emboli classification based on the combination 
of a time–frequency based feature extraction technique (dis-
crete wavelet transform), feature selection (DEFS), and back-
scatter RF signals is demonstrated. The results indicated that 
feature selection not only has the ability to find the most rel-
evant set of inputs that result in higher average classification 
rate but also has the ability to reduce the size of feature vec-
tor. We demonstrated in this experimental study that combin-
ing DEFS algorithm and discrete wavelet transform provides 
better average classification rates (96.42%) in comparison to a 
previous study using also the same backscatter RF signal [13] 
that was evaluated extensively in a comparable manner.

The technique as suggested in this study proves to be 
effective in improving classification. The implementation of 
such algorithm in real time applications makes also the inves-
tigation of the feasibility of emboli signals detection systems 
using RF signal worthwhile. However, further validations in 
in-vivo situations are required to demonstrate the additional 
benefit.
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