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diagnosis of cardiac abnormalities. The main artifacts 
which corrupt the ECG signal are baseline wander (BW), 
power-line interference (PI), muscle artifacts and motion 
artifacts. The occurrence of these artifacts in an ECG sig-
nal makes it difficult to detect abnormality in the heart. 
Powerline interference is a high frequency noise with a 
frequency of 50/60 Hz and corrupts the ECG signal dur-
ing data acquisition [17]. Different techniques have been 
proposed for powerline interference reduction based on 
adaptive filters, non linear filter banks, genetic algorithms 
etc [5–13, 15–18]. Adaptive filter as a noise canceller 
for powerline interference requires an external signal 
for noise cancellation. In empirical mode decomposi-
tion (EMD) based powerline interference reduction, the 
first intrinsic mode function was used for noise removal. 
Sometimes, a component of R-wave may also be present 
in the first intrinsic mode function; hence a notch filter 
on the first intrinsic mode function was applied before 
using it for adaptive noise cancellation. A new method 
for removal of PI in ECG signals based on EMD and 
discrete wavelet transform was described in [5]. Empiri-
cal wavelet transform (EWT) and adaptive filter based 
powerline interference methods were discussed in [23]. 
Different methods of powerline interference reduction 
based on EMD with different adaptive filter structures 
and subtraction methods were presented in [6]. In EMD 
based PI removal methods, the first Intrinsic mode func-
tion is used either in the adaptive filter structure or is sub-
tracted from the noisy ECG after some pre-processing 
to obtain noise free ECG [5, 6]. However if the signal is 
already noise free, the first Intrinsic mode function will 
no more provide an estimate of powerline frequency and 
thus the adaptive filter structure will distort the ECG sig-
nal. The baseline wander on the other hand is a low fre-
quency noise. The frequency range of baseline wander 
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Introduction

The electrocardiogram (ECG) signal is a graphical repre-
sentation of electrical activity of heart. The ECG is one 
of the most important biological signals and is used for 
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varies from 0.05 to 0.7 Hz [8]. It is generally caused by 
movement of patients due to breathing, coughing, anxi-
ety, stress or pain, and motion of electrodes [18]. Large 
baseline wander may change the duration and shape of 
ST segment, and may result in the loss of lower ampli-
tude peaks such as P and T waves [6]. A number of tech-
niques have been proposed in literature for baseline wan-
der correction in ECG signals. A traditional approach for 
baseline wander noise removal is to use a high pass filter 
having a cut off frequency of 0.7 Hz [7]. However there 
may be an overlap between baseline Wander noise and 
low frequency component of an ECG signal [20]. In such 
a situation, baseline wander removal using a high pass fil-
ter will change the morphology of original ECG signal, 
mainly, the ST segment. Thus, the use of a high pass filter 
is not always a good choice for baseline wander removal. 
Many different techniques commonly used for removal 
of baseline wander noise are based on adaptive filter-
ing, wavelet method and (EMD) [9, 20–22]. The EMD 
based approach for baseline wander correction is based 
on partial reconstruction of signal using a few intrinsic 
mode functions. However, the baseline wander noise may 
be dispersed over a number of intrinsic mode functions. 
Thus computing the optimum number of modes for par-
tial reconstruction is not automated. A new technique for 
signal denoising using a hybrid approach of EMD, dis-
crete wavelet transform (DWT), and constrained least 
squares (CLS) was proposed in [24]. In this approach, 
the noisy signal was decomposed into a series of intrin-
sic mode functions using EMD. Then, each intrinsic 
mode function was denoised using wavelet threshold-
ing and finally a weighted sum of the denoised intrinsic 
mode functions was performed after weight estimation 
by CLS except the residue [24]. Recently, variational 
mode decomposition has been proposed and is being 
applied for denoising purpose [25–28]. In [26], a simi-
lar approach as discussed in [24] was used where varia-
tional mode decomposition was utilized in place of EMD. 
Lahmiri in [28] presented a comparative study between 
EMD-DWT approach and VMD-DWT approach for sig-
nal denoising. Simulation results indicate that the VMD-
DWT approach delivers better results than the conven-
tional EMD–DWT [28]. In this paper, new methods are 
proposed for powerline interference and baseline wander 
noise removal from ECG signals using EWT. The EWT 
is a relatively new method that is still being researched 
and applications for it are being found. This work uses 
the EWT method to deliver an innovative approach to an 
old filter problem. Powerline interference and baseline 
wander noise is removed by using a subtraction method 
based on empirical wavelet transform. The ECG contami-
nated with powerline frequency is decomposed into two 
modes through EWT using optimized boundary. The last 

mode so obtained is preprocessed and subtracted from 
the noisy ECG to obtain noise free ECG signal. For base-
line wander correction, noisy ECG is decomposed into 
two modes using EWT using different boundary. The first 
mode provides an estimate of baseline drift and is sub-
tracted from the noisy ECG to obtain ECG signal free of 
baseline wander.

2. Materials and methods

Empirical wavelet transform

Empirical wavelet transform is a fully adaptive and 
data—driven signal processing technique with well 
defined mathematical background and is analogous to 
the empirical mode decomposition. The EMD adaptively 
decomposes a time series into a sum of ‘well-behaved’ 
AM-FM components. The EMD algorithm is a data 
driven approach and it propose to decompose a signal 
according to its contained information [2]. Despite of 
its lack of mathematical theory and high computational 
complexity, EMD is widely being used in various fields 
of engineering. A new approach for decomposing a 
time series into different modes is the Empirical Wave-
let Transform and is based on the design of an adaptive 
wavelet filter bank [1]. EWT provide a more consistent 
decomposition while, the EMD exhibits too much modes, 
which are sometime really difficult to interpret [1]. EWT 
first computes the fast Fourier transform (FFT) of the sig-
nal, then computes the boundaries based on the segmen-
tation of Fourier spectrum, and finally extracts the oscil-
latory modes using an adaptive wavelet filter bank based 
on the boundaries computed [1]. The EWT algorithm is 
briefly introduced here in the following steps:

1.	 Compute the FFT to the signal S(t), to obtain its fre-
quency spectrum S(ω). Find the maxima in the spec-
trum S(ω) of the signal with their corresponding fre-
quencies. Let the spectrum consist of P maxima with 
frequencies ωi, i = 1, 2…………..P. Arrange the max-
ima in the descending order.

2.	 In the next step, the segmentation mechanism of Fou-
rier spectrum is performed. Suppose, we wish to 
separate the Fourier spectrum {0, π} into N (N ≤ P) 
segments, then only first (N − 1) maxima are kept 
(excluding 0 and π). The boundary Ωi of each segment 
is then defined as the center of two consecutive max-
ima.

	
Ωi =

�i + �i+1

2
.
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Thus we get a set of boundaries Ω = {Ωi}, i = 1, 2… N − 1.

3.	 Design an adaptive wavelet filter bank consisting of a 
low-pass filter (scaling function) and (N − 1) band pass 
filters (wavelet functions) based on the detected bound-
aries. For mathematical equations of empirical scaling 
and wavelet function the readers are requested to refer 
[1].

4.	 Finally, the extracted modes are defined as the output 
of scaling function and wavelet functions.

For more detailed description of EWT the authors can 
refer to [1].

Proposed methods

Powerline interference (PI) cancellation Method

We have utilized EWT algorithm to eliminate power-
line interference from ECG signal. We decompose the 
noisy ECG (ECG + PI) into two modes using EWT with 
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Fig. 1   Segmentation of fourier spectrum of Noisy ECG (ECG + PI) a clean ECG b noisy ECG c spectrum of noisy ECG d computed boundary 
e scaling function f wavelet function g first mode of EWT h second mode of EWT
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optimized boundary. How the optimized boundary fre-
quency is computed is discussed in more detail subse-
quently. The segmentation mechanism and the boundary 
detection procedure are explained more clearly in Fig. 1. 
Figure 1a represents a clean ECG signal, Fig. 1b shows a 
noisy ECG with powerline interference, the spectrum of 
which is shown in Fig. 1c. Figure 1d shows the spectrum 
{0, π} of noisy ECG with the corresponding boundary 
computed for the construction of empirical wavelet func-
tion and scaling function. To separate the powerline fre-
quency from the ECG spectrum, we can decompose the 
ECG into two modes using EWT. If we wish to decom-
pose the noisy ECG into two modes, we need to spec-
ify one boundary in the noisy data spectrum. Generally, 
the boundary is specified as the mid-point between two 
major maxima. Thus we obtain a boundary which lies 
in between the maximum peak of ECG and the power-
line frequency. Then we design a low pass filter and high 
pass filter using empirical scaling and wavelet function 
respectively. The wavelet function will separate the pow-
erline frequency and thus the output of wavelet function 
can be subtracted from the noisy ECG to obtain clean 
ECG signal. However if the ECG signal is already clean 
(without powerline interference) or if the signal to noise 
ratio (SNR) of the noisy ECG is low, in such a case, the 
boundary will be computed as the mid-point between two 
major peaks of the ECG spectrum and thus the subtrac-
tion process will remove the actual spectrum of the ECG 
signal. Thus, we propose a different approach to opti-
mize the boundary frequency. Since powerline frequency 
is having constant frequency of 50/60  Hz. The peak in 
the noisy data spectrum due to PI will occur at a fixed 
frequency of wn ,{0–π} (corresponding to 50/60  Hz). 
In Fig.  1d, the peak of powerline frequency occurs at 
wn = 1.23 which corresponds to data length of 1500 sam-
ples, sampling rate of 256 Hz and PI of 50 Hz. The fil-
ter bank is designed based on the boundary specified; the 
boundary thus cannot be specified at the peak location of 
PI. However, it must be specified before the peak location 

so that the entire spectrum of the noise get passed. Here 
we compute the boundary as w′n = wn− Tn/2, where 
Tn = 2τn and τn = γwn. For γ = 0.25 and wn = 1.23, w′n 
= 0.9225 (refer to Fig.  1d). The empirical scaling func-
tion and wavelet function are shown in Fig. 1e, f respec-
tively along with the extracted modes in Fig.  1g, h. As 
evident from Fig. 1h, the second mode provides an accu-
rate estimate of PI and thus can be directly subtracted 
from the noisy ECG to obtain clean ECG signal. How-
ever in some case, the the second mode is not true esti-
mate of PI as shown in Fig. 2a, b. This happens generally 
when the signal to noise ratio of noisy ECG is low. In 
such a case, we apply a smoothing operator along with 
a band pass filter to smooth the estimated mode before 
subtraction. The smoothing operator first detects all the 
maxima and minima in the estimated mode.

Then we compute the mean (m) and the standard 
deviation (std) of the maxima and the minima of the 
mode. The magnitude of each maxima is compared with 
m ± 2 × std. If the magnitude of the peak is greater than 
(m + 2 × std) or less than (m    2 × std), we define a win-
dow between the preceding and the succeeding minima 
on both sides of the current maxima. The portion of sig-
nal within this window and having magnitude greater 
than zero is scaled by a factor of m×{x/max}. where x is 
the signal within the window and max is the maximum 
ampltude of x. A simillar approach is used for minima. 
The output after this operation is further passed through a 
band pass filter having a bandwidth of {49–50} Hz. The 
smoothed signal is shown in Fig. 2c. This signal is then 
subtracted from ECG to obtain noise free ECG signal.

Based upon this discussion, the proposed algorithm for 
PI removal from ECG is briefly outlined as below:

1.	 Consider a noisy ECG signal, S(n), corrupted with 
powerline interference noise i.e. S(n) = ECG + PI.

2.	 Compute the optimum boundary for the construction 
of empirical wavelet filter bank.
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Fig. 2   a Estimate of powerline frequency obtain from the empirical wavelet function b zoomed version of ‘a’ c smoothed signal
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3.	 Decompose the noisy ECG signal into two modes (M1 
and M2) using the empirical wavelet transform.

4.	 Smooth the second mode (M2) using a smoothing oper-
ator and a band pass filter.

5.	 Subtract the smoothed mode from the noisy ECG sig-
nal to obtain noise free ECG. This provides us ECG 
signal, which is free from PI.

Removal of baseline wander noise

We have used the same EWT technique for removing 
the baseline wander noise from ECG signal. Since base-
line wander noise is a low frequency noise generally 
<0.7 Hz, we compute a different boundary for the elimi-
nation of baseline wander noise. Since baseline wander 
noise is generally limited to 0.7  Hz, hence we compute 
the boundary frequency wn corresponding to 0.7 Hz. We 

again decompose the noisy ECG (ECG + BW) into two 
modes. The first mode estimates the baseline wander 
noise and the noise free signal is obtained by subtracting 
the first mode from the noisy ECG signal. This method of 
baseline wander removal is outlined below:

1.	 Consider a noisy ECG signal, X(n), corrupted with 
baseline wander noise i.e. X(n) = ECG + BW.

2.	 Compute the boundary frequency (corresponding to 
0.7 Hz) for the construction of empirical wavelet filter 
bank.

3.	 Decompose the noisy ECG signal into two modes 
using the empirical wavelet transform.

4.	 Substract the first mode from the noisy ECG to obtain 
noise free ECG. This provides us ECG signal, which is 
free from baseline wander.

Table 1   Comparison of proposed PI removal method with EMD based Method and Notch filter averaged over 5 segments for a synthetic ECG 
signal

Input signal to 
noise ratio (dB)

Output signal to noise ratio (dB) Correlation coefficient

Proposed method EMD method Notch filter Proposed method EMD method Notch filter

−10 25.5726 25.2855 22.5886 0.9983 0.9982 0.9973
−5 30.5358 30.2926 24.3177 0.9995 0.9994 0.9985
0 35.4468 34.6792 25.0479 0.9998 0.9998 0.9988
5 40.0849 39.9361 25.3059 0.9999 0.9999 0.9989
10 44.7121 44.4067 25.3901 1.0000 1.0000 0.9990

Fig. 3   Comparative performance of the proposed PI removal method in term of signal to noise ratio (dB), with EMD based method and Notch 
filter for a record 100 b record 103
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Results

In this section the quantitative and qualitative results of the 
proposed methods are presented. A comparative study of 
the proposed methods with some pre-existing methods is 
also presented.

Databases used for ECG signals and noise recordings

In the simulation study, synthetic ECG as well as real ECG 
recordings are considered for the performance evaluation 
of the proposed algorithms. In order to quantify the per-
formance of a filtering approach, the pure noise free sig-
nals are mandatory. The simulation study was carried out 
using signals that are completely free of noise. This study 
was performed using synthetic signals. Synthetic ECG sig-
nals are taken from physionet with a sampling frequency 
of 256  Hz. In addition, Realistic ECG recordings from 
MIT-BIH Arrhythmia Database http://www.physionet.org/
physiobank/database/mitbih/) and PTB Diagnostic ECG 
database (http://www.physionet.org/physiobank/database/
ptbdb/) are used for testing the methods and gaining a qual-
itative feel on how the method works. MIT-BIH arrhythmia 
database includes 48 half-hour recordings of two leads of 
ECG signals at a sampling frequency of 360 Hz with 11-bit 
resolution over a 10 mV range. The PTB diagnostic data-
base includes 549 recordings from 290 different subjects. 
Each subject is represented by one to five recordings. Each 
recording includes 15 signals measured simultaneously 

by the conventional 12 leads (i, ii, iii, avr, avl, avf, v1, 
v2, v3, v4, v5, v6) along with the 3 Frank lead ECGs (vx, 
vy, vz). The recordings are sampled with a sampling fre-
quency of 1KHz with 16-bit resolution over the ±16.384 
mV range and have variable duration (from 30 s to 2 min 
approximately). The baseline wander recordings (BW1 and 
BW2) have been taken from the MIT-BIH Noise Stress Test 
database (http://www.physionet.org/physiobank/database/
nstdb/). For powerline interference, we have generated 
sine waves of 50  Hz with varying amplitude and phase. 
The noisy ECG records are obtained by adding noise (BW/
PI) to the ECG signals at different levels of signal to noise 
ratio. The noise is scaled by an appropriate factor corre-
sponding to a pre-defined input signal to noise ratio before 
addition with the original ECG. Two parameters are chosen 
for performance evaluation: output signal to noise ratio and 
correlation coefficient between original clean ecg x(n) sig-
nal and the denoised ecg signal y(n).

where E denotes the expectation operator, �x and �y are 
the mean values of x(n) and y(n) and �x and �y denotes 
the standard deviation of x(n) and y(n) respectively. All 

(1)

Output signal to noise ratio = 10 log10

� 1

N

∑N−1

n=0
�y(n)�2

1

N

∑N−1

n=0
�x(n) − y(n)�2

�

(2)Correlation coefficient =
E((x − �x)(y − �y))

(�x)(�y)

Table 2   Comparison of correlation coefficient for proposed PI removal method with EMD based Method and Notch filter averaged over 5 seg-
ments for record 100 and record 103 from MIT-BIH arrhythmia database

Input SNR (dB) Correlation coefficient (record 100) Correlation coefficient (record 103)

Proposed method EMD method Notch filter Proposed method EMD method Notch filter

−10 0.9963 0.9806 0.9761 0.9940 0.9883 0.9831
−5 0.9948 0.9823 0.9760 0.9974 0.9932 0.9871
0 0.9943 0.9832 0.9755 0.9985 0.9944 0.9883
5 0.9932 0.9821 0.9741 0.9989 0.9933 0.9887
10 0.9898 0.9786 0.9698 0.9991 0.9900 0.9889

Fig. 4   Clean ECG and 
denoised ECG using various 
methods for a simulated ECG b 
record 100
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the results were simulated in matlab. We also compare 
the proposed algorithms with other methods including a 
standard Butterworth filter (a notch filter for the elimina-
tion of power line interference and a high pass filter for the 
removal of baseline wander) and EMD based methods.

Performance of PI removal method

We compare the performance of the proposed powerline 
interference removal method with the existing technique 
of EMD based indirect subtraction method [6] and also 

with a standard Butterworth notch filter with a cut off 
frequency of 50  Hz. Different methods for powerline 
interference reduction based on subtraction methods and 
adaptive structures were described in [6]. The authors 
concluded that EMD based indirect subtraction method 
provides better results as compared to others. For each 
record used in this simulation study, 5 segments of 
2000 samples have been taken. The performance evalu-
ation parameters represent the averaged valves over all 
the frames involved in the analysis. Table  1 presents 
the results for the removal of powerline interference 
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of 50 Hz for a synthetic signal. Table 1 show the aver-
aged output signal to noise ratio and correlation coef-
ficient for 5 segments. From these results, it is observed 
that the proposed method performs better than the 
other existing ones. For realistic ECG record we have 
tested the algorithm on different records from MIT-BIH 
arrhythmia database. Figure 3a, b show the performance 
of proposed algorithm for record 100 and record 103 
from the MIT-BIH arrhythmia database respectively. 
As evident from Fig.  3, the proposed method provides 
significant improvement in output signal-to-noise ratio. 
Table  2 compares the correlation coefficient between 
the original ECG and the denoised ECG for record 100 
and record 103. As evident from Table 2, the proposed 
method outperforms the others in terms of correla-
tion coefficient. Figure  4 shows the original ECG and 
the denoised ECG using various methods for a simu-
lated ECG and record 100 from MIT-BIH arrhythmia 
database.

Performance of baseline wander removal method

Both Qualitative and Quantitative results are presented 
for baseline wander removal. The baseline wander 
removal method was first evaluated on PTB diagnostic 

database. To demonstrate the performance of the pro-
posed EWT based BW removal method, two different 
subjects from PTB database showing different behavior 
in baseline wander noise were analyzed. Figure 5 shows 
the record number 255 (lead number 1) from PTB data-
base in which the BW decreases with almost constant 
slope. The estimate of BW obtained along with denoised 
signal and a detailed portion of the denoised signal is 
also shown in Fig. 5. A closer look into the output ECG 
indicates no baseline drift for the entire signal duration. 
The second example includes the subject number 150 
(lead number 6) in which the BW increases randomly. 
The original ECG recording, the estimated BW and the 
denoised ECG are shown in Fig. 6. A visual inspection 
of Fig. 6 shows no BW in the denoised ECG signal. For 
Quantitative evaluation record 100 and record 103 from 
MIT-BIH arrhythmia database are considered. The per-
formance evaluation parameter used is the output signal 
to noise ratio and correlation coefficient. Table 3 shows 
the comparative study of the proposed method with 
EMD based method and Butterworth high pass filter 
(cut off frequency is 0.7 Hz) for record 100 and record 
103 respectively. In the EMD based method, the noisy 
ECG is decomposed into intrinsic mode functions and 

Table 3   Comparison of proposed baseline wander removal method with EMD based method and high pas filter for record 100 and 103 from 
MIT-BIH arrhythmia database

Record Type of noise Input signal to 
noise ratio (dB)

Output signal to noise ratio (dB) correlation coefficient

Proposed method EMD method Butterworth 
high pass 
filter

Proposed method EMD method Butterworth 
high pass 
filter

100 BW1 −15 7.0259 3.0071 6.0229 0.8954 0.7895 0.8661
−10 10.8476 6.1414 9.8269 0.9580 0.8896 0.9466
−5 14.2190 8.3407 13.3865 0.9810 0.9396 0.9769

0 16.4016 10.8970 15.7807 0.9886 0.9700 0.9868
5 17.4193 12.3945 16.8813 0.9910 0.9824 0.9898

100 BW2 −15 10.6451 5.0917 9.0422 0.9562 0.8464 0.9360
−10 14.0288 7.2626 12.4565 0.9803 0.9016 0.9715
−5 16.2440 10.0150 14.9116 0.9882 0.9527 0.9840

0 17.3115 11.4159 16.2551 0.9908 0.9721 0.9883
5 17.7271 12.3634 16.8612 0.9917 0.9818 0.9898

103 BW1 −15 6.5331 5.0050 5.5614 0.8822 0.8532 0.8500
−10 9.6127 4.7824 8.6980 0.9443 0.8376 0.9306
−5 11.8098 6.1659 11.2129 0.9672 0.8871 0.9621

0 12.8956 7.4257 12.6127 0.9749 0.9129 0.9730
5 13.3047 7.7599 13.1938 0.9773 0.9624 0.9766

103 BW2 −15 9.5493 2.2464 9.5627 0.9437 0.7193 0.9285
−10 11.7649 4.2858 11.1458 0.9670 0.8186 0.9617
−5 12.8670 6.5966 12.5928 0.9748 0.8936 0.9730

0 13.2878 7.9905 13.1927 0.9773 0.9330 0.9767
5 13.4277 8.9759 13.4031 0.9780 0.9134 0.9779
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the last three intrinsic mode functions are discarded to 
reconstruct the clean signal. It can be seen that the pro-
posed method provides a better output signal to noise 
ratio and correlation coefficient as compared to other 
methods.

Complete denoising method

Two different methods are presented, one for powerline 
interference filtering and the other for baseline wander 
filtering. However a signal may be corrupted by both the 
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Fig. 7   Performance of the complete denoising method. Top row a–c 
clean ECG; PI filtered signal and BW filtered signal. Second row d–f 
ECG with PI; PI filtered signal and BW filtered signal. Third row g–i 

ECG with BW; PI filtered signal and BW filtered signal. Last row j–l 
ECG with PI and BW; PI filtered signal and BW filtered signal
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type of noise. For complete denoising, the two algorithms 
described here can be used sequentially. In Fig. 7. We have 
shown the performance of complete denoising approach 
with different possible cases. The complete denoising 
method is able to filter in all cases; without noise, as well as 
with one or the two types of noise.

Discussion

Essentially, the proposed methods consist on low-pass/
band-pass filtering where the cut off frequency is obtained 
from the analysis of the data spectrum. In proposed algo-
rithm for PI removal, the output SNR increases with an 
increase in input SNR. However, in case of EMD method, 
the SNR increases first and then decreases because at low 
input SNR the EMD algorithm does not provide an accu-
rate estimate of the powerline frequency. In case of Notch 
filtering, the output SNR increases with a decrease in input 
SNR but the improvement is less. For BW removal, the 
empirical wavelet filter is essentially having the same cut 
off frequency as that of the Butterworth filter but it pro-
vides a bit high output SNR as compared to the Butter-
worth filter because of its frequency response characteris-
tic. For complete denoising, the two algorithms can be used 
sequentially since the two filters in the two cases have dif-
ferent pass bands and thus do not affect the performance 
of each other. In the sequential operation we first removed 
the PI and then BW. However the two operations may be 
applied in reverse order as well. The simulated ECG rep-
resents an ideal case and is not a realistic ECG record. In 
such a case, the various denoising techniques perform well 
since the powerline frequency can be eliminated efficiently. 
In case of simulated ECG, It was observed that the EWT 
based method and EMD based method are able to extract 
almost exactly the clean ECG from the noisy ECG, whereas 
the Notch filter attenuates the magnitude of R-peak. Hence 
the improvement in the performance of the proposed 
method over EMD based method is not much, whereas this 
improvement is significant as compared to the Notch filter 
based method. Also, in case of synthetic ECG, output SNR 
is high since the input signal is noise free and the denoised 
signal traces the input signal. Since the denoised signal and 
the original signal almost replicate each-other, the correla-
tion coefficient is almost equal for the different cases. Still, 
there is a bit improvement in the results, in terms of output 
SNR as well as correlation coefficient which indicates the 
proposed methodology can be better option to remove noise 
from ECG signals. However, as compared to realistic ECG, 
the output SNR is not as high as in case of synthetic ECG, 
since there is a variation in the amplitude range over the 
entire signal and the denoised signal doesn’t trace exactly 
the original signal. However, the improvement in SNR for 

the proposed method is significant as compared to the other 
methods. Since the proposed method provides a better esti-
mate of the original signal, there is a significant improve-
ment in the correlation coefficient for proposed method as 
compared to EMD method and Notch filter.

Conclusion

This study presents new methods for powerline interfer-
ence cancellation and baseline wander correction in ECG 
signals based on Empirical wavelet transform. In clinical 
environment during data acquisition, the ECG signals are 
often corrupted by powerline interference from the record-
ing instruments and baseline wander due to movement of 
patients. EWT is a new technique for extracting the dif-
ferent modes embedded in a signal and works similar to 
EMD. As EMD is complex and slow process, EWT is used 
in this paper for powerline interference reduction and base-
line wander removal. When EWT is applied on the noisy 
signal, the estimate of powerline interference is provided 
by the last mode whereas the baseline is estimated by the 
first mode. Thus separating these modes from the noisy 
ECG signal provides the noise free ECG. Performance 
evaluation reveals that, compared to standard filters and 
EMD based algorithms, the proposed methods provide con-
siderable improvement in output signal-to-noise ratio and 
shows higher correlation between the original ECG and the 
denoised ECG signal.
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