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Introduction

Obstructive sleep apnea hypopnea syndrome (OSAHS) is 
a common sleep-related breathing disorder that may cause 
neurocognitive dysfunction, arterial hypertension, meta-
bolic disorders, and cardiovascular and cerebrovascular 
diseases [1–3]. Polysomnography (PSG) is considered the 
gold standard for diagnosing OSAHS [4]. However, PSG is 
time-consuming, labor-intensive, and expensive; as a result, 
many OSAHS sufferers worldwide are not diagnosed in 
time [5]. It is therefore essential to develop a simple and 
affordable monitoring method for diagnosing OSAHS.

Snoring is caused by the vibration of the soft palate and 
the uvula [6]. In recent years, researches [7, 8] have shown 
the relationship between snoring and OSAHS. Although 
not all snorers have this condition, most OSAHS suffer-
ers do snore [9]. OSAHS patients usually snore loudly 
and heavily in their sleep [10, 11]. Snoring is a character-
istic symptom of OSAHS patients, and many studies have 
shown that OSAHS can be identified through an acoustical 
analysis of snoring [8, 12–15].

It is important to detect snoring episodes from a full-
night recording of sleep sounds to evaluate the snoring 
severity of patients accurately. In many studies, potential 
snore episodes were segmented manually [16–19]. Only 
a few studies have realized automatic detection. The 
short-term energy (STE) and zero crossing rate (ZCR) 
methods were widely used to detect potential snore epi-
sodes [20, 21]. Azarbarzin [22] proposed the Vertical 
Box (V-Box) algorithm and Dafna et al. [23] explored an 
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adaptive algorithm with energy threshold for the auto-
matic detection of potential snore episodes. It is also 
important to classify potential snore episodes. Duckitt 
et  al. [16] adopted speech signal methods such as Mel-
frequency-cepstral coefficients (MFCCs) and hidden 
Markov model (HMM)-based classification framework 
for classifying snoring, breathing, and silence. The 
results showed 82–89% sensitivity for snoring detection. 
Dafna et al. [23] used a multifeature analysis method and 
Ada Boost classifier to classify potential snore episodes 
into snore and nonsnore. They selected 34 optimal fea-
tures from a pool of 127 features, and their result showed 
sensitivity of 98.0% for snoring classification.

Snoring and breathing are the two main components 
in sleep sounds. Recently, several studies have proposed 
effective methods for automatically detecting snoring 
sounds from breathing and snoring sounds. Karunajeewa 
et al. [17] proposed a method using the mean and covari-
ance of four features extracted from time and spectral 
domains and reported overall classification accuracy of 
90.74% for classifying snoring, breathing, and silence. 
Yadollahi and Moussavi [18] used energy, ZCR, first 
formant frequency (F1), and Fisher linear discriminant 
(FLD) for classifying breath and snoring sound seg-
ments and reported more than 90% overall accuracy in 
tracheal recording experiments. Ankışhan and Yılmaz’s 
study [19] classified snoring, breathing, and silence 
using the largest Lyapunov exponent (LLE) and entropy 
with multiclass support vector machines (SVMs) and 
adaptive network fuzzy inference system (ANFIS); they 
reported 91.61 and 86.75% total accuracies for SVMs 
and ANFIS, respectively.

To reduce the complexity of snoring detection and 
improve the performance of snore/nonsnore classifica-
tion, this study proposed an automatic and robust snor-
ing detection algorithm based on the acoustical analysis 
of snoring. The snoring detection algorithm has three 
major steps: (1) potential snore episodes are detected 
by an adaptive effective-value threshold; (2) feature 
extraction of linear and nonlinear features, use of MPR 
to reflect jitter of sounds, sum of positive/negative 
amplitudes, 500  Hz power ratio, spectral entropy (SE) 
and sample entropy (SampEn) to describe the chaos of 
sounds; and (3) SVM-based snore and nonsnore classi-
fication. The novelty of the present work is that it auto-
matically detects potential snore episodes from whole-
night sleep sounds using a new adaptive threshold 
method. Comprehensive sets of features involving linear 
and nonlinear characteristics that better reflected the 
nature of snoring realized the expected results for snor-
ing detection and provided an important foundation for 
non-contact OSAHS diagnosis.

Methods

Subjects

Whole-night sound recordings of six habitual snorers who 
were referred for a full-night PSG study were obtained 
from the First Affiliated Hospital of Guangzhou Medical 
University. The main outcome of a PSG test to assess the 
severity of OSAHS is the Apnea–Hypopnea Index (AHI), 
which is defined as the number of apnea/hypopnea events 
per hour of sleep. The severity of OSAHS was graded as 
no OSAHS (AHI <5), mild (AHI 5–15), moderate (AHI 
15–30), and severe (AHI >30) [24]. The duration of each 
recording was over 7  h. Table  1 lists the age, gender, 
AHIs, and Body Mass Indices (BMI) of these individuals.

Recording of snoring sounds

A digital audio recorder (Roland, Edirol R-44, Japan) 
with 40–20,000  Hz ± 2.5  dB frequency response and a 
directional microphone (RØDE, NTG-3, NSW, Australia) 
placed 45 cm over the patient’s head were used for audio 
recording. The distance ultimately varied from 50 to 70 cm 
owing to patient movements. The acquired signal was digi-
tized at a sampling rate of 44.1 kHz with 16-bit resolution.

Detection of potential snore episodes

In a manner similar to Hsu’s snoring detection algorithm 
[25], the proposed algorithm has three steps:

1. The noise reduction processing of original signals is 
based on power spectral subtraction. This process relies 
on automatically tracking background noise segments 
to estimate their spectra and subtracting them from 
sleep sound signals [26, 27], and it sets adaptive noise 
reduction parameters depending on different SNRs to 
improve the SNR.

2. The absolute value of spectral subtraction signals is 
calculated. The effective values of signals are calcu-

Table 1  Information of subjects

Subject no. Age AHI BMI Gender

1 23 3.6 23.7 M
2 41 7.1 24.6 M
3 30 14.4 25.9 M
4 38 15.9 26.0 M
5 48 41.7 29.4 M
6 70 21.2 27.8 F
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lated as follows: the profile of maximum values is 
found every 50 points, and the peaks are amplified by 
summing every 50 maximum values. The final profile 
is further smoothed by taking a 10-point moving aver-
age.

3. The effective value threshold (adaptive threshold) eth is 
calculated using the snore profile:

Figure  1 shows the detection process. Although this 
method realized the massive detection of snoring sound seg-
ments, some breath sounds and a few noises such as duvet 
noises, coughs, door shutting, and other environmental 
sounds remained in the detection result. Segmented sound 
episodes were identified by an ENT (ear–nose–throat) spe-
cialist as snoring/breathing/noise to create datasets for subse-
quent classification.

Feature extraction

Potential snore episodes are known to have nonstationary and 
complex behaviors [28, 29]. Multifeature analysis focuses on 
linear (sum of positive/negative amplitudes, 500  Hz power 
ratio, and MPR) and nonlinear features (SE and SampEn) to 
classify the data.

Sum of positive/negative amplitudes

Recently, Emoto [30] proposed a novel feature called posi-
tive/negative amplitude ratio (PNAR) to measure the shape 
of sound signals. The present study shows that the sum of 
positive/negative amplitudes provides better performance for 
classifying breathing and snoring sounds.

The sound signal x(n) is segmented xk(n) with 20-ms 
frame size and 50% overlap. The maximum positive ampli-
tude in the kth segment xk(n) is calculated as

where K is the total number of segments. The maximum 
negative amplitude in the kth segment of the signal is also 
computed as

The sum of positive/negative amplitudes is defined as

where Var(.) is the variance of Pk + Nk.

500 Hz power ratio

Spectrum estimation usually uses fast Fourier transform 
(FFT). However, FFT suffers from several performance 

(1)eth = 1.5 × arg max
e

histeffective value(e)

(2)Pk = max[xk(n)] , k = 1,… , K

(3)Nk = max[−xk(n)] , k = 1,… , K

(4)Var(Pk + Nk)

limitations such as frequency resolution and spectrum 
leakage [31, 32]. To overcome these limitations, Welch 
spectrum estimation is proposed to estimate the PSD 
(frame size: 20 ms with 50% overlap). This study defines 
the power ratio at 500 Hz as

where fc (= 8 kHz) is the cut-off frequency. Pxx(fi, k) is the 
PSD of the kth frame, and Px

(
fi
)
 is the average PSD value 

of every sound segment.

MPR, a novel feature to quantify sound jitter

This study proposes a novel feature called MPR. MPR 
reflects sound jitter and can be used to distinguish snor-
ing sounds from breathing and other slight jitter sounds. 
MPR is given as

SE

SE is used to measure the flatness of PSD, and it is 
defined as

SampEn

Entropy estimation methods for acoustical snoring anal-
ysis usually use frequency domain analysis. However, 
entropy estimation of a sound segment represented by 
a time series does not. Richman [33] proposed a new 
method called SampEn to measure the time series com-
plexity. It was similar to the approximate entropy (ApEn) 
but was more closely related to entropy than ApEn over 
a broad range of conditions [33]. Higher SampEn value 
indicates greater time series complexity. SampEn is cal-
culated as follows:

1. For a time series of N points, m dimension vectors 
xm(i) are defined as

(5)PR500 =

∑500Hz

fi=0
Px(fi)

∑fc
fi=0

Px(fi)

(6)Px

(
fi
)
= mean

k
Pxx(fi, k)

(7)MPR500 =

∑500Hz

fi=0
Px(fi)

min
k

∑fc
fi=0

Pxx(fi, k)

(8)SE = −
∑

f

Px

(
fi
)
ln
(
Px

(
fi
))

(9)xm(i) = {x(i), x(i + 1),… , x(i + m)} , 1 ≤ i ≤ N − m
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2. The distance between two such vectors is calculated as

3. Let Bi be the number of vectors d
[
Xm(i),Xm(j)

]
 within 

r and Ai be the number of vectors d
[
Xm+1(i),Xm+1(j)

]
 

within r. r is called the template match number. These 
functions are respectively defined as

(10)d
[
Xm(i),Xm(j)

]
= max[|x(i + k) − x(j + k)|], 0 ≤ k ≤ m − 1, i ≠ j, 1 ≤ i, j ≤ N −m

(11)Bm
i
(r) =

1

N − m − 1
Bi

(12)Bm(r) =
1

N − m

N−m∑

i=1

Bm
i
(r)

(13)Am+1
i

(r) =
1

N − m − 1
Ai

(14)Am+1(r) =
1

N − m

N−m∑

i=1

Am+1
i

(r)

4. Finally, SampEn is estimated as

which is quantified by the statistic 
SampEn(m, r, N) = −ln

[
Am(r)∕Bm(r)

]
 where N is finite.

Classification

SVMs have been used in numerous fields [34–38]. Studies 
showed that SVM was a good classifier for snore recognition 
and could achieve high recognition rate [19, 39]. An SVM is 
a two-class theoretical statistical model, and its basic princi-
ple is to maximize the margin on the feature space. Let xi and 
yi∈{+1, −1} be feature vectors of the ith subsequence and its 
class label; this optimization problem is then constructed as

(15)SampEn(m, r) = lim
N→∞

[
−ln

[
Am(r)∕Bm(r)

]]

(16)minimize
�,b,�i

{
1

2
∥ � ∥2 + C

∑

i

�i

}

Fig. 1  Demonstration of poten-
tial snore episodes detection. a 
The waveform of original sleep 
sound signals. b The signals 
after adaptive noise reduction. 
c The effective value profile of 
de-noised signals. d Detection 
of potential snore episodes
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where � is the system’s weight; b, the bias parameter; 
C, the penalty factor; and �i , the slack variable. By the 
Lagrange method, the optimal classification function is 
determined as

where �i∗ is an optimal solution; K
(
xi, xj

)
, a kernel function 

that indicates the dot-product in high-dimensional Hilbert 
space; and b∗, the bias parameter determined by the optimal 
solution.

Receiver operating characteristic (ROC) analysis 
for evaluating classification accuracy

To evaluate the classification accuracy, ROC analysis is 
used to compare the snore and nonsnore classification per-
formance by estimating the following parameters and area 
under curve (AUC). The sensitivity, specificity, positive 
predictive value (PPV), and total accuracy were calculated 
as

s.t. yi
(
�T

(
xi
j
)
�j + bj

)
≥ 1 − �i, �i ≥ 0, i = 1,… n

(17)y(x) = sign

(
N∑

i=1

�i
∗yiK

(
xi, xj

)
+ b∗

)

(18)Sensitivity =
TP

TP + FN
× 100

Table 2  The details of training and testing data sets

EXP-1A EXP-1B EXP-2

Training Testing Training Testing Training Testing

Snore 2287 1923 2117 2093 The groups except for testing group Any group of all groups
Breathing 1093 835 1142 786
Duvet noises 36 17 15 38
Cough 4 11 8 7
Other noises 90 50 83 57
Total 3510 2836 3365 2981

Fig. 2  Example of maximum 
power ratio distribution for 
snore, breathing and noises of 
two subjects
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where TP, TN, FP, and FN are the numbers of true posi-
tive, true negative, false positive, and false negative classi-
fied sounds, respectively. AUC gives a quantitative evalu-
ation of the classification accuracy, and it varies from 0.5 
to 1.0. The classification accuracy is favorable when AUC 
approaches 1.

(19)Specificity =
TN

TN + FP
× 100

(20)PPV =
TP

TP + FP
× 100

(21)Accuracy =
TP + TN

TP + TN + FN + FP
× 100

Training/testing data set

In this study, the training and testing materials were 
divided into files of ~1-min length for processing. Poten-
tial snoring episodes were detected by using the adap-
tive effective-value threshold method. Then, they were 
labeled as breathing, snoring, and noise segments by 
two research assistants (including authors, Can Wang 
and Lijuan Song). All assistants were guided by an ENT 
specialist (Xiaowen Zhang) in order to make sure that 
the definition of breathing, snoring, and noise was clear. 
Three different experiments were performed to evaluate 
the classification performance:

1. Testing and training data were taken from the same 
subjects (Exp-1A). However, the recording sections in 
each dataset were different. Training and testing data 
were obtained from the first and second half of the 
recordings, respectively.

Table 3  Classification results when different combinations of features are respectively used in EXP-1A, EXP-1B and EXP-2. Sen, Spe, AUC, 
PPV and Acc. represent sensitivity, specificity area under the curve, positive predictive value and accuracy values, respectively

Features Sen. (%) Spe. (%) PPV (%) AUC Acc. (%)

EXP-1A
 All features 96.05 91.35 96.05 0.933 94.54
 No SE 95.74 91.79 95.74 0.932 94.46
 No SampEn 95.32 91.89 95.32 0.932 94.21

EXP-1B
 All features 95.85 90.24 95.85 0.926 94.18
 No SE 95.80 90.23 95.85 0.925 94.14
 No SampEn 95.56 90.12 95.79 0.925 93.94

EXP-2
 All features 95.37 91.98 95.50 0.935 94.27
 No SE 95.46 91.59 95.39 0.933 94.24
 No SampEn 94.66 92.16 95.46 0.932 93.82
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Fig. 4  Samples of receiver operating characteristics (ROC) curve. a ROC for EXP-1A; b ROC for EXP-1B; c ROC for EXP-2
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2. Testing and training data were obtained from differ-
ent subjects (Exp-1B). Training and testing materials 
were obtained from three and the remaining subjects’ 
recordings.

3. We used k-fold cross-validation, where k was set to 
10 (Exp-2). The method divided all data into k groups 
(each group usually had equal size). The ith group was 
used as a set of testing data, and the other data were 
assigned to training data. The cross-validation pro-
cess was then repeated k times, with each group used 
exactly once as testing data. The k results from the 
folds can be averaged to estimate the classification per-
formance [40].

Results

As a result, 80 min of recordings were acquired from each 
of the six subjects. The dataset contained 6346 potential 
snore episodes. Table 2 shows the compositions of the test-
ing/training datasets in these experiments.

Classification results

Figure  2 shows the MPR feature distribution of the three 
sounds (snoring, breathing, and noises) from two subjects 
(subjects 3 and 6). This figure shows a case where >91% 
of the snoring events of these two subjects are above 100 
and where >89% of breathing events are below 50. MPR 
for noise usually has a dispersed distribution.

Figure  3 shows a plot of MPR versus SampEn for 
snoring (asterisk), breathing (open circle), and noise 
(cross mark) parts of potential snoring episodes. These 
data are obtained from the testing set of Exp-1A. Snor-
ing sound segments usually show larger MPR and 

SampEn levels than breath sounds. Although noise seg-
ments have a dispersed distribution, most noise can be 
distinguished from the snoring sound segments. These 
results suggest that the two features of snoring sounds 
are significantly different from those of breathing and 
some noise sounds.

The SVM algorithm was used for snore/nonsnore clas-
sification. A radial basis function was found to be the 
optimal kernel function for these classification results, 
and penalty factor C of 3.33 was used in the experiments. 
Table 3 shows the classification performances of Experi-
ments 1 and 2 for snore and nonsnore segments; overall 
accuracy of 94.18–94.54% was achieved when selecting 
the abovementioned features. In simple validation experi-
ments, EXP-1A, in which the training and testing datasets 
were obtained from the same subjects, had higher overall 
accuracy than EXP-1B. The sensitivity of the algorithm 
for the detection of snoring was 96.05% with EXP-1A 
and 95.85% with EXP-1B. The cross-validation results 
in EXP-2 indicate that the classification performance is 
similar to that of EXP-1. It should be noted that in all 
experiments, the sensitivities of the proposed method 
were higher than its specificities; the results suggest that 
various noise segments affect nonsnore classification. 
Additionally, we evaluated the performance of our sys-
tem using three different feature sets. One contained all 
of the abovementioned features, another merely excluded 
SE (denoted as No SE), and the last one had all features 
except for SampEn (denoted as No SampEn). The results 
shown in Table  3 indicates that all feature sets give the 
best classification accuracy, and the No SE feature set has 
higher classification accuracy than the No SampEn one.

Figure  4 shows the ROC analysis for the abovemen-
tioned features; the AUC in the three experiments was 
calculated as 0.933, 0.926, and 0.935, respectively.

Table 4  Comparison of the classification results of previous studies and our method

Author (year) Subjects Sound separation Classes Features Classifier Accuracy (%)

Duckitt et al. [16] 6 subjects Manual Silence, breathing, 
duvet noise and other 
noises

MFCCs HMM 82–89

Karunajeewa et al. 
[17]

12 subjects Manual Snore, breathing, and 
silence

Zero-crossings, sig-
nal’s energy

MPE decision rule 90.7

Yadollahi et al. [18] 23 subjects Manual Snore and breathing Zero-crossings, 
signal’s energy, first 
formant

FLD 93.2

Ankışhan et al. [19] 12 subjects Manual Snore, breathing, and 
silence

LLE and entropy SVMs and ANFIS 91.61 (SVMs)
86.75 (ANFIS)

Dafna et al. [23] 67 subjects Automatic Snore and nonsnore MFCCs, LPCs, SED, 
formants, pitch, etc

AdaBoost 98.2

This work 6 subjects Automatic Snore and nonsnore MPR, PR500, SampEn 
etc

SVM 94.2–94.5
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Discussion

This study proposed an automated detection method to 
identify snore segments from sleep sounds with acous-
tic feature analysis and an SVM algorithm. To investigate 
the effect of SNR on classification performance, Karuna-
jeewa et al. [17] compared the classification results of the 
algorithm when three different noise reduction techniques 
[amplitude spectral subtraction (ASS), power spectral sub-
traction (PSS), and short time spectral amplitude (STSA) 
estimation] and no noise reduction were used; they found 
that noise reduction along with a proper choice of features 
could improve the classification accuracy. In the present 
study, power spectral subtraction techniques and an adap-
tive effective-value threshold method were adapted to 
detect potential snore episodes based on a previous study 
[25, 26]. This algorithm proved effective for detecting 
potential snore episodes. To fully explore effective features, 
features from linear and nonlinear domains were imple-
mented. SampEn and MPR were first proposed to distin-
guish snore and nonsnore sounds. The results shown in 
Table 3 indicate that SampEn has higher classification per-
formance than SE, and using all features described in the 
method can realize higher precision. The best system accu-
racy was achieved using an SVM with Gauss-based kernel 
functions.

Previous studies have reported snore classification 
results based on various experimental programs [16–19, 
23]. Table 4 shows a comparison of the classification per-
formance of recent methods and our method. Duckitt et al. 
[16] demonstrated a system based on the manual screen-
ing of potential snore episodes from six subjects to identify 
snoring and nonsnoring sounds such as breathing sounds, 
duvet noises, silence, and other noises with 82–89% snore 
sensitivity; however, the specificity of snore detection was 
poor. Similarly, Karunajeewa et al. [17] proposed a method 
to classify snoring, breathing, and silence and achieved 
overall classification accuracy of 90.74%. Yadollahi and 
Moussavi [18] reported an automatic breathing and snor-
ing sound classification algorithm with 93.2% accuracy 
for ambient recording when three-dimensional features 
and FLD were used. Ankışhan et  al. [19] used the LLE 
and entropy to classify potential snore episodes as snor-
ing, breathing, and silence, and the overall classification 
accuracy was 91.61 and 86.75% for SVM and ANFIS, 
respectively. However, these studies manually obtained 
potential snore episodes from recordings and did not con-
sider noise. Dafna et al. [23] recently provided a new algo-
rithm for detecting potential snore episodes and proposed 
a snore/nonsnore classification method that exhibited high 
classification accuracy; however, it required the extraction 
of 34-dimensional feature vectors from 127-dimensional 
feature vectors by multiple acoustic analysis. The present 

method automatically detected potential snore episodes 
and extracted feature vectors with low dimensionalities. It 
detected snores with lower complexity, and the sensitivity 
and accuracy results for classifying snoring and nonsnoring 
sounds from tracheal recordings were superior to those of 
[16–19] (Table 4).

Noise in sleep sounds is unpredictable and variable, and 
this uncertainty causes the misclassification of snoring and 
nonsnoring sounds and affects the overall accuracy of the 
monitoring system. Future work should assess the charac-
teristics of the main noises to achieve higher overall clas-
sification accuracy.

Conclusion

The present study proposes an automatic snoring detection 
algorithm to identify snore segments from sleep sounds 
based on acoustic feature analysis and SVM. The PSS tech-
nique and adaptive effective-value threshold method are 
used to detect potential snore episodes. The results show 
that SampEn can realize better classification accuracy 
than SE, and the proposed automatic detection method can 
identify snores and nonsnores with 94.2–94.5% accuracy 
despite the small size of the training set. We conclude that 
the proposed algorithm extracted relatively low-dimen-
sional features for automatic detection of snoring has a 
potential to acquire snoring sounds from massive subjects. 
It shows promise for realizing an OSAHS diagnostic sys-
tem. Further study should explore new features to recog-
nize noises so as to improve the performance of the system 
and develop a potential screening tool for a home-based 
environment.
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