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Abstract In the present study, it has been shown that an

unnecessary implantable cardioverter-defibrillator (ICD)

shock is often delivered to patients with an ambiguous

ECG rhythm in the overlap zone between ventricular

tachycardia (VT) and ventricular fibrillation (VF); these

shocks significantly increase mortality. Therefore, accurate

classification of the arrhythmia into VT, organized VF

(OVF) or disorganized VF (DVF) is crucial to assist ICDs

to deliver appropriate therapy. A classification algorithm

using a fuzzy logic classifier was developed for accurately

classifying the arrhythmias into VT, OVF or DVF. Com-

pared with other studies, our method aims to combine ten

ECG detectors that are calculated in the time domain and

the frequency domain in addition to different levels of

complexity for detecting subtle structure differences

between VT, OVF and DVF. The classification in the

overlap zone between VT and VF is refined by this study to

avoid ambiguous identification. The present method was

trained and tested using public ECG signal databases. A

two-level classification was performed to first detect VT

with an accuracy of 92.6 %, and then the discrimination

between OVF and DVF was detected with an accuracy of

84.5 %. The validation results indicate that the proposed

method has superior performance in identifying the orga-

nization level between the three types of arrhythmias (VT,

OVF and DVF) and is promising for improving the

appropriate therapy choice and decreasing the possibility of

sudden cardiac death.

Keywords Ventricular arrhythmia � Fuzzy logic classifier �
Feature extraction � Pattern classification

Introduction

Ventricular fibrillation (VF) and rapid ventricular tachycar-

dia (VT) are the most malignant ventricular arrhythmias,

leading to six million deaths in the United States and Europe

if no timely defibrillation shockis applied [1]. The effective

treatments for VT include implantable cardioverter defib-

rillation, ablation and anti-arrhythmic mediations; the only

effective therapy option for VF is appropriate cardioverter

defibrillation [2]. Implantable cardioverter-defibrillators

(ICDs) provide different treatments according to the type of

arrhythmias. For VT, ICDs usually attempt pace maneuvers.

However, effective shocking with an ICD would be a pri-

mary choice for VF treatment. Because of the difference in

prognosis and medical treatments for VF and VT arrhyth-

mias, the accurate classification of these two arrhythmias is

clinically significant in order to provide an effective medical

treatment. In the present study, it has been shown that an

unnecessary ICD shock is often delivered to patients with an

ambiguous ECG rhythm in the overlap zone betweenVT and

VF, which significantly increases mortality [3]. Therefore,

accurate classification of the arrhythmias into VT, organized

VF (OVF) or disorganized VF (DVF) is crucial to improve

successful ICD shock rates. With accurate identification of a

DVF arrhythmia, ICD shocking would be performed effec-

tively and unnecessary pacing maneuvers would be avoided.

The differences in the arrhythmia signal structures for VT,

OVF and DVF groups can be observed from Fig. 1.

Many methods have been developed for VF and VT

rhythm classification. VF and VT signals vary in mor-

phology. A VF rhythm is generally disorganized and
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chaotic, while a VT rhythm is fundamentally organized.

Therefore, VF and VT rhythms embody different features

in the time domain and the frequency domain and exhibit

different levels of complexity. Within the time domain,

temporal/morphological detectors, such as the threshold

crossing interval (TCI) [4], the threshold crossing sample

count (TCSC) [5], the standard exponential (STE) [6], the

bandpass filter and auxiliary counts (BFAC) [6] and the

mean absolute value (MAV) [7], were used to explore the

morphological characteristics of ventricular arrhythmias. In

the frequency domain, spectral detectors such as VF leak

[8], M and A2 detectors in a spectral algorithm [9] and the

median frequency (FM) [10] were usually applied for VF

and VT detection. In addition, VT and VF classification

was also carried out according to their complexity, with

elements such as complexity measurement (CM) [11],

phase space reconstruction (PSR) [12] and sample entropy

(SpEn) [13].

However, because the structural characteristic that dis-

tinguishes OVF from DVF is time-varying and subtle, no

separate classification method is sufficient for efficient

ventricular arrhythmia classification [14]. To achieve more

accurate shockable rhythm detection, Li and Alonso-

Atienza employed up to ten ECG detectors using a machine

learning approach [15, 16]. Unfortunately, even these more

sophisticated methods ignore the analysis of ambiguous

ventricular arrhythmias, including the overlap zone

between VT and VF. In the present study, a classification

algorithm using a fuzzy logic classifier was proposed for

accurately classifying the arrhythmias as VT, OVF or DVF.

Compared with other studies, our method aims to combine

ten ECG detectors that are calculated in the time domain

and the frequency domain in addition to the level of

complexity for detecting subtle structural differences

between VT, OVF and DVF. The classification in the

overlap zone between VT and VF is refined by this study to

avoid ambiguous identification. The present method was

trained and tested using public ECG signal databases.

Methods

Database

The surface ECG signals from the PhysioNet repository

were used in this study [17]. In particular, the MIT-BIH

Malignant Ventricular Arrhythmia Database and the

Creighton University Ventricular Tachyarrhythmia Data-

base, which are available in the PhysioNet repository, were

included for the present algorithm development. A total of

280 ECG episodes with a window length of 8 s were

extracted and pre-classified segment-by-segment as VT,

DVF (predominantly late VF) and OVF (predominantly

early VF) by cardiology experts according to the gold

standard. Of the 280 ECG segments, there were 89 VT

segments, 95 OVF segments and 96 DVF segments. These

280 ECG episodes were randomly split into training and

test sets. The details of the training and test sets are shown

in Table 1.

ECG signal preprocessing

The ECG signals were sampled at a frequency of 250 Hz.

A high-pass filter and a Butterworth low-pass filter with

cutoff frequencies of 1 and 30 Hz, respectively, were

applied as signal preprocessing for the suppression of the

residual baseline and high-frequency noise.

ECG detectors

A set of ten defined detectors were preselected because of

their outstanding classification performance reported by

previous studies [15, 16]. According to their characteris-

tics, these detectors can be broadly classified into three

major categories as time domain, frequency domain and

complexity detectors. (For details about these detectors,

please see the original manuscripts.)

Time domain detectors/morphological detectors

• Bandpass filter and auxiliary counts include three

auxiliary detectors, which were named Count1, Count2

and Count3 [5]. These detectors represent the number

of signal samples with amplitude values within a

Fig. 1 Examples of ECGs depicting VT, OVF and DVF

Table 1 Details of training and test sets

Rhythm Training Test Total

VT 44 45 89

OVF 47 48 95

DVF 48 48 96

Total 139 141 280
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certain amplitude range. This specific amplitude range

is calculated from the absolute values (AFS) and mean

deviation (MD) of a digital bandpass filter output, as

shown below.

The range of Count1 ¼ 0:5
�max jAFSjð Þ to max jAFSjð Þ

ð1Þ

The range of Count2 ¼ mean jAFSjð Þ to max jAFSjð Þ
ð2Þ

The range of Count3 ¼ mean jAFSjð Þ
� MD to mean jFSjð Þ þ MD

ð3Þ

• Threshold crossing sample count (TCSC) represents the

number of times the ECG sampling signal crossed a

certain threshold value with a 3-s interval [6]. This

detector can be evaluated by averaging TCSC values

that are calculated within several consecutive 3-s

intervals.

Spectral detectors

• VF-filter leakage measure (Leakage) [8] is the output of

a narrow bandstop filter that is applied to the sampled

signal with its center frequency value equivalent to that

of the mean frequency of the sampled ECG signal

segment. The VF-Filter leakage is obtained as

Leakage ¼
Xm

i¼1

Vi þ Vi�ðT=2Þ
�� �� X

m

i¼1

ð Vij j þ Vi�ðT=2Þ
�� ��Þ

" #�1

ð4Þ

T ¼ 2p
Xm

i¼1

Vij j
Xm

i¼1

Vi � Vi�1j j
 !�1

ð5Þ

where Vi, m, and T are the signal sample, the number of

data points and the mean period of a sampled ECG

segment, respectively.

• Spectral algorithm [9] calculates the power content

over different frequency ranges. The power content can

be estimated from the amplitude in the frequency

domain by Fourier analysis. F is the peak frequency

that results in the largest amplitude in the frequency

band of 0.5–9 Hz. Then, FSMN and A2 can be

calculated by (6) and (7), respectively.

FSMN ¼ 1

F

P
AmpifiP
Ampi

ð6Þ

A2 ¼
P

AmpjP
Ampk

ð7Þ

where fi and Ampi are the ith frequency and corresponding

amplitude, respectively, in the fast Fourier transform (FFT)

between 0 and 100 Hz, Ampj is the amplitude at the jth

frequency in the FFT between 0.7 and 1.4 FHz, and Ampk
is the amplitude at the kth frequency in FFT between 0.5

and 20 FHz.

Complexity detectors

• The time delay algorithm (Timedelay) [12] constructs a

two-dimensionalphase space diagram with signal

x(t) on the x-axis and x(t ? s) on the y-axis, with s
being a proper delay time constant. The phase space

diagram is divided into a 40 9 40 grid, and the number

of diagram boxes visited by the ECG curve can be

counted. Thus, the Timedelay detector can be defined

as follows:

Timedelay ¼ Number of visited boxes

Number of all boxed
ð8Þ

• The complexity measurement (CM) algorithm [11]

generates a 0/1 binary sequence by comparing the ECG

signal to a proper threshold. With the binary sequence,

the CM detector is then computed using the Lempel–

Ziv complexity measurement.

• Sample entropy (SpEn) [13] quantifies the morpholog-

ical consistency of the selected ECG waveform. If the

value of SpEn is lower, it indicates that the selected

ECG waveform is more similar. Therefore, an orga-

nized and disorganized ECG rhythm can be differen-

tiated by a SpEn detector.

Classification feature

The three major features of an ECG waveform, namely,

time domain features, frequency domain features and

complexity features, comprehensively reflect the detailed

characteristics of the ECG signal. Therefore, these features

that are normalized and quantified in (9) were used to

distinguish between VT, OVF and DVF in this current

study.
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Fi ¼
Xn

j¼1

Wij � Pij

Xn

j¼1

Wij ¼ 1;Fij 2 0; 1ð Þ;Pij 2 0; 1ð Þ
 !

ð9Þ

where Pij represents the normalized value of the jth

detector assigned to the ith feature (ijth detector), Fi is the

normalized value of ith feature, n is the number of detec-

tors contained by the ith feature, and Wij is the weight

assigned to the ijth detector. The larger the value of Wij is,

the more likely it is that the ijth detector is discriminative.

The ability of the ijth detector to separate between two sets

of labeled data (positive and negatives instances) can be

measured by computing the Fscore using the fisher crite-

rion method that has been used in many studies [16, 18]. (A

detailed explanation of Fscore and fisher criterion can be

found in the Appendix.) Wij corresponding to the ijth

detector is thus computed using Eq. (10) with theFscore.

Wij ¼
FscoreijPn
j¼1 Fscoreij

ð10Þ

where Fscoreij represents the Fscore value of the ijth

detector.

To obtain outstanding performance in ventricular

arrhythmia identification, three classification methods

based on three ECG features (feature methods) are all well

trained using a training dataset. Optimal threshold values

for each feature method are defined as the intersection of

the sensitivity and specificity curves using the train data-

base. For instance, the Fig. 2 shows the performance of all

of the TD values in VF/VT detection and the definition of

the optimal threshold value for TD feature. Compared with

other values, the optimal threshold value of TD obtains the

best tradeoff between the sensitivity and specificity with a

sensitivity of 91.5 % and a specificity of 91.7 %. Optimal

threshold values for each feature method and the weight

values assigned to each detector are shown in Table 2. The

ability of each feature to classify an ECG rhythm can also

be quantified using fisher criterion method, as shown in

Fig. 3.

Fuzzy logic classification (FLCL) method

To obtain improved performance of ventricular arrhythmia

classification, a fuzzy logic classifier based on classifica-

tion rules summarized from rich experiences was selected.

There are three inputs and one output in the fuzzy logic

classifier system. The three inputs are normalized time

domain feature (TD), normalized frequency domain feature

(FD) and normalized complexity feature (CPLX); the

output is a quantized value used to distinguish three ven-

tricular arrhythmias: VT, OVF and DVF. The overall

structure of the fuzzy logic classifier is shown in Fig. 4.

The classifier mainly contains the following five

sections.

ECG features calculation

As the inputs of the fuzzy logic classifier, the three features

(TD, FD, CPLX) with values ranging from 0 to 1 are

normalized and quantified by combining three categories of

ECG detectors, as shown in (9).

Fuzzification

After computing and normalizing the inputs, they were

transformed into a fuzzy quantity and were represented

with an appropriate assembly. Because of the simple

Fig. 2 The performance of all of the TD values in VF/VT detection

and the definition of the optimal threshold value for TD feature. The

optimal threshold value of TD is 0.21 with a sensitivity of 91.5 % and

specificity of 91.7 %. TD time domain feature

Table 2 Optimal threshold values for each feature method and

weight values assigned to each detector

Feature Detector Weight Threshold value for feature method

VT vs. VF OVF vs. DVF

TD Count1 0.24 0.21 0.58

Count2 0.32

Count3 0.31

TCSC 0.13

FD Leakage 0.48 0.37 0.79

FSMN 0.17

A2 0.35

CPLX Timedelay 0.43 0.28 0.64

CM 0.21

SpEn 0.36

TD normalized time domain feature, FD normalized frequency

domain feature, CPLX Normalized complexity feature
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calculation and outstanding performance, the triangle

function is selected as the membership function for

fuzzification. The same linguistic variables for TD, FD,

CPLX and outputs are VT, OVF and DVF. Using the

optimal threshold values shown in Table 2, the member-

ship functions for the inputs and outputs are shown in

Fig. 5 as a distribution over the whole output value range

from 0 to 1.

Fuzzy classification rule

To achieve accurate classification of ventricular arrhyth-

mias, a fuzzy classification strategy was developed based

on the following five design rules:

0

0.2

0.4

0.6

0.8

1

TD FD CPLX

Fs
co
re VT vs. VF

OVF vs. DVF

Fig. 3 Normalized feature ranking weights using fisher criterion

methods

Ventricular Arrhythmias Classification Rule

ECG Detectors
Count1 Count2 Count3 TCSC Leakage

FSMN Timedelay SpEnA2 CM

Combined Processing: Features are normalized and quantified as (9).

TD FD CPLX

Fuzzyfication (linguistic variables: VT, OVF, DVF)

Fuzzy Classification Rule (27 Rules)

Defuzzification

Output Value

VT

OVF

TH_1

TH_2

DVF

Fig. 4 The structure of the

proposed fuzzy logic classifier
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• The classification rules are optimized by regulating

normalized output value in accordance with the optimal

threshold value for features.

• According to the ability of each feature for VT

detection, as shown in Fig. 1, the separation between

VT and VF rhythms should be based more on the TD

than on both the FD and CPLX.

• According to the ability of each feature to distinguish

between OVF and DVF, as shown in Fig. 1, the

classification between OVF and DVF should be based

more on the CPLX than on both the TD and FD.

• If there is agreement between the identification results

obtained from two features, this result is considered to

be the final result.

• If there is disagreement among all three identification

results, the final result is obtained from the feature that

outperforms the other two features in the present

ventricular arrhythmia detection. (The ability of all

three features in the detection of VT, OVF and DVF

can be measured using the fisher criterion.)

Based on the design rules presented above, a total of 27

fuzzy classification rules were established. Because of

space constraints, 3 examples from the 27 fuzzy classifi-

cation rules are illustrated below.

#R6: IF TD is OVF and FD is DVF and CPLX is DVF,

then OUTPUT is DVF.

# R10: IF TD is VT and FD is VT and CPLX is OVF,

then OUTPUT is VT.

#R26: IF TD is VT and FD is OVF and CPLX is DVF,

then OUTPUT is VT.

Defuzzification

The output fuzzy variable is obtained by fuzzy inference

that is based on fuzzy classification rules. With the

weighted average method, the output fuzzy variable is

ultimately converted to a precise variable for further

refined classification. This precise output variable is used

by a fuzzy logic classifier for ventricular arrhythmia

classification.

Ventricular arrhythmia classification rule

Two threshold values (TH_1 and TH_2) were extracted

from numbers of output values of the fuzzy logic classifier

using a training set. The accurate classification between VT

and VF and between OVF and DVF are thus achieved by

comparing the present output value with TH_1 and TH_2,

respectively.

Statistical method

The performance of ventricular arrhythmia classification is

evaluated in terms of the sensitivity (SE), specificity (SP),

accuracy (ACC) and the area under the receiver operating

characteristic (ROC) curve (AUC). SE is the proportion of

correctly detected VT/OVF rhythms, and SP is the pro-

portion of accurately identified VF/DVF rhythms. ACC

refers to the ability to make a correct identification. SE, SP

and ACC can be calculated as.
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Fig. 5 Membership function for the normalized values of TD, FD, CPLX and outputs. TD time domain feature, FD frequency domain feature,

CPLX complexity feature
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SE ¼ TP

TPþ FN
ð11Þ

SP ¼ TN

TN þ FP
ð12Þ

ACC ¼ TN þ TP

TN þ FPþ TN þ FN
ð13Þ

where TP is the number of true-positive decisions, FN is

the number of false-negative decisions, TN is the number

of true-negative decisions, and FP is the number of false-

positive decisions.

Results

Ventricular arrhythmia classification performance

There are two levels for ventricular arrhythmia classifications

in this study. The first-level classification was performed to

differentiate VT from VF groups. The second-level classifi-

cation was performed to distinguish between OVF and DVF.

The performances of the ten methods using the individual

detector and the FLCLmethod proposed in this study are fully

analyzed using the test dataset, as shown in Table 3 and Fig. 6.

In both classification levels, all classification methods yielded

higher values of SP than of SE. This indicated that VT detec-

tion and OVF detection are more difficult than VF detection

and DVF detection. All evaluation indexes (SP, SE, ACC,

AUC) corresponding to a certain method in the second-level

classification (OVF vs. DVF) are much lower than those cor-

responding to the same method in the first-level classification

(VT vs. VF). This indicates that the accurate classification

between VT and VF is more easily obtained than that between

OVF and DVF. With higher accuracy, the TCSC method that

was performed in the time domain, the leakage method that

was performed in the frequency domain and the Timedelay

method in complexity yielded three relatively better results

than other methods using an individual detector in both levels

of classification (The accuracy is 86.8 % forTCSC, 88.6 % for

Leakage and 85.9 % forTimedelay in first-level classification;

81.3 % for TCSC, 78.2 % for Leakage and 79.1 % for

Timedelay in second-level classification). With respect to

individual detectors, Count2 yields a largest accuracy value of

90.3 % in detecting VT rhythms but its accuracy is 5.3 %

smaller than that of SpEn in the discrimination of OVF and

DVF. SpEn is able to distinguish between OVF andDVF very

accurately with a accuracy value of 82.9 % but yields a

unsatisfactory accuracy which is 8.7 % smaller than that of

Count2 in VT/VF detection. In contrast, the FLCL method

achieves largest accuracy which is 2.3 % greater than that of

Count2 forVF/VT classification and 2.5 %greater than that of

SpEn for OVF/DVF classification. With the highest value of

SP, SE, ACC and AUC, the FLCL method provides the most

robust classifier and significantly outperforms all of the indi-

vidual detectors in both classification problems.

Comparative analysis

The comparison between the FLCL method and other three

previous methods was given to evaluate the performance of

this proposed method. The wavelet and singular value

decomposition analysis method (Wavelet–SVD) proposed

by Balasundaram was tested due to their ability to classify

VT, OVF and DVF. The algorithms developed by Kou-

laouzidis and Ropella were also implemented due to rela-

tively good performance in distinction between three

ventricular arrhythmias: MVT, PVT and VF. For the

comparison to be fair, these four algorithms were all tested

on the same test dataset.

The results for the different methods are presented in the

last column of Table 4. From the result it can be observed that

Table 3 Performance of the ten

methods using individual

detector and FLCL method

Detector VT vs. VF OVF vs. DVF

SE (%) SP (%) ACC (%) AUC (%) SE (%) SP (%) ACC (%) AUC (%)

Count1 80.8 87.4 85.2 91.1 71.4 79.6 75.8 85.2

Count2 88.1 91.2 90.3 94.8 74.9 81.8 77.6 86.9

Count3 81.9 87.1 84.7 90.9 74.3 79.2 76.9 86.7

TCSC 84.3 88.6 86.8 92.5 76.6 84.7 81.3 89.4

Leakage 85.6 90.7 88.6 93.8 75.2 82.3 78.2 87.1

FSMN 53.4 72.8 61.2 67.9 48.5 59.0 52.7 57.5

A2 79.5 85.9 83.3 90.8 69.7 76.9 73.5 84.3

Timedelay 82.9 87.7 85.9 91.2 72.8 83.4 79.1 88.3

CM 48.9 69.8 59.4 63.5 55.1 67.8 61.2 69.4

SpEn 78.1 83.4 81.6 89.6 78.9 85.4 82.9 90.2

FLCL 90.2 95.1 92.6 96.1 81.3 88.9 85.4 91.2

FLCL fuzzy logic classification
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the FLCLmethod provides themost outstanding performance

in ventricular arrhythmias classification. In first-level classi-

fication (VT vs. VF), although Wavelet–SVD algorithm

yields a slightly higher SP of 96.7 %, FLCLmethod achieves

the highest SE of 90.2 % which is prominently higher than

that ofWavelet–SVDwith the difference of 4.1 %. In second-

level classification (OVF vs. DVF), FLCL method outper-

forms the other three algorithms with a SE of 81.3 % and SP

of 88.9 %. Compared with FLCL and Wavelet–SVD, phase

space reconstruction and spectral coherence methods per-

formed especially poor in second-level classification, which

is similar to the result provided by Balasundaram et al. [14].

Discussion

VF and VT seriously affect the survival rate of cardiac

arrest patients. VF treatment is immediate shocking, while

pacing maneuvers is the primary choice for VT treatment.

In addition, the spatio-temporal organization during VF is

reported to be associated with maintaining VF [21–25].

Therefore, VT/VF detection and the sub-classification of

VF into OVF or DVF in a short time have an important

benefit to assisting ICDs and improve treatment options.

In this study, a novel detection algorithm (FLCL

method) that combines ten ECG detectors in the time

domain, frequency domain and complexity with a fuzzy

logic classifier has been developed for optimal classifica-

tion of ventricular arrhythmias. In comparison with related

algorithms using individual ECG detectors (Count1,

Count2, Count3, TCSC, Leakage, FSMC, A2, Timedelay,

CM and SpEn), the FLCL method outperforms these pre-

vious algorithms that consider each detector individually

with the test database. Because the individual detector

represents only one of three characteristics (TD, FD and

CPLX), the subtle morphological differences between VT,

OVF and DVF may not be captured effectively by a single

detector. This could explain the relatively lower

Fig. 6 ROC curves calculated on the test set for the a VT versus VF scenario and b OVF versus DVF scenario

Table 4 Comparative analysis

Method ECG in

original

work

Number

of

leads

used

Analysis domain Target classification in

original work

VT vs. VF OVF vs. DVF

SE

(%)

SP

(%)

SE

(%)

SP

(%)

FLCL Surface 1 Time, frequency and

complex

VT, OVF and DVF 90.2 95.1 81.3 88.9

Wavelet–SVD [14] Surface 1 Time and frequency VT, OVF and DVF 86.1 96.7 78.9 87.4

Phase space

reconstruction [19]

Surface 2 Time MVT, PVT and VF 81.6 89.3 58.1 62.6

Spectral coherence [20] Intra-

cardiac

2 Frequency MVT, PVT and VF 62.4 70.6 55.8 61.3

FLCL fuzzy logic classification, Wavelet–SVD wavelet and singular value decomposition analysis method, PVT polymorphous ventricular

tachycardia, MVT monomorphic ventricular tachycardia
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performance of these algorithms using an individual

detector for the proposed classification. The individual

discriminative power of a single ECG detector is not suf-

ficient to obtain a robust and accurate discrimination. The

FLCL detector can quantify TD, FD and CPLX features

comprehensively and could provide a better metric on the

transition from organized VT to disorganized VF. The

combination of the ten detectors used by the FLCL method

appears to provide complimentary information. For

instance, the power in the half bandwidth of the signal

centered on the central frequency is measured by Count2

while the power in the sidebands outside the central fre-

quency is measured by Leakage. In comparison with few of

the previous studies [14, 19, 20], the proposed method still

performs excellently in overall. It could be observed that

the majority of the previous methods did obtain compara-

tive classification between VF and VT; however, with

much lower SP and SE, their ability to separate OVF from

DVF is significantly poorer than FLCL method. The FLCL

method based on these mutually complimentary detectors

makes detection of subtle ECG morphology differences

possible.

Limitation

There are three limitations in our study. First, like other

individual detector methods, the ability of the FLCL

algorithm on sub-classification between OVF and DVF is

relatively poor. Because VT is an organized signal and VF

is an irregular signal, the difference in TD, FD and CPLX

between VT and VF is significantly remarkable. In contrast

to VT, OVF and DVF are essentially disorganized and the

tiny partial organized component in OVF is thus not

enough to make OVF obviously different from DVF. There

is still potential for improving the OVF/DVF detection

performance of the FLCL if more discriminative features/

detectors are incorporated into the FLCL method. Second,

the FLCL performance in the presence of severe noise is

not examined. In the standard databases, ECG data are

often hand-picked to be of high quality, so an ECG episode

that is disturbed by severe noise is absent from these

standard datasets. The FLCL method’s performance should

be further evaluated using corrupted ECG segments that

are sampled in clinical practice. Third, other combination

methods, such as support vector machine and neural

net algorithm, were not included and analyzed in the pre-

sent study. The purpose of this study is to prove that the

method based on ECG detector combination outperforms

that using an individual ECG detector in ventricular

arrhythmia classification. As one of methods based on

detector combination, fuzzy logic method is thus applied

for comparative analysis in this study. In the future study,

the other methods based on ECG detector pre-processor

combination will be compared with the FLCL method.

Conclusion

The proposed study based on a fuzzy logic classifier per-

forms an accurate and automatic classification of ventricular

arrhythmias and in particular, corrects sub-classification of

VF into OVF and DVF. The validation results indicate that

the proposedmethod has superior performance in identifying

the organization level among the three types of arrhythmias

(VT, OVF and DVF). As a computer-aided diagnosis tool,

the FLCL method that is proposed in this study is promising

for improving the appropriate therapy choice and decreasing

the possibility of sudden cardiac death.
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Appendix: Fisher criterion

Fisher criterion measures the ability of the jth feature to

separate between two sets of labeled data (positive and

negatives instances) by computing the F-score as.

FðjÞ ¼ lðyþÞ2 þ lðy�Þ2

r2ðyþÞ þ r2ðy�Þ ð14Þ

where l(y±)=lj,±-lj represents the difference between

the average of the jth feature for the positive/negative

classes lj,± and the whole set of samples lj. In the

denominator, r2 (y ±) is the sample variance of the pos-

itives/negative instances and can be calculated as.

r2ðy�Þ ¼ 1

n� � 1

Xn�

i¼1

ðxðjÞi;� � lj;�Þ2 ð15Þ

where n± is the number of positive/negative samples. The

larger the value of F(j), the more likely this feature is

discriminative.
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