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Abstract Electroencephalographic (EEG) activity recor-

ded during the entire sleep cycle reflects various complex

processes associated with brain and exhibits a high degree

of irregularity through various stages of sleep. The iden-

tification of transition from wakefulness to stage1 sleep is a

challenging area of research for the biomedical commu-

nity. In this paper, spectral entropy (SE) is used as a

complexity measure to quantify irregularities in awake and

stage1 sleep of 8-channel sleep EEG data from the

polysomnographic recordings of ten healthy subjects. The

SE measures of awake and stage1 sleep EEG data are

estimated for each second and applied to a multilayer

perceptron feed forward neural network (MLP-FF). The

network is trained using back propagation algorithm for

recognizing these two patterns. Initially, the MLP network

is trained and tested for randomly chosen subject-wise

combined datasets I and II and then for the combined large

dataset III. In all cases, 60 % of the entire dataset is used

for training while 20 % is used for testing and 20 % for

validation. Results indicate that the MLP neural network

learns with maximum testing accuracy of 95.9 % for

dataset II. In the case of combined large dataset, the net-

work performs with a maximum accuracy of 99.2 % with

100 hidden neurons. Results show that in channels O1, O2,

F3 and F4 (A1, A2 as reference), the mean of the spectral

entropy value is higher in awake state than in stage1 sleep

indicating that the EEG becomes more regular and rhyth-

mic as the subject attains stage1 sleep from wakefulness.

However, in C3 and C4 the mean values of SE values are

not very much discriminative of both groups. This may

prove to be a very effective indicator for scoring the first

two stages of sleep EEG and may be used to detect the

transition from wakefulness to stage1 sleep.

Keywords Electroencephalogram (EEG) � Spectral
entropy (SE) � Polysomnograms (PSG) � Multilayer

perceptron-feed forward (MLP-FF) neural network � Back
propagation (BP) algorithm

Introduction

The sleep architecture is a complex process that varies

from person to person depending on age, sex, and due to

sleep disorders [1]. Sleep disorder manifests itself as a

condition with abnormal sleep patterns which are seen in

humans as well as in animals. Obstructive sleep apnea

disorder is not only that which affects sleep but may reflect

the source of other major pathologies [2] such as hyper-

tension, cardiac dysfunction, cognitive deficits and mem-

ory loss. In all these cases, sleep examination helps in

identifying the disease associated with a specific sleep

disorder. Polysomnography (PSG) is a test commonly used

to detect some of these sleeps disorders. PSG test requires

multiple electrode placements on the human body to record

electroencephalogram (EEG), electrooculogram (EOG)
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and electrocardiogram (ECG) signals, along with respira-

tory movements and oxygen saturation for the entire

duration of night. In PSG recordings, sleep time is divided

into short epochs (fixed at 30 s) and classified as a specific

stage of sleep according to the guidelines proposed by

Allan Rechtschaffen and Anthony Kales [3]. The sleep

scoring and staging must be done by a highly trained expert

and manual scoring consumes a lot of time. Apart from the

time factor, it is also prone to inter and intra scorer vari-

ability [4]. In addition, the fixed 30 s epoch may cover the

onset of a succeeding stage, which makes it difficult to

score such epochs with a specific stage. In order to over-

come this problem many researchers have proposed auto-

mated sleep scoring system. There are two different

approaches to automate a sleep scoring and staging system.

In the first approach, manual scoring and staging may be

mimicked and translated into an automatic process whereas

in the second approach, relevant information is extracted as

features from PSG signals using signal processing tech-

niques, followed by classifiers to determine sleep stages

[1, 2, 4–11].

Numerous studies reported on sleep onset detection use

various time and/or frequency, parametric and statistical

processing methods on sleep EEG datasets [12–17]. Linear

methods such as spectral power estimation using Fourier

transform have been used for sleep stage classification, to

study changes in event related oscillations of EEG in sleep

apnea subjects [18–21]. In these studies multiple frequency

bands and their normalized band powers [19] and ratios of

the frequency bands [20] are computed. Various methods

have been adopted for an automated scoring of sleep based

on single EEG channel data. Studies [15–17] on wake-

sleep transition using spike rhythmicity reported that the

rhythmicity, a time domain attribute proved to be statisti-

cally significant for recognizing both patterns in the

occipital region using a single channel. In a study using

parametric methods [22] the mean frequencies of a single

EEG are used to train autoregressive hidden markov model

(HMM) to detect arousal states of human, claiming a wake-

drowsiness detection rate of 70 %. In another study [2]

using a single-channel EEG, kalman filter model of wake-

sleep transition followed by HMM detection resulted in an

accuracy of 60.14 %. Another study on sleep stage detec-

tion used a Gaussian observation HMM [23] with a

reported accuracy of 86 % for wake but only 22 % for

stage N1. The decrease in power of all frequency bands

except delta band has been reported during sleep onset [24]

especially in the frontal region. Parametric modeling [25],

has been used to model PSG recordings as time-varying

autoregressive moving average model with recursive par-

ticle filtering for modeling sleep onset intervals. Results

showed performance metrics claiming 93.18 % accuracy in

best cases. Attempts have been made to use multiple

feature sets to score sleep stages using time-based,

stochastic, spectral and chaotic features [26]. The achieved

mean error rates were reported to be 50 % for detection of

stage 1 (N1), to 10 % for slow wave sleep. Another study

with multiple features from time, frequency domain along

with nonlinear features reported average accuracy rates of

95:88 % upon a single EEG channel [27] using SVM

classifier. Recently, a method [28] reported 93.4 % accu-

racy for automatic analysis of sleep macrostructure using

full set of PSG signals in a fuzzy reasoning classifier. A

comprehensive study of multimodal correlates of sleep

onset and the experimental details of their characterization

has been reported by [29]. Another study [30] reports the

use of a fuzzy logic inference engine for early detection of

sleep onset in people driving a car or a public transporta-

tion vehicle using power spectrum density of Heart Rate

Variability (HRV) signal and autonomous nervous system

frequency activity reflected by the HRV signal. Sleep onset

detection showed the same detection rate as clinically

collected data with 90 % true detection on a set of ten

analyzed ECGs.

The EEG activity recorded during the entire sleep

duration exhibits significant irregularity and complexity. It

becomes more regular and rhythmic as the subject slips

into stage1 sleep from wakefulness. Non-linear methods

like approximate entropy (ApEn), correlation dimension,

largest lyapunov exponent, hurst exponent (H), and fractal

dimension [31] have also been used successfully for

quantifying EEG complexity variation for sleep stage

scoring. Many studies have used ApEn for EEG analysis

[31–33] to characterize different types of epileptic seizures

and analyze EEG regularity in Alzheimer’s disease sub-

jects. ApEn is found to be an effective measure for quan-

tifying complexity in short and noisy data sets [34] and has

been applied in the analysis of sleep stages [31] and it is

also shown that the sleep stages are characterized by not

only different mean ApEn values in each sleep stage but

also differ within the sleep stages of normal subjects. Our

previous study on the same database used in this study with

only three subjects [17] uses hurst exponent as feature on a

single channel EEG to obtain 99.96, 71.8 % classification

accuracies with k-NN and LDA classifiers respectively.

Many of these studies above have concentrated on single

EEG channel for sleep scoring. As the transition of wake to

stage1 sleep correlates with the cortical neuronal activities

of different regions of the brain (mainly occipital and

frontal region), the current study uses a multichannel EEG

study with spectral entropy (SE) feature for wake-stage1

sleep characterization instead of a single channel. Our

motivation to study the effect of spectral entropy in wake-

stage1 sleep transition emerges from anesthetic studies

effectively using it as a distinguishing feature [35–40].

Recently a number of different entropy estimators such as
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the sample entropy, tsallis entropy and Bispectral index

[35, 36] and more recently the SE index [37–39] monitors

have been released commercially to quantify the com-

plexity and depth of anesthesia. Studies have shown that

the anesthetic drug administration decreases the SE along

with a decrease in cortical and global cerebral blood flow

indicating that the change in SE can depict global changes

in neuronal activity induced by the drugs. Hence an attempt

is made here to study the complexity of the human brain

during the first two stages of sleep using SE as a com-

plexity measure. The block diagram of the proposed

method is shown in Fig. 1.

Stages of sleep

During different stages of sleep, thalamus, cortex and pons

interact with each other at the neuronal level that manifests

itself as EEG activity with distinct characteristics that lead to

differentiate whole night sleep into different stages viz.,

awake, NREM stage consisting of stage 1, 2, 3 and 4 fol-

lowed by REM stage. The reticular formation possesses

neurons with both sensory and motor functions. During

active wakefulness, the reticular activation system inhibits

reticular nucleus and excites neurons of the sensory thala-

mus, allowing an uninterrupted flow of signal from brain-

stem to cerebral cortex. Both beta waves (13–28 Hz) and

alpha waves (8–13 Hz) are observed with beta waves being

more desynchronized and possessing lesser amplitude when

compared to alpha waves. During relaxed wakefulness,

alpha waves become more synchronous in their pattern,

indicating gradual decrease in the frequency of brain waves.

Awake/stage1 sleep stages

In stage1 sleep the EEG signal consists of theta waves

(4–8 Hz) with greater amplitude than the alpha waves.

Stage 2 sleep is characterized by two phenomena: sleep

spindles and K complexes with theta waves in background.

During deep sleep, delta waves (0.5–4 Hz) appear with

higher amplitude than other waves. The next stage is the

REM sleep during which the acetyl cholinergic RAS

becomes active again. The EEG signals during REM sleep

appear to be similar to that of wakefulness with rapid eye

movements, reduced muscle activity with the predomi-

nance of alpha and beta waves once again.

Data acquisition

In the PSG data used in this study, multiple physiological

parameters related to sleep such as EEG, EOG, chin EMG,

respiratory movements (thorax and abdomen), nasal air-

flow, ECG and measurements of oxygen saturation are

recorded for the entire duration of sleep. Usually EEG,

EOG, and EMG signals are used for sleep stage

classification.

Database

This study used data from ten normal subjects acquired

from overnight Polysomnographic recordings done in

clinical sleep labs of M S Ramaiah Hospitals, Bangalore.

The artefact-free PSG signals were acquired by using

Sandman’s software. The recordings included six EEG

channels (C3, C4, F3, F4, O1 and O2 locations with A1 and

A2 as reference electrode positions according to the 10–20

International standard for electrode placement), two EOG

channels, two EMG channels, two ECG channels, oxygen

saturation value (SaO2) and pulse rate. For our study only

awake and stage1 EEG recordings of sleep data are con-

sidered. The sampling rate of each channel is 256 Hz.

Sleep staging was manually done by expert scorers of the

neurology department, at every 30 s interval based on the

Rechtschaffen and Kales criteria.

In the present study, dataset I (combined datasets of

subjects 1, 3, 6) and dataset II (combined datasets of sub-

jects 2, 5, 8) consist of three randomly selected subjects

8-channel EEG sleep data whereas dataset III consists of all

ten subjects (combination of datasets I, II and subjects 4, 7,

9, 10) EEG data epochs to form a large dataset. The

number of data epochs used for training and testing in both

the cases is shown in Table 1. Cerebral montages O1, O2,

F3, F4, C3 and C4 were used for EEG analysis from the ten

PSG records. Artifact free EEG records with minimal EMG

activity were selected. Figure 2a, b display segments of

awake and stage1 sleep EEG and EOG data of a normal

subject used for analysis. For each subject, one or more

30 s segments of simultaneous EEG and EOG epochs were

chosen for both awake and stage1 sleep. The EEG and

EOG signals were sampled at 256 Hz. A total of 15 min of

EEG data were analyzed for each subject containing

10 min of wake and 5 min of stage1 sleep. Thus each of

the datasets I and II consists of a total of 30 min wake and

Fig. 1 Block diagram of the

proposed method

Australas Phys Eng Sci Med (2016) 39:797–806 799

123



15 min stage1 sleep from three randomly selected PSGs

whereas the large dataset contains a total of 100 min of

wake and 50 min of stage1 sleep from ten PSGs. The raw

EEG epochs are passed through a 6th order elliptic band

pass filter with pass band ranging from 0.7 to 47 Hz to

ensure the rejection of any stray frequency components

outside the frequencies of interest.

SE estimation and pattern identification

Entropy was first introduced in information theory by

Shannon [41] and further applied to compute the SE by

Johnson and Shore [42]. Entropy refers to the degree of

disorderliness in a thermodynamic system. However for a

temporal signal like EEG, entropy value reflects the pre-

dictability or regularity of a signal. Higher entropy indicates

higher complexity (irregularity) of the signal while smaller

entropy values show that the signal under consideration is

more predictable and hence less complex. The approximate

entropy and Shannon entropy are time domain measures of

complexity whereas SE is used in frequency domain.

According to Shannon, the entropy (H) is expressed as:

H ¼ �
X

pk log pk; ð1Þ

where pk are probabilities of individual frequencies in bin

k. It is reported that the entropy decreases at the neuronal

level as the human cortex becomes unconscious [43]. It

implies that the real time information transfer within the

cortex associated with a change in information entropy

may be precisely reflected in EEG. The information

entropy, applied in frequency domain defines the micro-

states in terms of rates-of-change for the entropy [40].

SE feature extraction

SE is the normalized version of Shannon entropy formula,

applied to the power spectral density of EEG signal. Fol-

lowing are the steps involved in computing the SE features

from one-second segments of 6-active channel EEG sleep

data as follows [38, 44]:

The spectrum of 1-second sequence of each channel,

{x(ti) = x(t1), x(t2)…x(tn)}, Fs = 256 Hz is estimated

using 256-point FFT with a non-overlapping Hamming

window, using Eq. (1),

X fið Þ ¼
X

ti

x tið Þe�j2pfiti : ð2Þ

The power spectrum P(fi) is obtained as the square of the

amplitudes of each component in X(fi).

i.e., P fið Þ ¼ X fið Þ � X
0
fið Þ; ð3Þ

X
0
fið Þ represents the complex conjugate of X fið Þ Since

entropy calculation requires computation of probabilities
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Fig. 2 a Time domain plot of EEG-O1 channel and EOG in wake

subject. b Time domain plot of EEG-O1 channel and EOG in stage1

sleep of a subject

Table 1 Spectral entropy dataset

6-Channel SE dataset Awake (no. of samples 9 no. of

channels)

Stage1 (no. of samples 9 no. of

channels)

Train

vectors

(60 %)

Test

vectors

(40 %)

Combined dataset I (subjects 1,3,6) 10 min 9 256 samples/s 9 3

subjects = 7680 9 6 channels

5 min 9 256 samples/s 9 3

subjects = 3840 9 6 channels

6912 9 6 4608 9 6

Combined dataset II (subjects 2, 5, 8) 10 min 9 256 samples/s 9 3

subjects = 7680 9 6 channels

5 min 9 256 samples/s 9 3

subjects = 3840 9 6 channels

6912 9 6 4608 9 6

Large dataset III (dataset I ? dataset

II ? subjects 4, 7, 9, 10)

10 min 9 256 samples/s 9 10

subjects = 25600 9 6 channels

5 min 9 256 samples/s 9 10

subjects = 12800 9 6 channels

23,040 9 6 15,360 9 6
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(pk) within the power spectrum such that
P

pk ¼ 1; it

becomes necessary to normalize the power spectrum with a

constant Cn, such that the sum of the normalized power

spectrum over the interval of frequencies of interest [f1, f2]

is equal to one:

Cn �
Xf2

fi¼f1

PðfiÞ ¼ 1: ð4Þ

Next, the normalized SE within the frequency interval

[f1, f2] is computed as follows:

SE f1; f2½ � ¼ � 1

log N f1; f2½ �½ �
Xf2

fi¼f1

Pn fið Þ log Pn fið Þð Þ; ð5Þ

where N[f1, f2] represents the number of frequency com-

ponents within f1; f2½ �:
The normalized entropy value equals one for maximum

irregularity) and zero for minimum irregularity. Each one-

second, 6-channel EEG data epoch is represented by a

6-component SE vector. Figures 3 and 4 show sample plots

of the power spectral densities for O1 and O2 channels and

SE values for O1 channel in awake/stage1 sleep stages

respectively. Prior to recognizing the two patterns using the

neural network, the mean value of SE coefficients of all

6-channel EEG data is computed for the large dataset to

evaluate the statistical significance associated with first two

stages of sleep.

MLP-FF neural network with back propagation

algorithm for pattern identification

MLP-FF neural networks use back propagation algorithm for

pattern matching and recognition tasks. Initially the network

is trained by using labelled example patterns and as training

progresses, the network learns by adapting its weights. The

training session ends based on the mean squared error

between the labelled outputs and actual outputs of the net-

work. During training, initially small values of random

weight vectors are normalized and used for the first iteration.

Next, the input pattern is applied and layer outputs are

calculated during forward pass. The mean squared error

(MSE) is computed between the labelled output and the

actual output. During backward pass, MSE is propagated

back to the preceding layers and their corresponding

weights change till the cumulative error becomes less than

the user defined error. In other words with each training

cycle, the difference between the actual output of each

neuron and its target output must decrease to achieve good

training accuracy. The network keeps training all the pat-

terns repeatedly until the total error falls to a user defined

value and then it stops. The trained network exhibits good

generalization if it successfully recognises not only those

patterns used in training but also corrupted or noisy ver-

sions. Usually better training accuracies can be obtained if

the patterns belonging to different classes are submitted to

the network in a random order. After the training session

ends, the network is tested and validated with set of pat-

terns (testing set and validation set) not used in training.

This helps in avoiding network overfitting [45]. The MSE

reaches a minimum upon the successful training of the

network with validation set. However, if the network is
Fig. 3 Power Spectrum of awake and stage1 sleep in the O1 and O2

EEG channels of a typical subject

Fig. 4 One minute sample plots of SE values in O1-O2 channels for

awake and Stage1 sleep EEG Fig. 5. Training and validation

performance of MLP network

Fig. 5 Training and validation performance of MLP network
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over trained the MSE starts increasing (Fig. 5). If the

network is exposed to large size datasets with similar

features, the network suffers from overfitting due to which

it won’t handle noisy data well.

From all night sleep EEG (6-channel) recording of three

subjects, awake and stage1 sleep artifact free data are

manually extracted based on the scoring done by trained

experts. The SE values are computed from 6-channel EEG

data for each second of awake and stage1 sleep data. The

entropy values thus computed from 6-channels constitute

the feature vector for each data epoch of one second. Next,

the feature vectors of both stages are grouped subject-wise

to form 2 feature datasets of dimension shown in Table 1.

Also the SE vectors of both awake and stage1 data of all

ten subjects are combined to form a feature matrix of

6 9 38400 dimension to form the combined large dataset.

Network training

Initially, datasets I and II are individually used to train the

network for awake and stage1 SE pattern identification.

The network is further trained with the combined large

dataset for identifying potential classes of patterns that

discriminate awake and stage1 sleep. For each of the cases

above, the entire dataset is divided randomly into 60 %

training vectors, 20 % testing vectors and 20 % validation

vectors. For each training cycle, 60 % of the SE vectors are

randomly chosen from the dataset. This method automati-

cally performs the validation as each training cycle has

different sets of training and testing vectors and minimizes

the problem of overfitting.

Levenberg–Marquardt back propagation algorithm is

used to train the network. The network performance is

evaluated for different number of hidden neurons. The

MLP network with back propagation algorithm has the

ability to generate complex decision boundaries in the

feature space and therefore can be used as a classifier.

The MLP-FF network architecture used in this study is as

shown in Fig. 6. Six input nodes are used for the

6-channel SE coefficients computed for each epoch of 1 s.

The performance of the network is evaluated by selecting

different number of hidden neurons for all the cases. The

hidden layer neurons use tansig transfer (activation)

function. One linear neuron used in the output layer

responds with continuous output values varying between

0 and 1 upon training. The output values are scaled to 0

or 1 after applying a threshold of 0.5. The training

parameters and stopping criterion for the network are

shown in Table 2.

Results

Preliminary studies are very impressive as far as using SE

feature for discriminating alcoholic/control and wake/

stage1 sleep patterns. The higher SE values in O2 (right

occipital), F3 (left frontal) and F4 (right frontal) locations

during wake state represent the active state of human brain

during wakefulness. It indicates complexities in theFig. 6 Multilayer feed forward neural network architecture

Table 2 Training parameters

for MLP-FF neural network

using BP algorithm

S. no MLP network training parameters

1 No. of input nodes 6

2 No. of output neurons 1

3 No. of hidden layers 1

4 No. of hidden neurons 20–100

5 Training algorithm Levenberg–Marquardt

6 Activation function for hidden layer Tangent sigmoid

7 Activation FUNCTION for output layer Positive linear

8 Performance function Mean squared error

9 Learning rate (LR) 0.9

10 Learning rate increment 1

11 No. of epochs for training 600

12 Goal (stopping criterion for training) 10-6
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neuronal activities of the region correlated to unsynchro-

nized beta and gamma activity during wakefulness.

The statistical significance of awake and stage1 sleep

states in terms of the mean are evaluated using an error bar

chart for all the channels independently and a box plot for

O2 channel alone (Figs. 7, 8). The difference between

groups is statistically significant (p\ 0.05) if the error bars

do not overlap within a confidence interval (CI) of 95 %. It

is seen from Fig. 7 that the error bars corresponding to the

awake/stage1 of O2, F3 and F4 channels do not overlap and

hence exhibit a statistical significance value of p\ 0.05.

The box plot for the mean value of SE in O2 channel

(Fig. 8) indicates that the median in awake and stage1

slightly differ but the variance upon the mean is quite

different in both cases. The maximum and minimum values

that are not outliers are significantly different in stage1 than

in awake. The significant difference in the mean of both

groups in occipital and frontal regions also indicate the

changes in event related oscillations reflecting neuronal

activities associated with them. This directly correlates

with the reduced oscillations from beta to gamma to alpha

range and subsequent transition into low-voltage mixed

frequency signals that characterize the onset of sleep [46].

In order to recognize awake and stage1 sleep patterns,

MLP network with 20 hidden neurons is trained first by

using 60 % of subject-wise database. During training, the

network performs with classification accuracies 95.2,

95.9 % respectively for the combined datasets I and II

under consideration. For large dataset, the performance

improves with an increase in the number of hidden neurons

from 20 to 100 in steps of 20. The results are tabulated in

Table 3. It is seen that the testing accuracy of the MLP

network improves from 92.9 to 99.2 % with the increase in

hidden neurons. In terms of the computation time, the

classification of wake/sleep patterns consumes more time

with increase in the number of hidden neurons. The sta-

tistical significance of the mean value in O2, F3 and F4

correlates well with the accuracies obtained in the MLP

neural network.

Upon training the network successfully, network per-

formance is evaluated for identifying the two groups of

patterns and plotted in Fig. 9. It can be seen that the output

layer linear neuron responds with continuous outputs

between 0 and 1. The outputs are finally scaled using a

threshold of 0.5 to determine the accuracy. In some cases

with misclassification, it is seen that the network performs

with greater than 0.5 outputs, while its labeled output is

zero. Similarly for labeled outputs of ?1, there are some

misclassifications responding with less than 0.5. All the

testing classification accuracies shown are with respect to

50 % holdout cross validation. The holdout validation

method is simple to perform that ensures faster computa-

tion. While determining the computation time, an average

of ten runs was taken to account for the slight variation in

elapsed time for each run of the code due to the inherent

instability of the clock inside the processor. The entire

computation was performed on Matlab platform with Intel

core i3 350 MHz CPU at 2.27 GHz clock speed.

Fig. 7 Error bar plot of the mean of SE coefficients

Fig. 8 Box plot of mean of SE values in O2 channel for large dataset

Table 3 MLP performance with respect to hidden neurons

S. no Classifier performance

No of hidden units Computing time (s) Accuracy (%)

1 20 35 92.9

2 40 54.5 94.6

3 60 78.3 97.2

4 80 91.45 98.8

5 100 110 99.2
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Discussion

In literature, previous studies have concentrated on single

EEG channel for sleep scoring of the same database using

only three healthy subject’s data. Studies [15, 16] on wake-

sleep transition using spike rhythmicity and amplitude

respectively reported that the rhythmicity, a time domain

attribute proved to be statistically significant for recog-

nizing wake-stage1 patterns. The drawback of the above

studies is that the database is small and only single channel

O1 is used for the study. Similarly the results obtained

using kalman filter and a single channel [2], around 60 %

classification accuracy is obtained. In our previous study

[17] using Hurst exponents as features on the same three

subject’s data, classification accuracies of 99.96, 71.8 %

with k-NN and LDA classifiers respectively are reported

using only O1 and O2 channels. A study [48] evaluated the

accuracy of sleep staging for multiple features based on

EEG alpha activity during sleep onset in healthy, insom-

niac and schizophrenic patients using artificial neural net-

works classifier. Results show an agreement of only 81.3 %

with the human expert scoring, where studies are concen-

trated on alpha bands only. Another study [49] used rela-

tive concentration change of oxy- and deoxy-hemoglobin

transform (using functional near infrared spectroscopy) to

extract information on heart rate and EEG spectral bands to

monitor the alertness of driver under normal and sleep

deprived conditions. Results indicate that the beta and

alpha bands change in normal and sleep deprived condi-

tions. Also the hemodynamic change is more stable in

normal condition and heart rate decreases in sleep depri-

vation condition. The alpha band and heart rate are dif-

ferent in sleepless and sleepy states. Here it is observed that

the sleep deprived condition presents a different sample

paradigm than that of a normal sleep scoring process. In a

study on safe driving performance estimation and alertness

[50], eight EEG-band power-related features, viz., beta,

alpha, theta, delta, (alpha plus theta)/beta, alpha/beta, (al-

pha plus theta)/(alpha plus beta) and theta/beta are

extracted from the preprocessed EEG signals by employing

FFT. Fisher score technique chooses the most descriptive

features for further classification using support vector

machine (SVM) to quantify drowsiness level. Experimental

results show that the quantitative driving performance can

be correctly estimated through analyzing driver’s EEG

signals. However the results are prone to artifacts as

claimed by authors. In the proposed study, estimation of SE

has a unique property that it does not depend on the

absolute values of amplitude or frequency of the signal.

This property helps to study inter-subject variations in the

absolute frequencies of the EEG. In the proposed study, the

size of the database is increased from 3 to 10 subjects and a

multi-channel approach is used to study the wake-sleep

transition. With the increased data size, better generaliza-

tion and hence better classification accuracy is achieved.

Also the multichannel detection of wake sleep states helps

in better localization of differences between groups.

Decrease in SE values is observed as the subject slips

into stage 1 sleep from wakefulness. This is in confirmation

with the theory that as stage1 sleep sets in from wakeful-

ness, EEG becomes more rhythmic and regular resulting in

a decreased value of entropy. A decrease in SE denoting

entry into stage1 sleep from wakefulness is also associated

with the transition of beta and gamma activity to a more

synchronized alpha activity of low frequency. It also

reflects a decrease in the complexity of brain functions with

Fig. 9 Output of MLP network

corresponding to accuracy of

99.2 %
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the onset of sleep. The F3 and F4 channels along with O2

exhibit differing means for wake/stage1 sleep states. In a

study using spectral analysis of EEG signals for the

detection of wake-sleep transition [47], a decrease in sleep

onset power of all frequency bands except delta range has

been reported especially in the frontal region confirms with

the result of our study. It also correlates to reduced activity

in stage1as reported in medical literature.

Conclusion and future work

The spectral entropies of awake/stage1 sleep are computed

for each second in all the six channel EEG data of ten

normal subjects. These SE patterns for both stages are used

to train a MLP-FF neural network with back propagation

algorithm. Results of pattern identification of both stages

are very promising and indicate that the SE may be used as

a discriminative feature for the identification of awake/

stage1 sleep. The spectral entropies decrease with subjects

going from wakefulness to stage1 sleep. This is in confir-

mation with the theory that as stage1 sleep sets in from

wakefulness, the EEG becomes more rhythmic and regular

resulting in a decreased value of entropy. In future, the

number of subjects can be increased to improve the gen-

eralization capability of the neural network. Also, the

results strongly indicate that it may be beneficial to use SE

for detecting the transition from awake to stage1 sleep. It

may also help to study the underlying complexities of the

human sleep process by computing spectral entropies for

all stages of sleep.
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