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Abstract Impedance cardiography (ICG) is a non-invasive

technique for diagnosing cardiovascular diseases. In the

acquisition procedure, the ICG signal is often affected by

several kinds of noise which distort the determination of

the hemodynamic parameters. Therefore, doctors cannot

recognize ICG waveform correctly and the diagnosis of

cardiovascular diseases became inaccurate. The aim of this

work is to choose the most suitable method for denoising

the ICG signal. Indeed, different wavelet families are used

to denoise the ICG signal. The Haar, Daubechies (db2, db4,

db6, and db8), Symlet (sym2, sym4, sym6, sym8) and

Coiflet (coif2, coif3, coif4, coif5) wavelet families are

tested and evaluated in order to select the most suit-

able denoising method. The wavelet family with best per-

formance is compared with two denoising methods: one

based on Savitzky–Golay filtering and the other based on

median filtering. Each method is evaluated by means of the

signal to noise ratio (SNR), the root mean square error

(RMSE) and the percent difference root mean square

(PRD). The results show that the Daubechies wavelet

family (db8) has superior performance on noise reduction

in comparison to other methods.

Keywords ICG signal � Denoising � Discrete wavelet

transform � Savitzky–Golay � Median

Introduction

Impedance cardiography (ICG) is a simple, cost-effective

and non-invasive technique for monitoring electrical

impedance change of the thorax [1]. It is a diagnostic tool

to measure the electrical properties of biological tissues in

the thorax [2]. ICG is a powerful method for assessment of

stroke volume (SV), cardiac output (CO) and other

hemodynamic parameters [3]. Figure 1 shows the normal

ICG waveform (dZ/dt) and its main characteristic points.

The point B appeared simultaneously with the opening of

the aortic valve. The point C is taken on the peak of the

ICG signal and it is corresponds to the ventricular con-

traction. The point X is the lowest point after the peak C

and it is associated with the closure of the aortic valve [4].

In practice, the ICG signal is generally affected by

several kinds of noises, such as the respiration noises,

motion noises and noises associated to the poor contact of

electrodes and electronic equipment devices. Thus, the

analysis of the ICG signal becomes inaccurate and very

difficult that affect doctors for correct diagnosis of car-

diovascular diseases. To overcome these problems, it is

particularly important to remove noise from the ICG signal

accurately. For denoising the ICG signal, several algo-

rithms have been published. In [5, 6], an LMS-based

adaptive filtering technique has been proposed to denoise

the ICG signal. In [7], a comparison has been made

between ensemble averaging (EA), Scaled Fourier Linear

Combiner SFLC-RLS and SFLC-LMS algorithms. The

previous work demonstrated that the SFLC-RLS filter

improves the performance of the classical SFLC-LMS
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filter. Besides, the wavelet-based denoising method has

been proposed in literature. In [8, 9], the Meyer wavelet

denoising method has been used to denoise the ICG signal.

In [10], the Symlet (sym26) and Meyer wavelet families

have been chosen as the suitable techniques for filtering

ICG signal. In [11], a comparison between three methods

has been proposed: the ensemble empirical mode decom-

position (EEMD), the optimal FIR filter and the Symlet

wavelet family (sym8). This last study achieved that the

sym8 wavelet is the best tool to denoise the ICG signal. In

[12], the authors proved that the Daubechies wavelet

family (db4) presents better performance than the Kalman

filter.

To summarize, literature reviews have demonstrate that

the DWT method, particularly the Daubechies wavelet

family ‘db4’, has superior performance on noise reduction

in comparison to other methods. In this study, we used the

literature reviews results as a starting point and we pro-

posed to investigate the performance of different wavelet

families with various orders for filtering the ICG signal.

First, we investigated the performance of various wavelet

families for denoising the ICG signal. Four wavelet fami-

lies are selected and for each family several orders are

tested: the Haar, the Daubechies with four orders (db2, db4,

db6, db8), the Symlet with 4 orders (sym2, sym4, sym6,

sym8) and the Coiflet with four orders (coif2, coif3, coif4,

coif5). Then, the chosen wavelet family is compared with

two denoising methods: the Savitzky–Golay filtering and

the median filtering. These last two methods are used to

denoise the Electrocardiogram signal ECG [13, 14], but

they have never used for denoising the ICG signal. Con-

sequently, this paper presents a new ICG denoising

approach based on noise reduction algorithms in DWT

domains. Afterward, to evaluate the results, we compared

the capability of the denoising methods to preserve the

amplitudes of the peaks C with minimal degradation of the

waveform. Finally, the obtained results are compared to

some literature review methods.

This paper is organized as follows. ‘‘Discrete Wavelet

Transform’’ section summarizes the basics of discrete

wavelet transform (DWT). ‘‘Proposed methodology’’ sec-

tion details the proposed methodology. The obtained

results and the comparison between methods will be pre-

sented in ‘‘Results and discussion’’ section. ‘‘Conclusion’’

section concludes this works.

Discrete wavelet transform

Wavelet transform (WT) is a time-scale representation that

has been used successfully in a broad range of applications.

WT analyzes the non-stationary signals at multiple scales.

Furthermore, the original WT function, called ‘mother

wavelet’, is employed for generating all basis functions. In

fact, the Discrete Wavelet Transform ‘DWT’ presents

various wavelet families like Haar, Daubechies, Symlets,

Coiflets, etc. [15]. Figure 2 shows some wavelet families.

The choice of the specific wavelet family and order

depends upon the type of signal to be analyzed.

Mathematically, the Discrete wavelet transform (DWT)

of the signal, x[n], is defined as [16]:

X a; b½ � ¼
Xþ1

n¼�1
x½n�wa;b½n� ð1Þ

W [n] is the analyzing wavelet function. It is represented

as follows [16]:

wa;b n½ � ¼ 1ffiffiffi
a

p
� �

� w
n � b

a

� �
ð2Þ

where ‘a’ and ‘b’ are, respectively, the dilatation and the

location parameter of the wavelet.

The DWT uses filters banks to decompose the signal

into a set of coefficients that describe the signal frequency

content at given times. In order to analyze the low fre-

quency and the high frequency components in the signal,

the DWT uses a low-pass filter ‘LPF’ and a high-pass filter

‘HPF’, respectively. The output coefficients for the LPF

and the HPF are called respectively Approximation ‘A’ and

Detail ‘D’. Figure 3 shows the decomposition of the signal

x[n] to series of 3 levels. Each decomposition level consists

of two digital filters and down-sampling operation which

down-samples the signal by a factor of 2. ‘G’ presents the

series of high-pass filters used to extract details (D) and ‘H’

presents the series of low-pass filters to extract approxi-

mations (A) [17, 18].

The wavelet based denoising algorithm is illustrated in

the following steps: (1) the signal is decomposed into

different scales using the DWT, (2) thresholding of wavelet

Fig. 1 Characteristic points in the derivative of the electrical

impedance, the ICG signal
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coefficients to remove noise, and (3) the signal is recon-

structed using the inverse DWT ‘IDWT’ [19].

Proposed methodology

Database

Forty subjects were enrolled for this study, 20 males and 20

females aged between 21 and 50 years. Then, to record the

impedance cardiography signal, the method proposed in

[20] is used. The method consists of applying a low level

current ‘‘I’’ with a high frequency value (1 mA, 30 kHz),

by using two electrodes placed respectively on the forehead

and above the leading edge of the heart. The impedance

variation ‘‘V’’ of the explored thoracic region is acquired

using two other electrodes which are placed on the chest of

the patient at the level of aorta 2 or 3 cm apart. Figure 4

shows the electrode configuration used for ICG signal

Fig. 2 Examples of discrete

wavelet transform families.

a Haar wavelet. b Coiflet

wavelet ‘Coif5’. c Daubechies

wavelet ‘dB4’. d Daubechies

wavelet ‘dB8’. e Symlet

wavelet ‘Sym2’. f Symlet

wavelet ‘Sym8’

Fig. 3 Decomposition filter bank for 3 levels

Fig. 4 Electrode configuration for the ICG signals measurement
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recording. Moreover, these signals are stored in a database

called BioZ.

The denoising methods

In this section, three denoising methods are evaluated: the

DWT, the Savitzky–Golay filter and the median filter. First,

these methods are used to denoise the original ICG signals

from BioZ. Then, the best denoising method is selected.

Furthermore, a White Gaussian noise is added to the ICG

signals in order to validate the obtained results. The input

noise ranges from 0 dB to 20 dB. The noise added to the

original signal is expressed as:

Y nð Þ ¼ X nð Þ þ rðnÞ ð3Þ

where X (n) is the ICG signal, r (n) is the additive noise,

and Y (n) is the noisy ICG signal. Figure 5 shows the

original ICG signal and the noisy ICG signal at a particular

input noise level of 20 dB.

The DWT methods

In this subsection, various DWT families with different

orders are used to denoise the ICG signals. First, a com-

parison is made between different orders from the same

family to choose the best one. Then, the retained orders

from each family are evaluated and the most suitable one is

selected. Table 1 lists the DWT functions used in this

study. Forward, the number of decomposition levels is

fixed at 4. The level 4 is chosen because it provides better

separation between signal and noise than the others levels.

The Savitzky–Golay filter

The Savitzky–Golay filtering method is based on local

least- squares polynomial approach. The polynomial

degree should be adaptively selected to have the best

denoising signal [21]. In this work, we tested different

polynomial orders and we compared the performance of

each one for denoising ICG signals. The chosen polyno-

mial orders are ranged from 1 to 10. The obtained results

showed that the order 8 provides superior performance in

terms of noise reduction.

The median filter

The median filtering is a non linear method used in digital

signal processing. The performance of this filter depends on

its applied order. For ICG denoising, different polynomial

orders, ranging from 1 to 12, are tested. The results showed

that the order ten provides the highest performance.

Performance evaluation

To evaluate the performance of each denoising method,

three parameters are determined: (1) The signal to noise

ratio (SNR) in dB, (2) the root mean square error (RMSE),

and (3) the percent difference root mean square (PRD). The

SNR, RMSE, and PRD are computed to verify the

improvement of the reconstructed signal. These parameters

are defined as follows:

SNRi ¼ 10 log10

P
n x2ðnÞP
n r2ðnÞ

� �
ð4Þ

SNRo ¼ 10 log10

P
n y2ðnÞ

P
nðy nð Þ � x nð ÞÞ2

" #
ð5Þ

RMSE ¼ 1

N

XN

n

ðx nð Þ � y nð ÞÞ2 ð6Þ

Fig. 5 Noise addition to the

ICG signal. a The original ICG

signal. b The noisy ICG signal

with an input noise level of

20 dB

Table 1 The wavelet families used in this study

Families Symbol Order N

Haar Haar –

Daubechies dB 2, 4, 6, 8

Symlet Sym 2, 4, 6, 8

Coiflet Coif 2, 3, 4, 5
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PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n ðx nð Þ � y nð ÞÞ2
PN

n x2ðnÞ

s

� 100% ð7Þ

where SNRi and SNRo are respectively the input and the

output signal to noise ratio, x(n) is the original ICG signal,

r (n) the added noise signal, y (n) denotes the denoised ICG

signal, and N is the length of the ICG signal. Normally, the

best denoising method must have the highest SNRo, the

lowest RMSE and the lowest PRD.

Validation step

The main characteristic wave in the ICG signal is the peak

C. The amplitude of this peak is used to determine the heart

rate and to calculate the stroke volume SV and the cardiac

output CO. Therefore, it is very important to detect this

wave precisely.

However, the denoising algorithms, despite their opti-

mal benefits, can attenuate the peaks of the ICG signal. In

this subsection, we evaluated the performance of each

denoising method by comparing its capability to preserve

the amplitudes of the peaks C. We proceed as follows:

(a) We filtered the ICG signal using the DWT, the

Savitzky–Golay filter and the median filter.

(b) From each filtered signal, we detected the peaks C

and we determined its amplitudes.

(c) For each denoising method, we computed the

differences between the C peak amplitude of the

original ICG signal and the C peak amplitude of the

filtered ICG signal. This difference is noted De.
(d) We chose the best denoising method which can

preserve the amplitude of the peak C with the lowest

difference De.

Results and discussion

In this section, we present and discuss the different results.

First, a comparison between the Haar, Daubechies, Sym-

lets, and Coiflets wavelet families is carried out. Then, we

choose the most suitable wavelet family that can reduce

noise effectively. Furthermore, we evaluate the perfor-

mance of the chosen wavelet family by comparing it with

the Savitzky–Golay filtering and the median filtering.

Besides, to evaluate the obtained results, we compared the

capability of the denoising methods to preserve the

amplitudes of the peaks C with minimal degradation of the

waveform. Moreover, we compare the best denoising

method with other approaches used in literature.

(a) (b)

(c)
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Fig. 6 Comparison of the

SNRo for various wavelet

orders at different SNRi input.

a Performance evaluation of the

Daubechies wavelet orders.

b Performance evaluation of the

Coiflet wavelet orders.

c Performance evaluation of the

Symlet wavelet orders
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Selection of the suitable wavelet family

In this subsection, we compare four wavelet families and

for each family we compare different orders. The first

purpose of this work is to choose the best order for each

wavelet family. The second purpose is to choose the best

wavelet family (Haar, Daubechies, Symlet, and Coiflet).

To select the best order for each family, a White

Gaussian noise with SNRi ranging from 0 to 20 dB is

added to the ICG signal. Then, we evaluated the perfor-

mance of each order using the SNRo. In fact, the order that

gives the highest SNRo, regardless of the SNRi values, is

considered as the most suitable order for denoising ICG

signal. Figure 6 shows a comparison between the orders of

each family. Numerical results demonstrate superior per-

formance of the db8, sym8, and coif 5 wavelet orders over

the others.

In order to choose the appropriate wavelet family, we

compared the SNRo, the RMSE, and the PRD at different

SNRi inputs. Figure 7 shows the results of the mean SNRo

improvement at different SNRi inputs. This figure implies

that the Haar and the db8 wavelet families present the

lowest and the highest SNRo, respectively. It is also

noticed that the SNRo is the highest when using the db8

wavelet function. Therefore, the Daubechies wavelet

eighth-order db8 has superior performance compared to the

other wavelet families.

Qualitatively, the performances of the wavelet methods

are evaluated by visual inspection of the ICG signal. Fig-

ure 8 shows the denoised ICG signal using the Haar and

the db8 wavelet at a particular SNRi input level of 20 dB.

Unlike the db8 wavelet, we observed that the Haar wavelet

family affects the shape of the ICG signal by distorting the

waves.

Figures 9 and 10 show, respectively, the comparison of

the mean RMSE and the mean percentage PRD obtained by

using different wavelet families at different SNRi inputs. In

terms of the two figures, the db8 wavelet family has the

lowest RMSE value and the lowest PRD percentage

regardless of the level of SNRi input. Indeed, The RMSE
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Fig. 7 Comparison of the SNRo for different wavelet denoising

families at different SNRi

Fig. 8 Denoising the ICG signal. a Noisy ICG signal (SNRi = 20 dB). b Denoised ICG signal using db8 wavelet. c Denoised ICG signal using

Haar wavelet
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and the PRD parameters are used to quantify the error and

to evaluate the accuracy of the denoising methods.

Therefore, the db8 is the most suitable wavelet family for

denoising the ICG signal. It has the highest SNRo and the

lowest RMSE and PRD values.

The db8 versus the Savitzky–Golay filtering

and the median filtering

In this subsection, the db8 wavelet is compared with the

Savitzky–Golay filtering and the median filtering for

denoising the ICG signal. Table 2 shows the improvement

SNRo versus different SNRi input levels of different

records. This table shows that the db8 wavelet method

presents the highest SNRo regardless of the SNRi input

levels for all the subject group. When SNRi is 20 dB, the

output SNRo is about 3052 dB larger than the Savitzky–

Golay filter and about 3926 dB larger than the Median

filter. Afterward, for SNRi of 10 dB, the difference

between the Savitzky–Golay and the median denoising

methods is about 0.116 dB. Besides, as shown in Fig. 11, it

is obvious that the db8 has better performance than the

Savitzky–Golay filtering and the median filtering methods.

Therefore, the db8 wavelet method can eliminate noise

efficiently.
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Fig. 9 Comparison of the RMSE using different wavelet denoising

algorithms at different SNRi inputs
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Fig. 10 Comparison of the PRD using different wavelet denoising

algorithms at different SNRi inputs

Table 2 Comparison of the

SNRo obtained by using

different denoising methods at

different SNRi input levels

Subjects Denoising methods

DWT (db8) Savitzky–Golay Median

SNRi [dB] 20 10 5 20 10 5 20 10 5

SNRo [dB]

Subject1 27,109 18,906 16,429 24,603 18,041 13,622 25,029 17,703 13,901

Subject2 29,726 22,204 17,752 27,707 18,391 13,175 25,954 18,933 22,405

Subject3 29,525 22,101 17,539 28,036 18,105 12,971 24,926 18,139 13,654

Subject4 31,261 22,057 16,340 27,490 18,404 12,776 24,924 18,759 12,844

Subject5 28,682 21,738 18,349 28,058 18,246 13,967 25,890 18,174 14,042

Subject6 26,813 18,922 15,669 23,048 17,044 13,513 23,917 17,140 13,430

Subject7 27,838 18,950 15,411 24,359 17,235 12,723 24,942 17,479 13,177

Subject8 28,400 19,582 15,929 23,857 17,445 12,913 23,834 18,213 13,028

Subject9 28,502 19,682 15,679 23,805 16,899 13,294 24,620 17,054 13,056

Subject10 31,929 22,457 17,740 28,265 18,468 14,047 26,450 17,843 13,826
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Fig. 11 Comparison of the mean SNRo using the db8 wavelet, the

Savitzky–Golay, and the median denoising methods at different SNRi

input levels
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Figure 12 shows the PRD percentage using the three

denoising methods at different SNRi input levels. In this

figure, the db8 presents the lowest PRD percentage at

different SNRi input levels. Thus, the obtained results

prove the capability of the db8 wavelet method to denoise

the ICG signal with superior performance.

Results evaluation

To evaluate the obtained results, we detect the peaks C and

then we determine its amplitudes as mentioned in Sect. 3.4.

The main goal of this step is to evaluate the capability of

the denoising methods to preserve the C peak amplitude

with minimal degradation of the waveform. Indeed, the

signal processing algorithms employed for denoising sig-

nals provide optimal performance. Despite their optimal

performance, the denoising methods significantly attenuate

the peaks of the ICG signal. Table 3 shows the C peaks

amplitude of the (1) original ICG signals (without adding

noise) and (2) the denoised ICG signals (using different

filtering methods) at a particular SNRi level of 10 dB.

Using the db8 wavelet method, the mean amplitude of the

peaks C is close to the original mean amplitude that is

about 4.843 Ohms. Moreover, for the Savitzky–Golay and

median methods, the mean amplitudes of the peaks C are

about 4.91 and 4.813 Ohms, respectively.

Figure 13 shows the computed mean error rates at dif-

ferent SNRi input levels. It is vivid from this figure that the

db8 wavelet yields the smallest error rate for the entire

SNRi range. Therefore, the db8 wavelet method can

denoise the ICG signal with minimal degradation of the

shape and it can retain the amplitudes of the peaks C. Thus,

the db8 wavelet performs better than the Savitzky–Golay

and the median filtering methods.

Comparison with literature review

In [11], Ridder made a comparison between three denois-

ing techniques: the Ensemble empirical mode decomposi-

tion (EEMD), the FIR filter, and the Symlet8 wavelet

family. In order to evaluate the performance of each

denoising method, the authors determined the amplitudes

of the peaks C and the percent error at SNRi ranged from 0

to 15 dB. Table 4 lists the mean error rates using the
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Fig. 12 Comparison of the PRD percentage using the db8 wavelet,

the Savitzky–Golay, and the median denoising methods at different

SNRi input levels

Table 3 The C peak

amplitudes [Ohms] of the

original ICG signal (without

adding noise) and the denoised

version (using different

denoising methods) at a

particular SNRi level of 10 dB

Subjects Original ICG signal Denoised ICG signal

DWT (db8) Savitzky–Golay Median

Subject1 4664 4701 4520 4467

Subject2 5004 5041 5075 4996

Subject3 4956 4925 5091 4990

Subject4 4356 4366 4531 4408

Subject5 5321 5356 5353 5205

Subject6 4665 4660 4618 4596

Subject7 5353 5124 5293 5240

Subject8 4607 4639 4802 4656

Subject9 4607 4659 4756 4580

Subject10 4893 4960 5063 4995

Mean C peak amplitudes 4843 4843 4910 4813

Fig. 13 Comparison of the mean error rate using different denoising

methods at different SNRi input levels

662 Australas Phys Eng Sci Med (2016) 39:655–663

123



Ridder methods [11] and our methods. We noticed that the

db8 wavelet performs better than the other methods for the

entire SNRi range. Indeed, using the db8 wavelet, the mean

error rate is about 0.3 % at a SNRi of 0 dB. For the Ridder

methods, the lowest mean error is about 7.3 % at 0 dB and

it corresponds to the symlet8 wavelet. Furthermore, at

10 dB, the mean error rate is about 0.01 and 0.7 % using

the db8 wavelet and the EEMD method, respectively. To

conclude, we can find the db8 wavelet family is better than

other wavelet families, Savitzky–Golay filter, median filter,

FIR and EEMD methods no matter what input SNRi is.

Conclusion

Generally, in the acquisition step, the ICG signal is affected

by several kinds of noises that distort the determination of

the hemodynamic parameters. The main goal of this paper

was to choose the best denoising method for ICG signals. In

fact, we proposed to use the DWT with different families

such as the Haar, Daubechie, Symlet and Coiflet wavelets.

First, a comparison was made between these different

wavelet families by varying their orders. The Daubechies

wavelet order-8 (db8) demonstrated a high performance

compared to the other wavelet families. Then, a comparison

is carried out between the db8 wavelet and two filtering

methods; one based on Savitzky–Golay filtering and the

other based on median filtering. The obtained results show

that the db8 wavelet is the most efficient denoising method

which can filter the ICG signal with minimal degradation of

the shape. Furthermore, the db8 wavelet method presents the

lowest error rate for determining the amplitudes of the peaks

C. In conclusion, the db8 wavelet is the most suit-

able method for denoising the ICG signal. It can facilitate the

determination of the hemodynamic parameters and the

diagnosis of cardiovascular diseases.
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