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Abstract This paper proposed a feature extraction

scheme based on sparse representation considering the non-

stationary property of surface electromyography (sEMG).

Sparse Bayesian learning was introduced to extract the

feature with optimal class separability to improve recog-

nition accuracy of multi-movement patterns. The extracted

feature, sparse representation coefficients (SRC), repre-

sented time-varying characteristics of sEMG effectively

because of the compressibility (or weak sparsity) of the

signal in some transformed domains. We investigated the

effect of the proposed feature by comparing with other

fourteen individual features in offline recognition. The

results demonstrated the proposed feature revealed impor-

tant dynamic information in the sEMG signals. The multi-

feature sets formed by the SRC and other single feature

yielded more superior performance on recognition accu-

racy, compared with the single features. The best average

recognition accuracy of 94.33 % was gained by using SVM

classifier with the multi-feature set combining the feature

SRC, Williston amplitude (WAMP), wavelength (WL) and

the coefficients of the fourth order autoregressive model

(ARC4) via multiple kernel learning framework. The pro-

posed feature extraction scheme (known as SRC ?

WAMP ? WL ? ARC4) is a promising method for multi-

movement recognition with high accuracy.

Keywords Surface electromyography (sEMG) � Feature
extraction � Non-stationarity � Sparse representation �
Temporal MMV sparse Bayesian learning (T-MSBL)

Introduction

Surface electromyography (sEMG) signal is a kind of the

electrical activity generated during muscular contractions

[1]. The signal can be recorded from the surface of skeletal

muscle by using surface electrodes. Studies have shown

that the sEMG signal is a highly useful electrophysiologi-

cal signal in the fields of medicine and engineering. Effi-

cient recognition of human multi-movement pattern using

sEMG has attracted research interests in human machine

interaction and rehabilitation engineering fields during the

past three decades [2, 3].

Researchers have identified some sEMG-based move-

ments including head, gross hand, finger, wrist, arm, lower

limb and facial movements. Most studies have mainly

focused on pattern recognition of arm, wrist and gross hand

movements [4, 5]. Despite high recognition accuracy (RA),

these movements cannot completely satisfy the needs of

most myoelectric systems. Some researchers have studied

the recognition of finger movements. However, it is still a

challenging task to recognize subtle hand movements, such

as individual finger movements and multi-finger move-

ments, with the high accuracies. It is chiefly because most

of human forearm muscles are small and long skeletal

muscles. The muscles cover the forearm layer by layer and

they are intertwined. The same muscle contracts when we

perform two different movements. Under this circum-

stance, we think similarity exists between the two types of

movements. The similar movements are generally identi-

fied with low recognition accuracies. The pattern-
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recognition-based strategy has been proposed to recognize

multi-movement patterns, and to enhance the classification

accuracy. Hargrove et al. had found that the features

extracted from sEMG are more crucial than the classifiers

for the performance of movement recognition [6]. The

effective and distinguishable features make contribution to

improve RA radically. This paper focused on extracting the

features with optimal class separability from sEMG to

improve the RA of multi-movement patterns, especially

subtle hand movements.

Along with the development of signal processing theory,

a large number of different methods have been used for

sEMG feature extraction. The time, frequency and time–

frequency processing methods are widely used to extract

sEMG features for movement classification. The features in

time domain group include mean absolute value (MAV),

root mean square (RMS), zero crossing (ZC), slope sign

change (SSC), Williston amplitude (WAMP), integral of

sEMG (IEMG), and wavelength (WL) and so on [7, 8]. The

features in frequency domain group include autoregressive

model (AR) coefficients and power spectral density (PSD)

and more [9, 10]. The time–frequency features can be

extracted by using time–frequency analysis methods, such

as wavelet transform and wavelet packet transform [10,

11]. These analysis methods of feature extraction have their

own advantages and shortcomings. The time and frequency

processing methods are quite simple. The sEMG signal is

assumed as a stationary or short-time stationary signal in

both time and frequency domains. The neurophysiological

system is a complicated non-linear dynamic system, which

leads to the non-stationarity in sEMG signal. Published

reports have indicated that the potential non-stationarity in

sEMG signal affects the performance of movement

recognition [12]. Therefore, the time and frequency anal-

ysis methods have their limitations to represent the sEMG

signal. The wavelet transform and wavelet packet trans-

form are powerful tools in analyzing the non-stationary

signals. They can be used in multi-resolution analysis of

time domain and frequency domain. However, they gen-

erally do not lead to sparse decompositions (i.e., with very

few non-zero decomposition coefficients), so the time–

frequency resolution is not very high. Thus we cannot

obtain the features with good class separability for subtle

movement recognition.

Considering the limitation of conventional sEMG anal-

ysis methods, we introduced sparse representation to fea-

ture extraction of non-stationary sEMG signal in this study

[13]. Studies have shown that sparse representation of

signal over a dictionary (i.e., the set of time–frequency

atoms) is applicable for analyzing and processing the non-

stationary signals [14]. Sparse representation model holds

that the signal can be decomposed into a linear combina-

tion of a few columns chosen from a dictionary. The signal

sparse representation aims to represent the original signal

using as few atoms in the dictionary matrix as possible.

Sparse representation provides adaptive time–frequency

analysis for the non-stationary sEMG with high time–fre-

quency resolution. The atoms with nonzero representation

coefficients capture the key and significant properties of

original sEMG signal and reflect important information of

movement patterns. Different movements produce different

sEMG signal waveforms. Hence the corresponding nonzero

representation coefficients provide hints for multi-move-

ment recognition. Many natural signals tend to be com-

pressible rather than sparse [15]. The sEMG signal is not

sparse in the time domain. But the signal is compressible in

some transformed domains [16]. The sEMG signal can be

sparsely represented by the nonzero representation coeffi-

cients with maximum efficiency. These nonzero coeffi-

cients contain the significant information of sEMG signal,

and they can be used as the sEMG features for multi-

movement recognition.

The idea of sparseness has been used in many fields of

sEMG investigation, such as signal decomposition [17],

blind source separation (BSS) [18–20], signal classification

[21], signal recovery [22], and classifier design [23], etc.

However, in addition to the wavelet analysis, some other

methods for sparse representation are not exploited widely

for the sEMG-based multi-movement recognition, espe-

cially for feature extraction of sEMG signal. In most recent

study, signal processing methods, such as independent

component analysis (ICA) [20, 24] and non-negative

matrix factorization (NMF) [25], which are closely related

to sparseness methods, have been used for the sEMG-based

hand movement recognition. ICA and NMF are matrix

factorization techniques. ICA converts a multidimensional

vector into statistically independent components (i.e., ICs).

In the BSS and ICA, the sources can be extracted or

recovered to find the non-gaussianity maximization points.

The non-gaussianity makes ICA estimation (i.e., estimation

of signal sources) sparse to some extent [26]. NMF uses

multiplicative updates to ensure the non-negativity of the

factorisation. NMF provides sparseness of the solutions as

a result of a side effect caused by non-negativity con-

straints [27]. Studies have shown that sparse Bayesian

learning (SBL) algorithm can improve the performance of

sparse decomposition and be well-suited for finding max-

imally sparse representation [28, 29]. This property would

make the SBL algorithm valuable to extract the features

with good separability from sEMG signals. Through con-

sulting a great deal of literature, we found that there has not

been any work done on the analysis of SBL for the sEMG-

based application of movement recognition. Temporal

multiple measurement vector sparse Bayesian learning (T-

MSBL) algorithm is an improved algorithm based on the

SBL algorithm [30]. This paper employed T-MSBL
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algorithm to extract effective features from the sEMG

signals for multi-movement recognition.

We preliminarily focused on the multi-movement

recognition for healthy non-amputees. The rest of this

paper is organized as follows: ‘‘Methods’’ section presents

the proposed scheme for sEMG feature extraction. ‘‘Ex-

periments and discussion’’ section provides experiments to

demonstrate the performance of the proposed scheme.

Conclusions are given in the last section.

Methods

Subjects and data acquisition

The sEMG signals were amplified by the BIOPAC

EMG100C amplifier (gain: 2000). The raw sEMG signals

were sampled at a rate of 1000 Hz and acquired using the

BIOPAC MP150 data monitoring system (BIOPAC Sys-

tems Inc., Goleta, CA, USA). The signals were filtered

between 20 and 500 Hz. The signals were collected by

several pairs of standard disposable Ag/AgCl ECG disc

electrodes with conductive paste. All electrodes were

pasted on the skin surface of forearm of each subject. The

skin areas where the electrodes were attached were

degreased beforehand with 95 % medicinal alcohol to

ensure a better interface between the skin and the elec-

trodes. The pair of electrodes had a center-to-center spac-

ing of 15 mm.

Six human hand/finger movement patterns were planned

to classify: (1) thumb extension (EXTF), (2) index exten-

sion (EXIF), (3) thumb flexion (FLTF), (4) palm extension

(EXPM), (5) HOOK and (6) OKAY in our work, as shown

in Fig. 1. The movements selected in this study are more

subtle, compared with the movements of arm and wrist [4,

5]. And they are common and easy to perform in our daily

lives. Our preliminary work focused on the movements

with no external load. We considered not only mutually

opposite movements (e.g., EXTF and FLTF), but also

similar movements (e.g., EXIF and HOOK, EXPM and

OKAY) to further complicate the movement recognition.

We collected four channels of sEMG to classify these

hand/finger movements. According to human anatomy,

four pairs of electrodes were pasted over extensor pollicis

brevis (EPB), flexor pollicis longus (FPL), extensor indicis

proprius (EIP) and extensor digitorum (EDM), respectively

[31]. The muscle positions for the electrode locations are

generally used to acquire sEMG signal for recognizing the

six classes of movements [32].

Twelve able-bodied subjects (six females and six males,

aged 20–28 years) participated in our experiment. All

subjects had signed their written informed consent. Bei-

hang University ethics committee approved the study

protocol. Each subject was conducted to perform twenty

groups of individual finger and multi-finger movements.

The subject completed six classes of movements as

described above and each movement was repeated ten

times in each group. Each movement was held for 2–3 s.

The interval of adjacent movements in each group was 3 s.

The subjects relaxed their hands without any muscle con-

traction during the interval. The subjects should wait at

least 2 h before the next group to avoid muscle fatigue.

Steady-state sEMG (i.e., the continuous sEMG samples

recorded after 300 ms once the contraction was estab-

lished) were analyzed to discriminate the different

movements.

The steady-state sEMG data were segmented by the

analysis window to extract the features. The window

increment (i.e., the overlap between two adjacent analysis

windows) would determine the response of myoelectric

control systems. The response of system should be less

than 300 ms for reducing users’ perceived lag [8]. There-

fore, the analysis window was set to 256 ms sliding (one

segment) with a 128 ms window increment. For the twenty

groups of collected data, training and testing of one clas-

sifier were implemented using leave-one-out cross-

validation.

Sparse reconstruction modeling of sEMG

Sparse representation of sEMG is to find a linear combi-

nation of a minimum number of atoms from an over-

complete dictionary to approximate the original signal.

q
^ ¼ argmin

q
z� Gqk k22þ ft qð Þ

� �
s:t: z ¼ Gqþ e ð1Þ

where z 2 Rd�1 denotes the sEMG signal vector, G 2
Rd�KðK[ dÞ denotes the over-complete dictionary, q 2
RK�1 is the vector of sparse coefficients (i.e., the repre-

sentation of signal), t qð Þ is sparsity constraint item, usually

(d)  EXTF (e)  EXPM (f)  EXIF

(a)  OKAY (b)  HOOK (c)  FLTF

Fig. 1 Six classes of hand and finger movements: a OKAY,

b HOOK, c FLTF, d EXTF, e EXPM, and f EXIF
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it can be expressed as t qð Þ ¼ qk k1. f f[ 0ð Þ is the balance
parameter between the data fidelity term z� Gqk k22 and

t qð Þ, e denotes the modeling errors.

As indicated above, z in the time domain and q in the G

domain are equivalent representations of sEMG signal.

Once q
^
has been estimated, nonzero entries in q

^
express the

distinguishable features of the original sEMG, which pro-

vide the recognition hints of individual finger and multi-

finger movements.

One of the major challenges for the common sparse

representation algorithms is the high computational cost

and large memory capacity. For such a reason, we also

introduce compressed sensing (CS) theory [33] into the

feature extraction scheme of sEMG to alleviate the prob-

lem. The original sEMG signals are first mapped to lower

dimensional measurement domain using the CS theory in

the proposed scheme. Then representation coefficients of

the signals are estimated by solving convex optimization

problems. The coefficients of sparse representation are

used as characteristic parameters for the recognition task of

multi-movement patterns. Assume the sEMG signal s 2
RK�1 is compressible in some transform domain D, i.e.,

s ¼ Dq. The sparse reconstruction modeling of the sEMG

signal can be described mathematically as follows.

y ¼ Hsþ e ¼ HDqþ e ¼ Aqþ e ð2Þ

where H 2 Rc�K is a c� K random measurement matrix

(c\K), D 2 RK�K is the dictionary matrix for sparse

representation and assume that the basis is orthonormal for

simplicity, A 2 Rc�K is written as A ¼ HD, q 2 RK�1

denotes sparse coefficients of the original signal s over the

dictionary D, y 2 Rc�1 is the vector of the compressed

measurements in the low dimension space, e is the mod-

eling errors.

T-MSBL algorithm

Sparse Bayesian learning (SBL) algorithm is a powerful

tool for sparse representation of signals. This algorithm

uses the prior to promote the sparsity of signal to the largest

extent. The SBL algorithm is equivalent to an algorithm of

iterative reweighted L1-norm minimization. Many studies

have shown that iterative reweighted algorithms obtain

more sparse solutions and better performance than con-

ventional algorithms do [29]. The introduction of SBL

algorithm to feature extraction of sEMG would help to

obtain the features with good class separability.

SBL algorithm was developed as a method of machine

learning originally and the basic SBL algorithm was

derived by Tipping [28]. Then it has been applied to sparse

representation, regression and CS [16]. T-MSBL algo-

rithm, a member in the family of SBL, is mainly adopted to

solve multiple measurement vectors (MMV) problem. The

T-MSBL has superior performance when the dictionary

matrix is highly coherent. Single measurement vector

(SMV) model is a special case of the MMV model. The

T-MSBL algorithm can also be applicable to solving the

SMV problem. Under this circumstance, the TMSBL

algorithm is similar to the expectation–maximization-based

SBL (EM-SBL) [34]. The key difference between the two

is the learning rule of error variance [35].

The MMV model is given by

Z ¼ WPþ E ð3Þ

where Z 2 Rd�L is a measurement matrix consisting of L

measurement vectors, E is error matrix, and P 2 RK�L is an
unknown coefficient matrix which has only a few nonzero

rows. W 2 Rd�K denotes mapping matrix. The key

assumption in the T-MSBL algorithm is that each row Pi

satisfies a parameterized Gaussian distribution:

p Pi; ci;Bið Þ�N 0; ciBið Þ i ¼ 1; 2; . . .;N ð4Þ

where ci and Bi are hyperparameters. ci is a nonnegative

scalars controlling the row sparsity of P. When ci ¼ 0, the

corresponding i-th row element Pi becomes 0. Most ci
equal 0 in noiseless cases or tend to very small values in

noisy cases because of the mechanism of automatic rele-

vance determination. Generally those ci which tend to very

small values are set to 0 using T-MSBL with a threshold. Bi

is a positive definite matrix capturing the temporal corre-

lation structure of Pi, which is adaptively learned from the

sEMG data.

To conveniently derive T-MSBL, by letting z ¼
vecðZTÞ 2 RdL�1, G ¼ W� IL, q ¼ vecðPTÞ 2 RKL�1,

e ¼ vecðETÞ, the MMV model (see Eq. 3) is equivalently

transformed to the single vector model (see Eq. 1), i.e.,

z ¼ Gqþ e. Assume each element in the noise vector e has
a Gaussian distribution p e; kð Þ�N 0; kIð Þ, where k is vari-

ance. According to the Bayes rule, the posterior probability

p q zj ;Cð Þ is written as p q zj ;Cð Þ ¼ N l;Rð Þ with the mean l
and the covariance matrix R given by

l ¼ 1

k
RGz ð5Þ

R ¼ R�10 þ
1

k
GTG

� ��1
¼ R0�R0G

T kIþ GR0G
T

� ��1
GR0

ð6Þ

where C is the set of all the hyperparameters k; ci;Bif g, R0

is given by R0¼ diag ciBi; . . .; cNBNf g. After the hyperpa-

rameters are estimated, the estimate of q, i.e., q
^

, is given

by the mean of the posterior probability.

The T-MSBL algorithm can be summarized as follows.

Step 1 Initialize c, let c ¼ 1, or a non-negative random

vector.
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Step 2 Calculate l and R using Eqs. (5) and (6).

Step 3 Update hyperparameters using the expectation

maximization (EM) rule.

ci  
1

L
qiB

�1qTi þ Nq
� �

ii

~B 
PN
i¼1

qTi qi
ci
þ gI

k 1

NL
z� Gqk k2F þ

k
N
Trace GWGT kIþ GWGT

� ��1h i

ð7Þ

where Nq ¼ W�1 þ 1
kG

TG
� ��1

, q ¼ WGT kIþð
GWGTÞ�1z, W ¼ diag ci; . . .; cNf g, g is a positive

scalar.

Step 4 Check for convergence. If convergence criterion

is not satisfied, iterate Step 2 and Step 3. If it has

converged, go to Step 5.

Step 5 Calculate l using Eq. (5). Let q
^ ¼ l.

Feature extraction based on the T-MSBL algorithm

According to ‘‘Sparse reconstruction modeling of sEMG’’ and

‘‘T-MSBL algorithm’’ sections, s denoted the raw sEMG sig-

nals generated by a certainmovement,K denoted the length of

each segment of signal and K = 256. To compress the sEMG

signals segment by segment, a sparse binary matrix of the size

128 9 256 was used as the measurement matrixH. Note that

the sparse binary sensing matrix has been widely used in CS-

based compression because of its efficiency in storage and

matrix–vector multiplication [36]. Each column of H con-

tained only a few entries equal to 1 with random locations,

while other entries were 0. Sparse representation provides a

good approximation to the initial sEMG signal. The optimal

approximation depends on the selection of the best dictionary.

However, heavy computation for selecting the best dictionary

becomes an obstacle in application. The sEMG signal is

compressible in some wavelet bases. Therefore wavelet bases

are chosen as dictionary matrixes to balance computation and

practical application. The selection of wavelet bases depends

on the specific signal. The shapes of some wavelets in Dau-

bechies family are similar to single motor action unit potential

(MUAP) [37]. We chose Daubechies (order of 6) wavelet as

the dictionarymatrixD to sparsely represent the sEMGsignals

in this research. The dictionary matrix D had the size of

256 9 256. The compressed data of each segment y was

obtained using y ¼ Hs. TheT-MSBLalgorithmcalculated the

estimate of q (i.e., q
^
in Eq. (2) using y and A (A ¼ HD).

In order to further reduce feature dimensions and

enhance classification speed, the statistical features of the

decomposition coefficients were taken as feature vectors in

this study. RMS of the decomposition coefficients was

adopted as the input vector of classifier. The RMS value

xrc value was calculated as follows.

xrc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
l¼1

q2 lð Þ

vuut ð8Þ

where q denoted the vector of sparse coefficients in each

analysis window, M denoted the number of nonzero entries

of q.

Experiments and discussion

The proposed feature of sparse representation coefficients

(SRC) was used to recognize the six classes of movements.

The recognition performance of SRC feature was compared

with those of some common features. The common features

in our work were: MAV, RMS, WL, ZC, SSC, IEMG, his-

togram of EMG (HEMG), WAMP, AR coefficients (ARC),

median frequency (MDF), frequency-band energy ratio after

wavelet decomposition (ERA), RMS extracted from the

NMF separated signals (EMGNMF) [25] and RMS extracted

from the ICA separated signals (EMGICA) [24]. All the

extracted features were normalized. The recognition per-

formance was quantified by RA which was defined as

follows.

RAi ¼
Ri

Ti
� 100 % i ¼ 1; 2; . . .;C ð9Þ

ARAi ¼
1

C

XC
L¼1

RAi ð10Þ

where Ri denoted the number of correctly classified sam-

ples of the ith movement. Ti denoted total number of

testing samples of the ith movement. C denoted the number

of movements in our work. ARAi denoted the average RA

result of the ith movement.

Two experiments were performed to validate the feasi-

ble of the proposed feature extraction scheme. The first

experiment related to the recognition performance com-

parison of different single features. The second involved

the recognition performance comparison of different multi-

feature sets.

Performance comparison of single EMG features

We realized movement recognition by SVM classifier in

this experiment. The average RA results with different

single features are shown in Fig. 2.
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As shown in Fig. 2, the SRC has the highest average RA

result of 85.92 % among all the single features, while the

HEMG has the lowest one (64.65 %). The features of ERA,

EMGNMF and EMGICA have better accuracy, which are

85.83, 85.58 and 85.48 %, respectively. The features of

ARC4 (the fourth order of autoregressive model), WL and

WAMP have comparable recognition performance, whose

accuracies are over 84.50 %. The features of IEMG, ZC

and SSC have relatively lower RA results. Most features in

the time domain and frequency domain cannot represent

the sEMG signals exactly because of the non-stationarity of

sEMG signals. Hence their average RA results are unsat-

isfactory. The algorithms of wavelet, NMF and ICA can

achieve sparseness of the solutions to some certain extent.

However, the sparseness provided by the three analysis

methods is rather weak. Hence the features of ERA,

EMGNMF and EMGICA just offer the mean recognition

accuracies of 85.83, 85.58 and 85.48 %, respectively. The

SBL algorithm is equivalent to an iterative reweighted L1

minimization algorithm. Hence the global minima of SBL

are always the sparsest solution [30]. Hence in contrast to

wavelet, NMF and ICA, SBL can learn much sparser fea-

tures. Compared to the other single features, the feature

SRC provides more inherent information of sEMG. So the

feature SRC gets the best RA result. It should be noted that

the orthogonal wavelet base was adopted to analyze the

sEMG signals because of the complexity of signals. The

optimal sparse solutions over predefined orthogonal

wavelet base might not be obtained. Hence the feature SRC

has no huge advantage over other single features. We can

consider the multi-features combining different single

features to classify different movements. These will be

discussed in the next section.

Some criteria, such as Davies–Bouldin index (DBI),

entropy, Euclid-distance and Fisher’s linear discriminate

index (FLDI), can quantitatively assess the separability of

sEMG features [38]. The FLDI represents clusters’ dis-

persion comparing to their scatter [39]. Note that a larger

FLDI value means a higher possibility of linearly dis-

criminating the clusters in the feature space. Figure 3

shows the FLDI values of different single features. The

trend of the FLDI values demonstrates that the separability

of SRC is superior to those of other single features.

Figure 4 displays the confusion matrix for six move-

ments using the feature SRC and SVM classifier. Accord-

ing to the results in Fig. 4, the movements of gross hand

and individual finger, such as EXPM, FLTF, EXTF and

EXIF, are easily recognizable. Their average RA results are

over 85 %. The movements with more fingers may cause

confusion and be misidentified, especially the multi-finger

movements which are similar to the other ones. For

example, HOOK and OKAY have lower RA results among

all movements. The movement HOOK is misclassified as

the movement EXIF. The movement OKAY is misclassi-

fied as the movement EXPM. The possible reasons for

misidentification include measurement conditions, physio-

logical structures of forearm muscles, etc. Regarding the

results in Fig. 4, it can be due to the similarity between two

movements. For example, extensor indicis proprius (EIP)

served a similar contractile function when we performed

the movement HOOK and EXIF, respectively.

Comparison of recognition performance

among multi-feature sets

The multi-motion recognition with a single feature makes it

difficult to obtain a satisfactory RA result. Studies have

Fig. 2 The mean/std recognition accuracies of different single

features

Fig. 3 The FLDI values of different single features
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proved that the recognition performances of multi-feature

sets constituted by single features are much better than

those of the single features [40, 41] for the multi-motion

recognition using sEMG. If the single feature constituting a

multi-feature set has no correlation to the others, i.e., they

are all independent of each other and they have no effect on

each other, the RA result with the multi-feature set can be

improved greatly. The multi-feature sets constituted by the

single features in ‘‘Performance comparison of single EMG

features’’ section were employed in the second experiment.

We classified the six movements with these multi-feature

sets and SVM classifier. The RA results are shown in

Fig. 5. The possible number of multi-feature sets was so

large that we could not show all combinations here. The

multi-feature sets whose RA results were good were shown

in Fig. 5. The multi-feature sets with poor RA results were

not shown.

According to the results in Fig. 5, the multi-feature sets

obtain more satisfying and more stable performance than

the single features do. The average RA results of multi-

feature sets, such as MAV ? WL ? SRC, ARC4 ? SRC,

WAMP ? SRC and SRC ? WL, are more than 88 %. The

multi-feature set SRC ? WL has the best RA result,

91.67 %, among all multi-feature sets.

Figure 6 displays the FLDI values of different multi-

feature sets. The trend of the FLDI values demonstrates

that the separability of SRC ? WL is superior to those of

the other multi-feature sets.

Figure 7 presents the confusion matrix for the six

movements using the multi-feature set SRC ? WL and

SVM classifier. The results indicate that the multi-feature

set SRC ? WL with better class separability achieves

higher recognition performance in movement classifica-

tion. The average RA results of six movements using the

multi-feature set SRC ? WL are improved greatly when

compared with the results shown in Fig. 4. The movements

of EXTF and EXPM have the average RA results of greater

than 95 %. The average RA results of EXIF and FLTF are

over 92 %. The average RA result of OKAY increases

from 80.50 to 85.50 % and the average RA result of HOOK

increases from 73.00 to 81.00 %. The results demonstrate

that the combined features have more superior performance

when compared with the single features.

The combinations of multiple features in [40, 41] and

the above experiment in ‘‘Comparison of recognition per-

formance among multi-feature sets’’ section are some

simple concatenations of features, which assume each

feature type contributes equally to the classification and

may not give the best performance. To access this problem,

we should consider about more flexible combinations, such

as multiple kernel learning (MKL) framework [42] that

Fig. 4 Confusion matrix for six movements using the feature SRC

and SVM classifier

Fig. 5 The mean/std recognition accuracies of different feature sets Fig. 6 The FLDI values of different multi-feature sets
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adaptively combines features with the optimal combination

coefficients automatically learned. In this study, we

employed simpleMKL algorithm [43] to combine different

types of sEMG features for more effective classification.

SimpleMKL is an efficient optimization algorithm to solve

the MKL problem. The algorithm estimates the optimal

coefficients for kernel combination using an iterative gra-

dient descent algorithm and learns a weighted linear

combination of kernels. For the detailed implementation of

SimpleMKL, refers to Algorithm 1 in [43].

Linear, polynomial, Gaussian radial basis function

(RBF) and sigmoid kernels are the common and major

kernel functions in the MKL framework. To choose the

appropriate kernel function for each feature type mentioned

above, the linear, polynomial, RBF and sigmoid kernel

functions were used to evaluate the classification perfor-

mance, respectively. Table 1 lists the mean classification

accuracies of different single features based on each single

kernel function across the six movements.

From Table 1, it shows that in the classification of six

movements, SRC, WAMP, ARC4, ARC6, MDF, ERA,

EMGNMF, and EMGICA are well-suited with a RBF

kernel; IEMG, HEMG, RMS, MAV, ZC, SSC, and WL are

well-suited with a polynomial kernel. So the Gaussian RBF

kernel was adopted for the features of SRC, WAMP,

ARC4, ARC6, MDF, ERA, EMGNMF, and EMGICA. The

polynomial kernel was adopted for the other seven features.

We integrated the 15 features mentioned in ‘‘Performance

comparison of single EMG features’’ section with the

polynomial kernel and the RBF kernel using the Sim-

pleMKL algorithm. We realized movement recognition

with SVM classifier and the combination of multiple fea-

tures. The average RA reached 94.38 % when the kernel

weights of SRC, IEMG, HEMG, RMS, WAMP, MAV, ZC,

SSC, WL, ARC4, ARC6, MDF, EMGICA, EMGNMF, and

ERA were 0.7068, 0.0000, 0.0000, 0.0004, 0.0110, 0.0000,

0.0000, 0.0000, 0.2700, 0.0099, 0.0003, 0.0000, 0.0004,

0.0005, and 0.0007, respectively.

Figure 8 shows the weight of each kind of features.

From Fig. 8, the weights of RMS, ARC6, EMGICA,

EMGNMF and ERA were very low (close to 0) in the final

combined kernel. In order to save the time of feature

extraction, the features with the very low weights were

dropped from our consideration. So we used the Sim-

pleMKL algorithm to combine the features of SRC,

WAMP, WL and ARC4. The multi-feature set

SRC ? WAMP ? WL ? ARC4 had a good and satisfying

Fig. 7 Confusion matrix for six movements using the multi-feature

set SRC ? WL and SVM classifier

Table 1 Comparison of performance for different single features

based on different single kernel functions

Feature Mean classification (%)

Linear Polynomial RBF Sigmoid

SRC 83.79 84.75 85.92 83.84

IEMG 80.56 82.18 82.01 80.61

HEMG 63.25 64.86 64.65 63.73

RMS 81.47 82.05 81.84 81.52

WAMP 83.47 84.11 84.62 83.25

MAV 81.73 82.22 82.08 81.79

ZC 67.75 68.63 68.49 67.59

SSC 66.81 68.97 68.91 66.96

WL 84.69 84.85 84.77 84.54

ARC4 80.69 81.82 84.85 81.99

ARC6 73.52 75.66 77.45 75.59

MDF 69.95 70.29 72.67 70.31

EMGICA 83.42 83.59 85.48 83.27

EMGNMF 83.33 83.64 85.58 84.71

ERA 83.53 84.91 85.83 83.57

The best RA result for each single feature under one of four kernel

functions is highlighted in bold

Fig. 8 Contributions (weights) of the sEMG features for movement

classification
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average RA, which was 94.33 %. The kernel weights of

SRC, WAMP, WL and ARC4 were 0.7079, 0.0112,

0.2705, and 0.0104, respectively. The average RA of the

multi-feature set SRC ? WAMP ? WL ? ARC4 is much

higher than the concatenations of features which had been

studied in our previous experimental work. Compared with

the multi-feature set integrated by the 15 features, the

average RA of the multi-feature set SRC ? WAMP ?

WL ? ARC4 fell very rarely.

Figure 9 presents the confusion matrix for the six

movements using the multi-feature set SRC ? WAMP ?

WL ? ARC4 and SVM classifier. From Fig. 9, we can see

that the average RA results of six movements using the

multi-feature set SRC ? WAMP ? WL ? ARC4 are fur-

ther improved when compared with the results shown in

Fig. 7. The movements of EXTF and EXIF have the

average RA results of greater than 97 %. The average RA

of FLTF is over 95 %. The average RA result of OKAY

increases from 85.50 to 89.00 % and the average RA result

of HOOK increases from 81.00 to 85.00 %. The results

demonstrate that the combined features via the MKL

framework have more superior performance when com-

pared with the concatenation of features. In the experiment,

the FLDI value of the multi-feature set SRC ? WAMP ?

WL ? ARC4 was 89.54, which was greater than those of

the other multi-feature sets. It demonstrates that this multi-

feature set has the optimal class separability.

We had assessed the performance of the features

including multi-feature sets and single features using SVM

classifier. Now all of the sEMG features mentioned above

were evaluated using different classifiers. According to the

research results in [6], the effect of different classifiers on

recognition performance is not significant when the

extracted features are more distinguishable than other

features. The following experimental results will demon-

strate their conclusions in [6]. We focused more on the

features with better performance. Here we chose the five

multi-feature sets with the better RA to assess the recog-

nition performance. They were WL ? SRC, ARC4 ?

SRC, WAMP ? SRC, MAV ? WL ? SRC, and

SRC ? WAMP ? WL ? ARC4. The multi-feature sets of

WL ? SRC, ARC4 ? SRC, WAMP ? SRC and

MAV ? WL ? SRC were formed by simply concatenat-

ing different features together. The multi-feature set

SRC ? WAMP ? WL ? ARC4 was obtained by the

SimpleMKL algorithm. Four common classifiers, k-nearest

neighbor (k-NN), linear discriminant analysis (LDA),

multi-layer perceptron (MLP) and SVM were employed in

this research. The five multi-feature sets were formed first

and then were applied as input to the classifiers when the

classifiers of k-NN, LDA and MLP were employed to

recognize the movements. The recognition results were

shown in Fig. 10.

The results in Fig. 10 show that the multi-feature set

SRC ? WAMP ? WL ? ARC4 has the better accuracy

for all four classifiers when compared with the other fea-

ture sets. The best RA result is gained by using the feature

set SRC ? WAMP ? WL ? ARC4 and SVM among all

the features and classifiers. But the distinctions among the

accuracies of four classifiers with the same multi-feature

set are less sharp. Our result is consistent with the previous

result in [6]. Hence it is testified that different classifiers

have no significant effect on the RA results when more

distinguishable features are extracted.

We used the analysis of variance (ANOVA) method to

determine the effect of sEMG features and classifiers on

the RA results. The Bonferroni correction was employed

for multiple comparisons. The results are declared statis-

tically significant if the significance level a is less than

0.05. The a value of the feature factor was 0 (a\0:05) in

Fig. 9 Confusion matrix for six movements using the multi-feature

set SRC ? WAMP ? WL ? ARC4 and SVM classifier

Fig. 10 The recognition accuracies of five multi-feature sets using

different classifiers
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this study. The a value of the classifier factor was 0.23

(a[ 0:05). The results indicate the features take significant

effect on the RA results, while the effect of classifiers is not

significant. These results are consistent with the previous

reports in [40, 41], which have indicated the effect of

features plays a more crucial role than that of classifiers in

recognition performance. The multiple comparison analy-

sis further indicates that the RA result of the multi-feature

set SRC ? WAMP ? WL ? ARC4 differs from those of

the other features. It shows that the performance of

SRC ? WAMP ? WL ? ARC4 is superior to those of the

other features.

We evaluated all the methods of sEMG feature extrac-

tion using MATLAB 2010a on a computer with Intel Core

i5, 2.3 GHz and 2 GB memory. We reported the run time

for each single feature from the multi-feature sets showed

in Fig. 8. The running time for each single feature was

35 ms for SRC, 11 ms for ARC4 and less than 1 ms for

MAV, WL and WAMP, respectively. The running time for

the combination of multiple features via MKL was 5–6 ms.

The classifiers ran within 2–4 ms for each feature.

Conclusions

This paper introduced and evaluated SBL approach to

extract the features of sEMG signal and to discriminate

different types of subtle movements including individual

finger and multi-finger movements. The feature SRC was

extracted by the T-MSBL algorithm. This feature effec-

tively represented time-varying characteristics of sEMG

during movements because of the compressibility of signal

in the dictionary. The performance of SRC was compared

with a variety of conventional sEMG features in terms of

RA and FLDI value. The results demonstrated that the

multi-feature set SRC ? WAMP ? WL ? ARC4 fused

using the SimpleMKL algorithm outperformed the multi-

feature set formed by simply concatenating different fea-

tures together and all single features. The multi-feature set

SRC ? WAMP ? WL ? ARC4 with optimal separability

led to the improvement of recognition accuracy and the

reduction of false recognition rate for multi-movement

recognition. In particular when the similar movements

were performed, the method was a powerful tool of feature

extraction for movement recognition. We also found the

standard deviation of SRC ? WAMP ? WL ? ARC4

was relatively small. This suggested that SRC ?

WAMP ? WL ? ARC4 had more robust performance

than other features in the movement recognition. More-

over, the statistical analysis confirmed that the performance

of SRC ? WAMP ? WL ? ARC4 was superior to those

of other features, and feature factor had more significant

effect on recognition performance than the classifier factor

do. In conclusion, the proposed scheme provided satisfac-

tory performance in terms of recognition results. In the

future work, evaluating the proposed scheme on more

complex hand movements in daily life will be the focus of

our study. Besides, the proposed scheme of feature

extraction will also be considered to test on prosthetic

hands worn by the amputees.
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