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Abstract The purpose of this study is to provide a new

method for detecting fetal QRS complexes from non-inva-

sive fetal electrocardiogram (fECG) signal. Despite most of

the current fECG processing methods which are based on

separation of fECG from maternal ECG (mECG), in this

study, fetal heart rate (FHR) can be extracted with high

accuracy without separation of fECG from mECG. Fur-

thermore, in this new approach thoracic channels are not

necessary. These two aspects have reduced the required

computational operations. Consequently, the proposed

approach can be efficiently applied to different real-time

healthcare and medical devices. In this work, a new method

is presented for selecting the best channel which carries

strongest fECG. Each channel is scored based on two criteria

of noise distribution and good fetal heartbeat visibility.

Another important aspect of this study is the simultaneous

and combinatorial use of available fECG channels via the

priority given by their scores. A combination of geometric

features and wavelet-based techniques was adopted to

extract FHR. Based on fetal geometric features, fECG sig-

nals were divided into three categories, and different

strategies were employed to analyze each category. The

method was validated using three datasets including Non-

invasive fetal ECG database, DaISy and PhysioNet/Com-

puting in Cardiology Challenge 2013. Finally, the obtained

results were compared with other studies. The adopted

strategies such as multi-resolution analysis, not separating

fECG and mECG, intelligent channels scoring and using

them simultaneously are the factors that caused the

promising performance of the method.

Keywords Fetal QRS detection � Fetal heart rate (FHR) �
Noise robust � Multichannel processing � Wavelet

transform

Abbreviations

ECG Electrocardiogram

fECG Fetal electrocardiogram

mECG Maternal electrocardiogram

FHR Fetal heart rate

fR-peak Fetal R-peak

BSS Blind or semi-blind source separation

SVD Singular value decomposition

PCA Principal component analysis

WT Wavelet transform

DWT Discrete wavelet transform

LMS Least mean square

RLS Recursive least square

Se Sensitivity

PDV Positive diagnostic value

ACC Accuracy

TP True positive

FP False positive

FN False negative
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Introduction

Electronic analysis of fetal heart rate (FHR), which has

been introduced for clinical use since 40 years ago, gives

wide knowledge about the intrauterine oxygenation and it

is now one of the methods for monitoring embryos [1] and

pregnant women from 24 to 26 weeks of gestation in

modern obstetric units [1–4]. Although there are significant

advances in electrocardiogram (ECG) signal processing

techniques, analysis of fetal electrocardiogram (fECG) still

needs a lot of improvement to become a credible alterna-

tive to the usual Doppler ultrasound monitoring technique.

Heart defect is one of the most common birth diseases and

defects. It is the major cause of birth defects associated

death [5, 6]. Congenital heart defects are established in the

early stages of fetus formation [7]. Therefore, monitoring

of fetal heart activity can provide important information to

detect cardiac abnormalities in fetal heart formation in the

early stages of pregnancy. However, in spite of the enor-

mous potential applications, non-invasive fetal electrocar-

diography has not yet made enough satisfaction for fetal

disease detection. This is mainly due to the powerful

maternal ECG (mECG) interference, muscle contractions

and motion artifacts that are added to the fECG signal [8,

9].

FECG processing methods in the literature can be cat-

egorized by their methodologies: adaptive filtering, linear

decomposition, and nonlinear decomposition.

Adaptive filtering is a common approach for mECG

cancelation and fECG extraction. This filtering approach

consists of training an adaptive filter for eliminating

maternal ECG by using one or more maternal reference

channels [10], or training the filter to extract the fECG

directly [11, 12]. Several adaptive filters namely, Kalman

filter [13], least mean square (LMS) and recursive least

square (RLS) [14] can be used for extracting fECG and

cancelling mECG.

The second category is linear decomposition in which

signals are decomposed into different components using

proper basis functions that are somehow in coherence

with the time, frequency, or scale characteristics of the

fetal components. Wavelet decomposition [15] and

matching pursuits [16] are among these methods. The

third category is nonlinear decomposition. In the linear

decomposition approach, there is a limitation that fECG

and other interferences or noises are not always ‘linearly

separable’. In the third approach, nonlinear transforms are

used in order to separate the signal and noise. The non-

linear transforms require some initial information

regarding the desired and undesired parts of the signal

such as thoracic ECG channel in which only mECG

exists, and it can be used for separating the desired

(fECG) and undesired (mECG) parts of the signal [7, 17].

Some of the linear and nonlinear decomposition tech-

niques for fECG extraction are: blind or semi-blind source

separation (BSS) [18, 19], singular value decomposition

(SVD) [7, 20], principal component analysis (PCA) [21]

and wavelet transform (WT). Since in this study WT is

employed for FHR extraction and fetal QRS detection,

this method is briefly recalled here.

In the WT method, singularities that are obtained from

an abdominal signal are detected with the modulus

maxima in the wavelet domain. However, extracted

amplitudes from fECG signal in this method are not

accurate [22]. Nevertheless, the wavelet method is the

best tool to detect featured points on ECG signal. Li et al.

[23] used this method for the first time. Later, Zhen et al.

[24] used biorthogonal wavelet coefficients to detect QRS

complex.

Wavelet decomposition was also combined with blind

source separation methods for extracting and denoising

fECG. Jafari et al. [25] addressed the problem of fetal

ECG extraction using BSS in the wavelet domain. They

showed that the major advantage of this method is that it

can be particularly beneficial when mixing environment is

noisy and time varying. The other major advantage of

wavelet is that it is a multi-resolution transform and

produces a time–frequency decomposition of the signal

which makes it a useful tool for detecting the components

of various time series by detecting related time–frequency

components, and fECG is one of the obvious candidates

for this type of analysis [26]. Furthermore, even if FIR

filtering may seem appropriate for some tasks, as for

preprocessing and denoising, wavelet transform outper-

forms simple FIR denoising since it introduces less event

distortion [27].

Reviewing the literature of the fetal ECG shows that in

most of the current works one of the major parts is fECG

extraction from the mixture of maternal and fetal ECG

signal. This study will show that even without separating

fECG and mECG good results can be obtained if some

other specific characteristics are employed, such as intel-

ligent selection of the best lead based on stochastic tech-

niques, combination of all available channels and using

discrete wavelet transform. A new approach is presented

for improving the performance of the method which is

based on two rules. These rules can help remove the noises

which are confused with fetal R-peaks (fR-peaks). Based

on geometric features, fECG signal is divided into three

categories. Because of the specific shape of each category,

separated strategies are considered to find the fetal heart-

beat. Despite various geometric structure of fECG, the

proposed approach has promising accuracy in all types of

fECG.
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Materials

Discrete wavelet transform (DWT)

The basic structure of wavelet bases may be valued by

considering generation of an orthonormal wavelet basis for

function g 2 L2 (the space of square integrable real func-

tions). The method of Daubechies is the most often adopted

in studies and applications of wavelets in statistics, bilat-

eral orthonormal functions or parent wavelets: the scaling

function, u(father wavelet), and the mother wavelet, w
which are written in Eq. 1.

/j0k
tð Þ ¼ 2

j0
2/ 2j0 t � k

� �
;

wjk tð Þ ¼ 2
j
2w 2 jt � k
� �

;

j ¼ j0; j0 þ 1; . . .; k 2 Z

ð1Þ

For some constants j0 2 Z, where Z is the set of inte-

gers. The 2j/2 term maintains uniqueness norm of the basis

function at different scales, j is scaling parameter and k is

the translation parameter. A unit growth in j in Eq. 1 has no

effect on scaling function (uj0k has constant size), but

packs oscillations of wjk into half the size (doubles its scale

or resolution). A unit growth in k in Eq. 1 changes the

location of both uj0k and wjk, the former by a fixed amount

(2-j0) and the latter by an amount proportional to its size

(2-j). Given the wavelet root, a function g 2 L2 is then

signified in a matching wavelet series as in Eq. 2.

g(t) ¼
X

k2Z
cj0kwj0k tð Þ þ

X1

j¼j0

X

k2Z
wjkWjk tð Þ ð2Þ

with cj0k ¼ g,/j0k

� �
and wjk ¼ g,wjk

D E
where :; :h i is the

standard l2 inner product of two functions:

g1; g2h i¼
Z

R

g1 t1ð Þg2 t2ð Þdt

The wavelet extension in Eq. 2 signifies the function g

as a series of consecutive estimates. Given an array of

function value g ¼ g t1ð Þ; g t2ð Þ; . . .; g tnð Þ½ �T of equally

spaced points ti, the DWT of g is given by Eq. 3.

d¼Wg ð3Þ

where d is an n 9 1 vector comprising both discrete scal-

ing constants uj0,k and discrete wavelet constants dj,k and

also W is an orthogonal n 9 n matrix related to

orthonormal chosen wavelet basis. Both uj0,k and dj,k are

related to their continuous doublets cj0,k and Wj,k via the

equation cj0;k � uj0;k
� ffiffiffi

n
p

and wj;k � dj;k
� ffiffiffi

n
p

. The factor
ffiffiffi
n

p
rises because of the difference between continuous and

discrete orthonormality conditions. It should be notted that

coefficients cj0,k are called approximations and coefficients

of Wj,k are called details. Furthermore, DWT can be real-

ized az low pass and high pass filters. The approximation

coefficients are obtained from the output of low pass filter

(h(t)) and detailed coefficients are obtained from the output

of high pass filter (g(t)) [26, 28–30]. Figure 1 demonstrates

structure of DWT in high and low frequency, and the red

rectangle associated to the approximation part (Ai, i is the

level of decomposition) which is divided to approximation

part of the next level (Ai?1) and detail part of the next level

(Di?1) in each step.

Databases

Three different datasets used for testing the proposed

method are DaISy [31], PhysioNet Noninvasive fECG

(PNIFECGDB) [32] and PhysioNet/Computing in Cardi-

ology Challenge 2013 [33]. A general description of the

used databases is shown in Table 1. The recordings which

do not have reference annotations have been annotated by

an expert cardiologist. Since PNIFECGDB was annotated

manually, the 26 recordings in which the fetal QRS com-

plexes are visible are selected.1 In some of the selected

recordings fetal beats can be observed only after denoising.

The second minute of 26 selected recordings was extracted

and used for evaluation. In PhysioNet/Computing in Car-

diology Challenge 2013 dataset six recordings (a33, a38,

a52, a54, a71, a74) have some missed reference annota-

tions, so they were eliminated and only 69 records of set A

were used.

Evaluation protocol

The evaluation of QRS detectors’ performances is usually

based on the beat-to-beat comparison between the refer-

ence beats and the detected beats. The classical matching

1 The 26 records of PhysioNet Noninvasive fetal ECG which were

used for evaluation are: ecgca154, 192, 244, 274, 290, 300, 323, 368,

392, 410, 444, 585, 597, 649, 659, 733, 746, 748, 771, 811, 826, 840,

848, 886, 906, and 986.

Fig. 1 Arrangement of discrete wavelet transform in high and low

frequency. Three-level implementation of DWT for extraction of

dyadic scales is shown. In the second level of decomposition, the

approximation part of last level (A1) is divided to A2 and D2. In the

third level A2 is decomposed to A3 and D3
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window for reliable candidate points is 150 ms in adults

[34]. However, for evaluation of performance of fetal QRS

detectors, a matching window of 50 ms is commonly used,

e.g. Guerrero-Martinez et al. [35] and Zaunseder et al. [36].

To assess the performance of the proposed method sensi-

tivity (Se), positive diagnostic value, (PDV) and accuracy

(Acc) (Eqs. 4, 5 and 6) can be calculated as:

Se ¼ TP

TPþ FN
� 100% ð4Þ

PDV ¼ TP

TPþ FP
� 100% ð5Þ

Acc ¼ TP

TPþ FNþ FP
� 100% ð6Þ

where TP is true positive (fR-peak was correctly detected),

FP is false positive (artifact was detected as fR-peak), and

FN is false negative (fR-peak was not detected by the

proposed method).

Data classification

Depending on geometric features of fECG signals, the

signals can be categorized into three groups. Because of

different observed geometrical structures, utilization of the

frequency characteristics of the signal will help to recog-

nize fetal QRS complex more easily. In the first category,

fetal QRS complexes may just be observed in one or two

channels and even weak noises will increase the possibility

of detection error. Also, some of the beats are so small so

that they are difficult to be observed (Fig. 2a). The second

category is the best kind for detecting fetal beats easily and

more accurately because of medium amplitude of the fetal

complexes which will not be confused with noises or

maternal complexes (Fig. 2b). As it can be seen, in the

third category of signals (Fig. 2c) fetal QRS complex has

high amplitude and so geometric detection of maternal beat

is difficult. Here the combination of geometry and fre-

quency domain analysis of signal is inevitable. In addition,

the discipline of maternal heartbeat along with frequency

difference between mother and fetal heartbeats can help to

find maternal QRS complexes exactly. If the initial detec-

tion of fetal R-peaks, finds few fetal beats in a 1-min

abdominal signal with the initial thresholds, the signal

belongs to the first category. It means the fetal heartbeats

have small amplitude that cannot be detected through the

initial thresholds, so they should be changed. After initial

detection of maternal R-peaks, if there are many maternal

beats which have less RR-interval than the minimum

maternal RR-interval, the signal belongs to the third cate-

gory; otherwise it belongs to the second category of

abdominal signals. Since all the AECG recordings are

taken in clinical setting and resting state of mother, the

minimum maternal RR-interval is considered as 0.5 s. This

classification will make the algorithm robust to geometric

structure differences of fetal QRS complexes.

Method

The method presented in this paper has four main parts.

The first part is preprocessing that plays a significant role in

improving the performance of the algorithm. This part

which is shown as the step 1 in Fig. 3 increases the visi-

bility of fetal heartbeats among various noises. The second

part is finding maternal R-peaks which is shown as step 2.

The performance of this step directly affects other steps.

The third part is to perform necessary processing on

available channels for finding the best channel and scoring

them (step 3–6). First, in step 3 the maternal QRS range is

found. Afterwards, in step 4 the high energy zones out of

maternal QRS domain are detected. Then, in step 5, the

high energy zones which are not related to the fetal

heartbeats are removed, and in step 6 the processed chan-

nels are scored. The last part is to perform the final pro-

cessing and producing the final annotations (steps 7 and 8).

In step 7, the channels are combined for detecting the fetal

R-peaks according to their scores, and in step 8 the missed

beats are predicted. The flowchart of the algorithm

demonstrates the details in Fig. 3.

Preprocessing and denoising

At the first step of preprocessing, the non-value data is

eliminated and then estimated. The non-value data is NaN

which stands for not a number and is a numeric data

Table 1 Information of the used databases

Database Number of

records

Number of

abdominal channels

Duration Sampling frequency

(Hz)

PhysioNet Noninvasive FECG (PNIFECGDB) 55 3–4 Variable durations 1000

PhysioNet Challenge 2013 Set A:75

Set B:100

4 1 min 1000

DaISy 1 5 10 s 250
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type value representing an undefined value. For instance,

division by zero is not defined as a number value and

consequently is represented by NaN. In AECG data the

most NaNs are generated during recording the data, and

some exemplary reasons are loose electrode contact and

defective sensors [37]. For elimination and estimation of

non-value data, they are imputed using nearest-neighbor

method. Since the used datasets include a multichannel and

synchronous fECG signal, this technique is practical. This

method removes the non-value data and replaces with the

corresponding value of the nearest-neighbor column. The

nearest-neighbor column is a column whose Euclidean

distance is closest to the column of NaN. If the value of the

nearest-neighbor column is NaN itself, the next nearest-
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Fig. 2 Categories of fECG. The

green rectangles are maternal

QRS complexes, and the red

ellipses are fetal QRS

complexes. Fetal R-peaks have

the lowest amplitude in the first

category (a), medium amplitude

in the second one (b), and high

amplitude in the third category,

(a), (b) and (c) belong to record

b54, a26 and b49 of Challenge

2013 database
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diagram of the processing stages
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neighbor column is employed [38]. If Xab is a non-value

data and Xij presents the samples of data (i and j are

channel and sample number, respectively), the Euclidean

distance function dE(x, y) is defined as in Eq. 7.

dE x; yð Þ ¼
Xx

i¼1

Xy

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� ið Þ2þ b� jð Þ2

q
x �M; y�N

ð7Þ

where a and b are channel and sample numbers of the non-

value data, respectively. M is the number of available

channels, and N is the length of signal. The Xij corresponds

to the minimum value of the Euclidean distance function

dE (x, y) which itself is not non-value data and will be

considered as a substitute for Xab. Then, for removing the

power line noise a band stop FIR filter was applied on four

different harmonics. Using discrete wavelet transform

(daubechies6, level 10), and removing the reconstructed

signals in approximations of level 10 and details of levels

7, 8, 9 and 10, the base line and other low frequency noises

were eliminated. The elimination of detail parts of levels 7

and 8 improves the algorithm performance in comparison

with traditional use in which they are considered. The last

step of preprocessing is denoising using wavelet technique

based on the estimation of noises of wavelet coefficients

[39].

Maternal R-peaks detection

There are two main reasons that wavelet transformation

cannot be used alone to identify the maternal QRS com-

plex. The first reason is that in the method presented in this

paper it is not necessary to separate the fetal and maternal

complexes. Therefore, fetal and maternal heartbeats are

investigated together, and this is one of the characteristics

of the proposed method. The second reason is that, there is

no significant structural differences between wavelet

transform of maternal and fetal QRS complexes as shown

in Fig. 4. Therefore, maternal heartbeats cannot be detec-

ted through wavelet transform. Nevertheless, there are

significant geometric structure differences between mater-

nal and fetal heartbeats (as shown in Fig. 2). Thereby, here

the geometric structure of maternal signal such as beats

order and QRS complex amplitude which are different

from fetal characteristics can help maternal QRS com-

plexes to be easily identified based on threshold method.

The optimal threshold was searched for and set at 2.2 times

bigger than the mean of the absolute value of the entire

signal (Eq. 9); and the zones with bigger amplitude of the

threshold are considered as maternal R-peaks. Therefore, a

decision function, D̂, for i = 1, 2,…, M (length of the

signal) is calculated using Eq. 8.

D̂ ¼ Si if Sij j[ TH

0 if Sij j\TH

�
ð8Þ

TH ¼ 2:2

M

XM

i¼0

Sij j ð9Þ

where Si is the preprocessed signal and TH is the defined

threshold. The mentioned technique would be appropriate

for the first and second categories of fetal ECGs. However,

in the third category, fetal QRS complex has high ampli-

tude and concurrent use of time and frequency domain

techniques is necessary. As fetal QRS complex has greater

frequency than maternal complex, this frequency differ-

ence could be helpful in discrimination of fetal and

maternal QRS complexes. In this group, for decreasing the

error of maternal complex detection, the fetal complexes

which are recognized incorrectly as maternal complexes

should be refined. Here, a discrete wavelet transform on

level 10 with the function ‘daubecheis6’ is applied on

fECG signal. Then, the signal which is related to the first

level of detail coefficients of wavelet is reconstructed. The

reconstructed signal is named as signal-D1. After identi-

fying maternal QRS complexes, one of the two closer beats

than mother’s minimum RR-interval in rest condition

(‘‘Data classification’’ section) which has more energy in

the same time in signal-D1 is recognized as fetal beat. At

this stage, fetal beats should not be considered and only

maternal R-peak locations are saved at an array named

MR-loc.

Finding maternal QRS complex domain

As mentioned in ‘‘Maternal R-peaks detection’’ section, the

method does not separate maternal and fetal ECGs. Iden-

tifying maternal R wave in previous step can help us know

the maternal QRS complex range which is 50 ms before

and after maternal R-peak locations. The output of this

stage is named MQRS-range. For further analyzing, this

range is not considered and just the periods of the signal

which are out of MQRS-range will be processed.

Finding high-energy zones out of MQRS-range

from signal-D1

At this stage, the areas with high energy are detected in

signal-D1which are candidates for fetal R-peaks. The zones

of signal-D1which have bigger amplitude than defined

thresholds (TH) are considered as high-energy zones. The

TH is 2.2 times of the mean of the absolute value of the

entire signal-D1. The high-energy zones which are outside

the maternal QRS complex domain (MQRS-range) are

acquired. To meet this end, a decision function, ~D, for
i = 1, 2,…, M (length of the signal) is defined as in Eq. 10.
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~D ¼ Si if d1i
		 		[ TH and d1i 62 MQRS� range

0 else

�
ð10Þ

where Si is the preprocessed signal and d
1
i is the sample i of

signal-D1.

The d1i signal is comprised of four major parts. The first

one is related to the maternal heartbeats. The second one is

related to the fetal heartbeats. The third part is related to the

noises with the same or higher amplitude than fetal QRS

complexes. The last part is related to the noises with smaller

amplitude than fetal QRS complexes. Therefore, the areas of

signal-D1 with considerable amplitude and out of MQRS-

range are possibly related to fetal beats or they are artifacts

with same or higher amplitude of fatal heartbeats. The vec-

tors resulted from this process for the channels are named as

high-energy-points-j (j = channel number).

Removing non-fetal complexes and artifacts

As it was mentioned, not all the high-energy zones derived

from the previous stage are fetal beats and some of them

are noises. For instance, some of them can be artifacts or

the noises with the same or higher energy than fetal beats,

which have higher amplitude than the given threshold. To

increase confidence, they should be checked again. The

detected high-energy zones which are candidate fetal

R-peaks are checked based on two assumptions, and if any

of the high-energy zones meets at least one of these

assumptions they are considered as fetal R-peaks. Firstly,

since the fetal heartbeats are on a regular basis and fetal

QRS complexes come together in a certain discipline, this

arrangement can be useful to identify fetal beats correctly.

Therefore, the high-energy regions with a certain distance

are kept and the rest are deleted (as it can be seen in

Fig. 4). This certain distance is fetal RR interval (FRR-

interval). By calculating the FRR-interval of various

fECGs, it was found that this certain distance is in the

range of 350–480 ms. The range of fetal RR-interval plays

a key role in the current method, as this range determines

which detected high-energy zones are related to the fetal

beats and which are related to the artifacts. The second

assumption is that at least one and maximum two fetal

beats exist between two consecutive maternal R-peaks. If

between two consecutive maternal R-peaks there are two

high-energy zones whose distance is between 350 and

480 ms, they are considered as fetal R-peaks. If between

two consecutive maternal R-peaks there is one high-energy

zone, it is considered as a fetal beat. If the number of

detected fetal R-peaks in 1 min of fECG signal is less than

60 beats (for other durations it is scaled), it means the

current signal places in the first category of the fECG

signal so the selected threshold is not small enough to

detect more beats. Therefore, the coefficient of the

threshold is reduced to 0.8 and the steps of 4.4 and 4.5 are

repeated. This process is applied on available channels of

fECG signals. The resulting vectors of this process are

named as FR-loc1-i (i = channel number).

Channel scoring

One of the novel techniques that have been used in this

paper is channel scoring. Channels with higher scores have

higher priority, and the channel which has the highest score

is considered as the reference channel. Two criteria are

considered for scoring the channels.

The first criterion is noise distribution. The channel with

less noise scattering has better signal quality. Distribution

of noise is expressed by standard deviation of detail coef-

ficients of the discrete wavelet transform applied to the

preprocessed signal.
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discrete wavelet (signal-D1),

belong to a49, set A of the
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2013, the third channel
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For the second criterion, any channel which has greater

length of the vector FR-loc1-i (obtained from the ‘‘Re-

moving non-fetal complexes and artifacts’’ section) is in

priority because the points existing in FR-loc1-i vector

represent fetal heartbeats. If the length of FR-loc1-i vector

is larger, it means that in the initial scan a larger number of

fetal heart beats have been detected which itself can be an

indication of the channel quality in fetal beats visibility,

and it shows that the channel has stronger fECG signal.

Score from the first criterion is called Scr1. As the

current method uses 4 channels, the score 3 is assigned to

the channel with the minimum distribution of noise. Con-

sequently, for the channel with the highest noise distribu-

tion the score is zero.

The score from the second criterion is called Scr2. The

score 3 is assigned to the channel whose FR-loc1-i array

has maximum length and for the channel whose FR-loc1-i

array has minimum length the score 0 is considered. If the

number of available channels is three the maximum value

for the Scr1 and Scr2 will be 2 instead of 3. The final score

(Eq. 11) is the sum of theScr1 and the Scr2.

Final-Score ¼ Scr1þ Scr2 ð11Þ

The channel which has greater Final-Score is in priority

for any further processing. In other words, channels are

ranked based on their Final-Score. The first criterion

measures the noise existence and the second one measures

better visibility of fetal heartbeats. In order to validate this

method, it was applied on the 100 recordings of set B of

PhysioNet/CinC Challenge 2013 dataset, and the accuracy

of 89 % was obtained. It means that in 89 % of data, the

best channel suggested by this method was the same as the

best channel selected manually.

Combination of initial detected fetal R-peaks of each

channels based on priority given by their score

The initial scan of fetal beats in ‘‘Removing non-fetal

complexes and artifacts’’ section does not contain all of the

fetal QRS complexes because of two reasons. Firstly, some

of the fetus beats are overlapped with maternal QRS

complex domains which were not considered at any stages.

Secondly, some fetal beats have not been considered due to

existence of noise or lack of proper FRR interval. For

example, the beat existing between two beats which are not

detected because of noise existence or overlapping with the

maternal QRS complexes is a missed beat because of

improper FRR interval. At this step, some of the missed

beats can be detected with the help of all available leads.

The combination of the leads can find the missed beats

which are not detected because of noise, signal quality or

lack of FRR interval. However, the beats overlapped onto

maternal QRS complexes cannot be found through com-

bination of the leads as they are not detected in any of the

channels. The combination is based on the channels rank-

ing. All the detected fetal beats existing in the best lead are

considered. Then, the missed beats are searched in the

second ranked channel one by one. If any of missed beats

were not found, they are searched in the third ranked

channel and if any of them were not detected again, they

are searched in the last ranked lead. If any of the missed

beats was not detected in any channels it will be predicted

in the next section. This process is shown in Fig. 5. The

output array is named as FR-loc-1-combine.

Prediction of the location of missed fetal R-peaks

All the fetal QRS complexes which overlap with maternal

QRS complexes are detected by prediction. Besides, the

fetal beats which are not detected in any available leads are

predicted in this step. The possible locations of these

eliminated beats are predicted based on the current detected

beats order.

Using the average FRR interval of the existing recorded

fetal beats, the location of remaining heartbeats can be

predicted. Between the two far beats that the later beat

comes 0.6 s or more after the former one, there is at least

one or more missed beats. The number of missed beats is

calculated by dividing the intervals of the two far beats by

the FRR interval average of the existing recorded fetal

beats. The predicted fetal heart beat locations are named as

FR-loc2. For finalizing the fetal heartbeat locations, the

fetal R-peaks locations, resulted from ‘‘Combination of

initial detected fetal R-peaks of each channels based on

priority given by their score’’ and ‘‘Prediction of the

location of missed fetal R-peaks’’, are combined and sorted

and finally the total fetal R-peak locations array (named

Fetal-R) is produced.

Applying to the datasets

In this section, the proposed approach is applied to the

mentioned datasets in ‘‘Databases’’ section. In this study

the thoracic signals are not used, and only the abdominal

signals are utilized. For consistency, only four abdominal

channels of the records are employed. In recordings con-

taining three abdominal channels, the results are obtained

using three available channels. Furthermore, records’

sampling frequency is changed to 1000 Hz by decimation

or interpolation if the sampling rate is not 1 kHz. The

procedure of measuring the performance of the methods

was mentioned in ‘‘Evaluation protocol’’ section
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Results

In this section the proposed method was applied to the

described datasets. The results for fetal R-peak detection

were evaluated by an expert cardiologist, who calculated

three quantitative results: FP, FN, and TP. Indices of test

performance can be derived from these parameters such as

sensitivity, positive diagnostic value, and accuracy which

were described in previous sections. Table 2 illustrates the

exhausted average results of evaluation of the algorithm,

which was applied to the mentioned datasets, and Table 3

compares the current study with previous ones.

The processed recordings of the PhysioNet Noninvasive

FECG contain 3986 fR-peaks from which 38 were not

detected (0.95 %). The number of detected fetal R-peaks

was 3982 beats from which 34 were false detections

(0.85 %) and 3948 (99.15 %) were detected correctly. The

DaISy database contains five abdominal channels in which

there are 22 fetal beats in 10 s. The presented technique

detected 21 fetal beats correctly and one fetal beat was

detected 0.02 s later than the allowable matching window.

Therefore, the accuracy reduced to 91.3. In these short

signals, only one beat that is not detected correctly, will

significantly reduce the accuracy. The 69 processed

recordings of the PhysioNet/CinC Challenge 2013 contain

9791 fR-peaks from which 796 fR-peaks were not detected

(8.13 %). The number of detected fetal R-peaks was

10,023 beats from which 976 were false detections

(9.74 %) and 9047(90.26 %) were detected correctly.

Discussion

The training set of the PhysioNet/Computing in Cardiology

Challenge 2013 [33] database (set A) contains various

fECG signals with different qualities. In some signals, the

fetal beats cannot be observed, and in some other cases, the

fetal heartbeats can only be observed after denoising. In

some signals, the big parts of all the available channels are

noisy in which fetal R-peaks are detected by prediction

(‘‘Prediction of the location of missed fetal R-peaks’’ sec-

tion) based on other detected beats’ FRR interval. Never-

theless, some other signals were excellent in which Se and

PDV are 100 %. Thereby, this database is a good one to be

used by researchers who work on fetal ECG analysis to

evaluate different algorithms which do not need thoracic

signals and check the algorithms robustness. As this dataset

contains different signals with a broad range of quality, the

Prediction

First ranked channel

Missed Beats

Combination

Noise existence
Lack of FRR interval

Overlapping onto 
maternal QRS 

complexes

Second ranked channel

Third ranked channel

Fourth ranked channel

Are any missed beats left?

Put detected beats in 
FR-loc-1-combine

Are any channels left?

Yes

No

Yes

No

Fig. 5 Schematic block of the

combination stage of a

recording with four AECG

channel

Table 2 Results obtained from testing the algorithm on different datasets

Database Description FP FN TP Se (%) PDV (%) Acc (%) SDa of ACC

PhysioNet Noninvasive FECG 26 Records—duration: 1 min 34 38 3948 99.05 99.15 98.21 1.197

DaISy 1 Record—duration: 10 s 1 1 21 95.45 95.45 91.3 0

PhysioNet/CinC Challenge 2013(set A) 69 Records—duration: 1 min 976 796 9047 91.91 90.26 83.62 12.72

a Standard deviation
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accuracy reduces to 83.62 % with Se 91.91 % and PDV

90.26 %. If the signals do not have noises which are pre-

sent on all the channels and the fetal beats can be observed

after denoising, the current method will have high perfor-

mance; such as the accuracy for the PhysioNet Noninva-

sive fECG Database which is 98.21 %. According to the

Table 3, the wavelet based techniques have good perfor-

mance. As there is no benchmark database for noninvasive

fetal ECG analysis [48], a direct comparison between

proposed methods in Table 3 is not feasible.

The final fetal R-peaks are comprised of three parts. The

first part is related to the fetal R-peaks which are obtained by

the first scan in the reference channel by detecting the high

energyzonesof signal-D1 (‘‘Finding high-energy zones out of

MQRS-range from signal-D1’’ section) and refining them

(‘‘Removing non-fetal complexes and artifacts’’ section). The

second part is related to the fetal R-peaks which are obtained

by combining the channels via the priority given by their

scores (‘‘Combination of initial detected fetal R-peaks of each

channels based on priority given by their score’’ section), and

the third part is related to the fetal R-peaks that their locations

are predicted (‘‘Prediction of the location of missed fetal

R-peaks’’ section). Table 4 shows the number of fetal

R-peaks in each part and the detection accuracy of each part

when 69 1-min recordings of PhysioNet/CinC Challenge

2013, set A were used. According to Table 4, 65.4 % of fetal

R-peaks are detected by the first scan in reference channel

with accuracy of 92.95, 6.4 %of fetal R-peaks are detected by

combinational use of available channels with accuracy of

83.18 and 28.20 %of fetal R-peaks are detected by predicting

the missed fetal heartbeats with accuracy of 85.64 %.

In this study three or four abdominal channels were used

regardless of the number of abdominal leads. It should be

noted that some recordings of PhysioNet Noninvasive fECG

Database have three abdominal channels. If there are more

or fewer than four channels, then all the available leads are

ranked and used. This is an important feature over the blind

source separation techniques which require large number of

channels (usually between 8 and 16) [14, 49]. Furthermore,

it is a valuable advantage due to the fact that placement of

high number of electrodes on the mother’s body is possible

only under clinical settings; while under nonclinical and

mobile settings it is difficult or even impractical. Scoring

and ranking the channels are major advantages of this study

which can be used in other studies in which the best channel

should be selected for fECG extraction and analysis. Scor-

ing and ranking of long duration recordings (more than

1 min duration) requires more processing time, while it is

suggested that a random 1 min of the signal be extracted and

used for scoring and finding the best channel which carries

stronger fECG signal.

To remove non-fetal complexes and high-energy dis-

turbances (‘‘Removing non-fetal complexes and artifacts’’

section) two assumptions were adopted and implemented

for the first time. As the fECG and mECG are examined

together, utilization of these assumptions is inevitable. It

should be mentioned that these assumptions were devel-

oped by analyzing 17,494 fetal heartbeats. The number of

candidate fetal R-peaks which were obtained by the first

scan in the reference channel by detecting the high energy

zones of signal-D1 (‘‘Finding high-energy zones out of

MQRS-range from signal-D1’’ section) using 69 1-min

recordings of PhysioNet Challenge 2013, Set A was 8681

from which 1859 were false detections (FP) with detection

accuracy of 79.05 %. After refining the candidate fetal

R-peaks for finalization, using the mentioned assumptions

Table 3 Comparison with

existing works for FHR analyze
Author Method Database Acc (%)

Mooney et al. [40] Adaptive algorithm _ 85

Azad [41] Fuzzy approach 5 Records-3a 89b

Pieri et al. [42] Matched filter 400 Records-3 65

Ibrahimy et al. [43] Statistical analysis 5 Records-1 89

Karvounis et al. [44] Complex wavelet 15 Records-3 98.94

Martens et al. [45] PCA & matched filtering 20 Records-13 85

Karvounis et al. [46] Phase-space 13 Records-3 95.45

Hasan et al. [47] Neural network 10 Records 93.75b

Behar et al. [14] Echo state neural network (ESN) 11 Records-28 90.2c

This work Time–frequency analysis 26 Records-3 or 4 98.21

1 Record-5 91.3

69 Records-4 83.62

a Number of abdominal channels

b Defined as performance =
TP�ðFPþFNÞ

TP
100%

c Defined as F1 ¼ 2TP
2TPþFNþFP

100%
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(‘‘Removing non-fetal complexes and artifacts’’ section)

the number of detections reduced to 6554 from which 519

were FP with detection accuracy of 92.95 %. This differ-

ence in false detections and accuracy illustrates how these

two assumptions have improved the performance of the

proposed method. It should be mentioned in the case of

congenital cardiac defects or even in healthy ones, the fetal

heart rate may contain irregularities such as extra systolic

heartbeats, so some heartbeats may not observe one of

these assumptions.

The noise handling procedure of the proposed method

has a major positive effect on the total performance of the

method. Some noises such as power line interference,

baseline oscillations and electromyographic contamination

are handled by the method and not by the recording devi-

ces. The P-wave and the T-wave of the mECG have been

filtered out because of elimination of the levels 9, 8, and 7

of the details parts of the discrete wavelet transform in the

preprocessing stage (Fig. 4). This higher cut-off improved

the performance of the method.

Conclusion

This study presents a method to detect fetal QRS com-

plexes from non-invasive fetal electrocardiogram (fECG)

signals. Employing both time and frequency domain

techniques caused more accurate detection of fetal heart-

beats. The proposed method is a good candidate for real

time implementation and production of low-cost,

portable devices since in this method fECG is not separated

from mixture signal and there is no need to thoracic leads,

thus, the required computational operations have been

significantly reduced. Furthermore, the method is robust to

the number of available channels which means fetal QRS

complexes can be detected in AECG recorded by fewer

electrodes. This study has some other main features which

are briefly listed. Intelligent scoring of the channels for

finding the best channel which is related to the signal

quality based on noise distribution and fetal R-peak visi-

bility, simultaneous combination of channels with the pri-

ority of their scores, and being robust to geometric

structural differences of fECG are the advantages which

lead to better performance of the method. On the other

hand, there are some negative aspects which should be

considered. The fetal beats which overlap with the

maternal QRS complex cannot be observed and checked,

so their locations should be predicted. Furthermore, ana-

lyzing fECG waveform information is limited to only fetal

QRS complexes which are not overlapped with maternal

QRS complexes. In addition, detection of the fetal P-waves

or T-waves is impossible as they are eliminated in pre-

processing stage, and if they were not omitted by the

preprocessing stage, in some fetal heartbeats the detection

of fetal P-waves and T-waves would be hard because of

existence of maternal P and T-waves; while FHR is cal-

culated in a fast, but accurate procedure. Finally, not sep-

arating the mECG and fECG has reduced the required

processing and time for FHR extraction.
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