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Abstract Cerebral glioma is one of the most aggressive

space-occupying diseases, which will exhibit midline shift

(MLS) due to mass effect. MLS has been used as an

important feature for evaluating the pathological severity

and patients’ survival possibility. Automatic quantification

of MLS is challenging due to deformation, complex shape

and complex grayscale distribution. An automatic method

is proposed and validated to estimate MLS in patients with

gliomas diagnosed using magnetic resonance imaging

(MRI). The deformed midline is approximated by com-

bining mechanical model and local symmetry. An

enhanced Voigt model which takes into account the size

and spatial information of lesion is devised to predict the

deformed midline. A composite local symmetry combining

local intensity symmetry and local intensity gradient

symmetry is proposed to refine the predicted midline

within a local window whose size is determined according

to the pinhole camera model. To enhance the MLS accu-

racy, the axial slice with maximum MSL from each volu-

metric data has been interpolated from a spatial resolution

of 1 mm to 0.33 mm. The proposed method has been

validated on 30 publicly available clinical head MRI scans

presenting with MLS. It delineates the deformed midline

with maximum MLS and yields a mean difference of

0.61 ± 0.27 mm, and average maximum difference of

1.89 ± 1.18 mm from the ground truth. Experiments show

that the proposed method will yield better accuracy with

the geometric center of pathology being the geometric

center of tumor and the pathological region being the

whole lesion. It has also been shown that the proposed

composite local symmetry achieves significantly higher

accuracy than the traditional local intensity symmetry and

the local intensity gradient symmetry. To the best of our

knowledge, for delineation of deformed midline, this is the

first report on both quantification of gliomas and from

MRI, which hopefully will provide valuable information

for diagnosis and therapy. The study suggests that the size

of the whole lesion and the location of tumor (instead of

edema or the sum of edema and tumor) are more appro-

priate to determine the extent of deformation. Composite

local symmetry is recommended to represent the local

symmetry around the deformed midline. The proposed

method could be potentially used to quantify the severity of

patients with cerebral gliomas and other brain pathology, as

well as to approximate midsagittal surface for brain

quantification.

Keywords Deformed midline � Cerebral glioma �
Mechanical model � Local symmetry � Magnetic resonance

imaging

Introduction

Midline shift (MLS, which is the deformation of midline) is

the most important quantitative feature for clinicians to

evaluate the severity of brain compression caused by

space-occupying lesions such as hemorrhage and tumor,

for diagnosis and prognosis [1]. Cerebral glioma is one of

the most aggressive space-occupying diseases with inci-

dence around five to ten per 100,000 general population

[2]. Magnetic resonance imaging (MRI) is commonly used
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for early diagnosis of gliomas [3]. Researches manifest that

the presence of MLS is an important prognostic factor

influencing survival [4]. While considerable attentions

have been paid on MLS quantification of hemorrhage

patients, there is no existing literature on quantification of

cerebral gliomas. Tumor and edema are two major patho-

logical factors influencing MLS for patients with cerebral

gliomas [5]. Quantification of MLS for hemorrhage

patients is based on computed tomography images and thus

could not be directly applicable to patients with gliomas.

Hence, an efficient method to compute MLS for patients

with gliomas from MRI is desirable.

So far, researches on quantification of MLS are concen-

trated on traumatic brain injury [1, 6–11]. These methods

could be classified as: symmetry-based [1], regression model

based [6], and anatomical markers based [7–11]. Liao et al.

[1] employed a quadratic Bezier curve to approximate the

deformed midline (dML) with three segments: the upper and

lower line segments of the falces, and the middle curved

segment formed by the intervening brain using the traditional

local intensity symmetry. Liu et al. [6] measured MLS based

on a linear regression model for the relationship between the

hemorrhage and the MLS and adjusted according to local

intensity symmetry. Anatomical markers based methods

assume the existence of feature points on the dML: falx,

septum pellucidum (SP), and the center of third ventricle.

Xiao et al. [7, 8] approximated MLS from SP by combining

multiresolution binary level set segmentation [9] and Hough

transform. Chen et al. [10] applied a set of ventricle tem-

plates based on which the MLS was estimated to match

feature points. Liu et al. [11] estimated the dML as the 3 line

segments connecting 4 anatomical markers (the frontal falx,

center of the frontal horn of lateral ventricle, center of the

third ventricle, and lateral falx).

As noted in [7], symmetry-based methods might fail for

cases with symmetry destroyed by pronounced brain

compression. The regression model cannot be well suited

to individual data due to the complexity of deformation and

the nature of regression. Anatomical markers based meth-

ods [7–11] will fail when the markers are absent (such as

the SP in [7]) or the model to determine the markers is not

always valid (such as the model for falces in [11] and SP in

[7]).

The maximum MLS is known as most relevant mea-

surement for quantifying pathology severity. In fact, the

maximum MLS might not always occur at the axial slice

containing SP and third ventricle as did in [1, 6–11]. Thus,

to identify the axial slice with maximum MLS is desirable.

Viscoelasticity is a significant measure of the

microstructural constitution of soft biological tissue. In

viscoelastic theory, the stress–strain relationship is usually

modeled by a combination of elastic and viscous elements

for characterizing the specific rheological behavior (i.e.

viscoelastic deformation) of the material [12]. Numerical

studies show that the brain tissue deformation should be

approximated by non-linear-viscoelastic model [13–15]

rather than simple linear or quadratic curve model [1, 6].

Voigt model is frequently used in the literature [16], which

is mainly applied in image registration for surgery plan and

intraoperative navigation [17].

In this paper, we investigate approximation of MLS on

axial slices by combining mechanics model and features of

image symmetry. More specifically, an enhanced Voigt

model is proposed to simulate the midline deformation

after cerebral gliomas to predict the dML. A new way to

define local symmetry based on intensities and intensity

gradients is explored for the mechanical model to be tai-

lored to the image features to refine the dML. The issues of

finding the appropriate axial slice and robust determination

of falces are also addressed. The preliminary results of this

study have been presented as an oral lecture at the 29th

International Congress and Exhibition on Computer

Assisted Radiology and Surgery (2015) in Barcelona,

Spain.

Materials and methods

Materials

Thirty subjects from the Virtual Skeleton Database (https://

www.virtualskeleton.ch/BRATS/Start2013) are used for

this study. All subjects are provided from the Multimodal

Brain Tumor Segmentation challenge organized by the

MICCAI 2013 conference. The data contain multi-contrast

MRI scans of 10 low- and 20 high-grade glioma patients

that have been manually annotated with four lesions labels

(necrosis, edema, non-enhanced tumor, and enhanced

tumor). The ground truths of the tumor and the edema

regions were manually delineated by clinical experts of

MICCAI conference and could be accessible from the

website (http://martinos.org/qtim/miccai2013/index.html).

For each subject, the data include T1, T2, FLAIR, and post-

Gadolinium T1 magnetic resonance volumes. All volumes

have been skull stripped, linearly co-registered to T1

contrast volume, and interpolated to 1 mm isotropic reso-

lution. In this study, only the T2 volume of each subject is

used for delineating dML. The ground truths of the MLS

were determined by a clinical expert from Linyi People’s

Hospital on both the original and interpolated axial slices

(with spatial resolution of 1 and 0.33 mm respectively).

Methods

The proposed method consists of three components: pre-

processing, prediction and refinement of dML. The
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preprocessing component is to determine the midsagittal

plane (MSP), find the representative axial slice to quantify

the MLS, rotate the axial slice and interpolate the repre-

sentative axial slice. The prediction component is to

determine the initial dML using enhanced Voigt model

iteratively. The refinement component is to construct the

local symmetry metric, refine and smooth the predicted

dML. These components are detailed below.

Preprocessing

The axial slice with maximum MLS is manually picked for

each data. Its automation is elaborated in Discussion

section.

The MSP is extracted based on local symmetry and

outlier removal [18] (Fig. 1b, yellow line).The ideal mid-

line (iML) of an axial slice is obtained by connecting two

intersections between the MSP and the brain boundary.

Each scan is rotated to make iML vertical for facilitating

subsequent processing (Fig. 1c, blue line).

The frontal and lateral falces are the starting and

ending points of both iML and dML segments which will

not deform due to pathology. It is thus desirable to

determine the two falces based on a methodology that can

get rid of the influence of pathology. Since the MSP is

determined as if there were no pathology due to outlier

removal [18], the intersection points between the MSP

and the brain boundaries of the axial slice are taken as the

two falces (Fig. 1c, the end points of the green line

segment).

As the spatial resolution of the axial slice is 1 mm,

which is much lower than the spatial resolution of com-

puted tomography axial slice (around 0.30 mm per voxel)

for determining MLS, the rotated axial slice is then inter-

polated 3 9 3 using a bicubic interpolation scheme to have

a new spatial resolution of 0.33 mm per voxel in both X

and Y directions. The subsequent processing is based on

the rotated and interpolated axial slice. The dependency of

MLS accuracy on the interpolated spatial resolution is

elaborated in the Discussion section.

Prediction of the deformed midline

In this section, the original Voigt model is first introduced,

followed by construction of an enhanced model according

to the analysis of the viscoelastic properties of brain

tissues.

(1) The original Voigt model The viscoelasticity of brain

tissues can be described intuitively as consisting of

an ideal spring (to simulate the ordinary spring

deformation whose mechanical properties follow the

Hooke’s law) and dashpot (to simulate the viscous

deformation which obeys the laws of Newtonian

fluid) [19]. The Voigt model is employed to describe

the viscoelastic properties of brain tissue due to its

good fitting of the property of the deformation of

brain tissues corresponding to the creep curve of the

Voigt model [20].The relationship between the strain

e and stress r(Pa) could be described by the fol-

lowing equation:

r ¼ Keþ l
de
dt

ð1Þ

where K (Pa) is the elastic coefficient of the ideal

spring, and l(Pa.sec) is the viscosity coefficient of

the ideal dashpot. The solution is

e tð Þ ¼ r
K

1 � e�t=s
� �

ð2Þ

where s ¼ l
K

is the relaxation time (sec).

(2) Construction of the enhanced Voigt model The dML

can be influenced by at least the following 4 factors:

the size of the lesions (larger size will yield greater

amount of MLS), the distance between the lesion and

the iML (longer distance will yield smaller amount

of MLS), the elastic property of midline points

(those further apart from the skull are easier to

deform), and the rigidity of the skull (points with

smaller distance to the skull will deform less).

To account for these factors, the stress in Eq. (2) is

adjusted to construct an enhanced Voigt model. In

particular, the gravity G P;Qð Þ (N) between voxel

Fig. 1 An axial slice (a), the

brain and the delineated lesions

(region enclosed within the red

contour) (b), and the rotated

brain with the ideal midline

(green line segment) being

vertical (c)
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Q on the iML and the lesion is used to indirectly

represent the pressure of the lesion

G P;Qð Þ ¼ gMPMQ

r2
ð3Þ

where P is the geometric center of the lesion, MP and

MQ(kg) are respectively the mass of the lesion and

Q, r(m) is the Euclidean distance between P and Q,

and g(Nm2/(kg)2) is the gravitation constant (Fig. 2).

In addition, a positional harmonic item F rð Þ(1/m2) is

introduced to account for the positional constraint

with variable rigidity,

F rð Þ ¼ A 1 � 1
ffiffiffiffiffiffi
2p

p
d

exp � r � r0ð Þ2

2d2

 ! !

ð4Þ

where r0(m) is the distance from P to the iML, d is

the standard deviation of the distances between

P and all voxels on the iML, and A is the modulation

factor in the range [5 9 10-5, 4.5 9 10-3]. The

stress after adjustment is

r ¼ F rð Þ � G P;Qð Þ ð5Þ

The eventual constitutive equation of the enhanced

Voigt model is thus,

e r; tð Þ ¼ F rð ÞgMpMQ

Kr2
1 � e

�t=s
� �

ð6Þ

(3) Parameters assignment The geometric center P and

voxel Q in Eq. (6) correspond to two particles with

masses:MP = the number of the voxels of the lesion

and MQ ¼ 1 (kg). The geometric center P is derived

from tumor voxels (see Discussion for justification).

The elastic coefficient and the viscosity coefficient

of brain tissue are set from literature [21] as follows:

K ¼ 6:67 � 10�4(Pa), and l ¼ 0:0075(Pa.sec). The

gravity constant g is 1 (Nm2/(kg)2).

As shown in Eq. (6), the strain changes with time,

while the dML to be extracted is a static state at a

certain time instant. Thus, we assume that the dML

has reached the stable state when the MRI scans are

obtained. Experiments with varying t in [1, 1500]

(sec) are carried out to find that a value of not

smaller than 1000 (sec) is appropriate. The curve of

error evolution corresponding to parameter t is

shown in Fig. 3.

(4) Prediction The initial strains of all voxels on the

iML are approximated in this step. According to the

strong rigidity of the cerebral dura matter, we

consider the segments of the first one-twelfth from

the top and the last one-fourth of the iML as the falx

segment, and the positional harmonic item F rð Þ is

set as the minimum of F rð Þ, i.e., A 1 � 1ffiffiffiffi
2p

p
d

� �
. For

the remaining voxels on the iML, F rð Þ is computed

according to Eq. (4). An example of the predicted

dML is shown in Fig. 4a (purple curve).

Composite local symmetry

As pointed out by Davidson and Hugdahl [22], the brain

exhibits rough local symmetry around the midline.

Resorting to local symmetry to refine the predicted dML

seems reasonable. Unlike most existing methods which

only employ the intensity information to describe the local

Fig. 2 The sketch map of the midline shift of the enhanced Voigt

model and determination of local neighborhood for dML refinement Fig. 3 The curve of error evolution with respect to parameter t
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symmetry, both intensities and intensity gradients are

exploited to form the composite local symmetry that

intends to enhance the local symmetry contrast of voxels

both in the uniform and non-uniform region around dML.

(1) Local intensity symmetry Denote the intensity of a

voxel at (x,y) as f(x, y), and the coordinates of a voxel

P as (xp,yp). The traditional expression of local

intensity symmetry is the sum of absolute intensity

differences for pairs of voxels along the line segment

perpendicular to dML. Since the iML has been rotated

to be vertical, the initial local intensity symmetry can

be approximated along the horizontal direction. All

voxel within its neighborhood Np (7 9 7) will be

involved to calculate the initial local intensity sym-

metry of a voxel P. Suppose voxel q is within Np and

its mirror voxel with respect to p is q’. The initial local

intensity symmetry SD is calculate as

SDðpÞ ¼
X

q2Np

�����
f xq;yp

� �
� f xq0 ; yp

� �
�����
e�

ðq�pÞ2
2 ð7Þ

One potential problem of SD in Eq. (7) is that voxels

in a region with uniform intensities could also be

small, which makes it difficult to differentiate from

its neighboring voxels. A Gaussian filtering in ver-

tical direction is employed to enhance the intensity

symmetry contrast. The modified SD map could then

be detected through edge detection such as a

Laplacian-of-Gaussian (LOG) filter [23]. The local

intensity symmetry can then be defined as

SS ¼ SD � Gaussð Þ � LOG ð8Þ

where � is for convolution, and Guass is for Gaus-

sian filter (mean being 0, and standard deviation

being 0.5).

As shown in Fig. 5, SS of the voxels on the sym-

metry curve in regions with uniform intensities tends

to be maximal due to the introduction of Gaussian

filtering and LOG (the red curve), which will not be

discernable from neighborhood voxels if LOG is not

employed (the blue curve).

(2) Local intensity gradient symmetry As is pointed out

[24], the gradient information is more discriminative

than intensity, and more stable to photometric

changes [24]. Inspired by SIFT [25], HOG [26],

and the method proposed by Hauagge and Noah

[27], a histogram of local intensity gradient orien-

tations h(q) at each voxel q is constructed from the

intensity gradient magnitude M(x, y) and orientation

h(x, y) (in the range of 0 to p) with a gradient

operator such as Sobel operator.

The orientation of voxels (Dir) within Nq (7 9 7) are

grouped into an orientation histogram with 8 bins,

i.e., [0, p/8)(Dir0), [p/8, p/4)(Dir1), …, and [7p/8,

p](Dir7), weighted by the gradient magnitude of

voxels within Nq. The gradient orientation histogram

hq

^
Dirj

� �
is thus calculated as follow:

hq

^
Dirj

� �
¼

X

hi 2 Dirj

i 2 Nq

MiðhiÞ ð9Þ

where j ¼ 0; 1; 2; . . .; 7, hi and Mi are the gradient

orientation and the gradient magnitude of voxel i.

The histogram hq

^
is normalized to form the final

gradient orientation histogram:

hq Dirj

� �
¼

hq

^
Dirj

� �

P7

j¼0

hq

^
Dirj

� �
þ n

ð10Þ

where n is a constant (0.05) used to enhance the

robustness to noise.

If voxels q and q0 are symmetrical to dML in terms

of both position and local intensity distribution,

histogram hq should be similar to the reflected

Fig. 4 The predicted dML (a), points with maximum composite local

symmetry within the neighborhood of predicted dML (b), the

eventual dML after curve smoothing (c), and magnified points with

maximum local symmetry of (b) (green points) and the corresponding

curve after smoothing within the green window of (c) (red curve) (d)
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histogramof q0 which is denoted as h0 q0ð Þ. A possible

way to quantify the similarity of intensity gradients

of two voxels q and q0 is to define the metric as dot

product of the two vectors hq and h0 q0ð Þ. The inten-

sity gradient symmetry SG pð Þ is calculated as:

SG pð Þ ¼
X

q2Np

h qð Þ � h0 q0ð Þe�
ðq�pÞ2

2 ð11Þ

where � is dot production of vectors.It can be shown

clearly that SG will be maximized when q and q0 are

a pair of symmetric intensity gradient voxels

(Fig. 6).

(3) The composite local symmetry The composite local

symmetry metric Sym is defined as:

Sym ¼ SS
0 � 1 � gradð Þ þ grad � SG

0 ð12Þ

where grad is the normalized gradient magnitude

M x; yð Þ, SS
0

and SG
0

are respectively the normalized

SS and SG with range [0, 1]. It can be shown that the

greater the Sym of a voxel p, the bigger the

probability of the voxel to be on the dML: the local

intensity symmetry will be dominant (Sym � SS
0
)

when the voxels belong to uniform regions with

weak edge information (i.e., 1 � gradð Þ[ [ grad);

the local gradient symmetry will be dominant

(Sym � SG
0
) when the voxels belong to non-uniform

regions with strong edge information (i.e.,

grad [ [ 1 � gradð Þ). Figure 7a, b, c show

respectively SS, SG and the Sym of Fig. 1a.

With different modulation factor A, the sum of

composite local symmetry on the dML can be cal-

culated. The eventual dML will be the one with

maximum sum of composite local symmetry to be

refined.

Refinement based on local symmetry

The deformation of midline is caused by multi-factors

besides lesions such as imaging time and inhomogeneity of

Fig. 5 Illustration of the

difference between local

symmetry of the voxels in the

region (green line) with uniform

intensities for SD (blue curve in

(d)) and SS (red curve in (d)),

where the location of the arrow

is the symmetry center.

Figure 5b, c are respectively the

SD and SS images of Fig. 5a
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the viscoelasticity of different brain tissues. Thus, it is

necessary to adjust the predicted dML according to image

features. The refinement is to include: determination of

local neighborhood and refinement of dML within the local

neighborhood according to the composite local symmetry.

(1) Determination of local neighborhood The local

neighborhood of the predicted dML is a rectangle

inspired by the pinhole camera model determined in

the following way. For any voxel Q on the iML, we

connect points P and Q, and extend the line segment

PQ to get two intersection points (B1 and B2) on the

lesions boundary (Fig. 2). The mirror points C2 and

C1 of the points B1 and B2, respectively, are obtained

by using the predicted strain e computed from

Eq. (6) as the focal length and the point Q as the

pinhole.

(2) Refinement according to local symmetry and curve

smoothing For each voxel P on the predicted dML,

the voxel with maximum composite local symmetry

Sym within the local rectangular neighborhood of

P is searched to replace the predicted voxel

P (Fig. 4b). Denote the coordinates of these voxels

as pi xi; yið Þ and the voxels p
0

i after smoothing as

x
0
i; y

0
i

� �
(i ¼ 1; 2; . . .;N), where N is the number of

voxels of the predicted dML. We fix the first and last

points on both the predicted and eventual dMLs to be

the intersection points between the MSP and the

brain boundaries of the axial slice. The following

rules are employed to find voxels xi; yið Þ with

maximum local symmetry to replace the predicted

dML:

(a) If there is only one voxel pi with the maximum local

symmetry, pi is chosen to replace the voxel P;

(b) If there is more than one voxel with the same

maximum local symmetry, the point closest to the

last optimal point pi�1 is chosen to replace the voxel p.

A simple average of pi-2, pi-1, pi, pi?1, and pi?2 is

implemented to smooth the coordinates to derive p
0
i with

coordinates x
0

i; y
0

i

� �
(Fig. 4d). Finally, the approximated

dML is obtained by connecting voxels p
0
i and p

0
iþ1

(i ¼ 1; 2; . . .;N � 1) (Fig. 4c).

Fig. 6 Two gradient orientation histograms of a voxel-pair being symmetric in terms of both position and local gradient distribution with respect

to dML

Fig. 7 Images of the local

symmetry (a) SS, (b) SG, and

(c) Sym of Fig. 1a
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The complete procedure to approximate dML is sum-

marized in Table 1.

Results

The dML error of a voxel on the approximated dML is

defined as the minimum distance between this voxel and all

the voxels on the ground truth dML. To evaluate the per-

formance of the proposed method, the following measures

are employed: the mean and standard deviation of the dML

errors (denoted respectively as meanE and sdE), and the

ratio of the area of the left hemisphere to that of the right

hemisphere separated by the dML [11].

For quantifications, the position of P is the geometric

center of the tumor, while the mass of P is the sum of

voxels of tumor and edema on the axial slice with maxi-

mum MLS.

In this section, we show the quantification results of the

proposed method, some relevant additional experimental

results, and the contributing factors of tumor and edema to

dML.

Performance evaluation

The dMLs of ground truth, the proposed method for two

typical scans with different extents of edema are shown in

Fig. 8.

Comparisons between the approximated and ground

truth dMLs are measured as well for quantification.

Specifically, the maximum value of the dML errors of the

voxels on the approximated dML is adopted to quantify the

error of the maximum distance of the proposed method,

which is called the maximum distance error of the

approximated dML. Similarly, the error of area ratio of the

approximated dML is the absolute difference between the

ratios calculated by approximated and ground truth dML.

The scatter plot of MLS (approximated and ground truth)

and the error distribution are shown respectively in Figs. 9

and 10. The distributions of the maximum distance errors,

area ratio errors, Mean_sim, and sd_sim of the 30 data are

summarized in Table 2.

Performance comparison using different local

symmetry metrics

To see the accuracy dependency on four ways of local

symmetry: SD, SS, SG, and Sym, experiments are carried

out for all the 30 subjects. The approximated dMLs using

SD, SS, SG, and Sym are shown in Fig. 11 for a scan with

large MLS, while the statistics of the accuracy are sum-

marized in Table 3.

Paired t-tests have been carried out to see if the pro-

posed method with four local symmetries will have sig-

nificantly different accuracies. The maximum distance

error, area ratio error, meanE and sdE with Sym are sig-

nificantly smaller than those of SD, all with p B 0.002.

Compared with SS and SG, the proposed method with Sym

has significantly smaller meanE (p = 0.003 and p\ 0.001)

and sdE (both p = 0.001).

Discussion

A midline, which is the border between the left and right

hemispheres, is a feature requiring a large number of

voxels to compute regardless of being deformed or not. For

the cases without deformation, midlines could be approx-

imated as a plane and attained through exploring local

symmetry and outlier removal [18]. However, it becomes

challenging to calculate in case of deformation due to the

following reasons:

(a) The shape of a midline is hard to predict;

(b) The grayscales on a midline can change substantially

as it may contain cerebrospinal fluid, gray matter,

white matter, and voxels with pathology such as

tumor and edema, and

(c) The symmetry might be destroyed due to the

deformation of the lesion.

Table 1 The procedure to approximate dML

Step 1 Compute the composite local symmetry metric

Step 2 Assign the initial modulation factor A in Eq. (4) in range ½5 � 10�5; 4:5 � 10�3� and the iteration step with 1 � 10�5

Step 3 Predict the dML using Eq. (6)

Step 4 Calculate the sum of the local symmetry of the voxels on the predicted dML

Step 5 Record the predicted dML with maximum sum value from step 4 and return to step 3 until all A has been checked

Step 6 Refine the predicted dML according to local symmetry and smooth the curve
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The axial slice with maximum MLS is most relevant for

clinical implications and is picked manually for quantifi-

cation, which is a tedious procedure to be automated. We

checked closely these 30 data sets and summarized the

following rule that was applicable to these 30 data sets. The

rule may need more investigation to be generalized. Here

the pathology-brain ratio of an axial slice is defined as the

ratio of the number of pathology voxels to the number of

brain voxels within the axial slice, and pathology could be

either tumor or edema. For each of the 30 data sets, the

axial slice with the maximum tumor-brain ratio could be

found, and the axial slice with the maximum edema-brain

ratio could also be found; these two maximum pathology-

brain ratios are compared to pick the axial slice with the

bigger pathology-brain ratio as the representative axial

slice.

Extraction of feature points that are supposed to be on

the midline such as falces and SP sounds good, but these

points are too sparse for an accurate determination of the

midline, let alone the difficulty and possible errors to

determine these feature points. In this regard, the proposed

method has an inherent advantage as it is based on calcu-

lating the deformation of all the points on the iML and does

not assume the existence of any anatomical markers.

From Fig. 11 and Table 3, it can be seen that: (a) SS

performs better than the traditional local intensity sym-

metry SD as adopted by Liao et al. [1], (b) SG performs

better than SS, and (c) Sym performs substantially better

Fig. 8 The ground truth of

dML(blue curve) (a), the lesions

segmented manually with four

labels for different pathologies

(from dark to bright): necrosis,

edema, non-enhanced tumor and

enhanced tumor (b), and the

estimated dML by the proposed

method of two typical data

Fig. 9 The scatter plot of MLS: approximated and ground truth
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than SS and SG, which may mean that SG and SS provide

complementary information to locate dML.

An additional experiment has been carried out to see the

relationship between the MSL accuracy and the interpo-

lated spatial resolution. Seven interpolated spatial resolu-

tions of a patient are used to compare the accuracy and

time consumption. As the result shown (Fig. 12; Table 4),

decreasing the voxel size from 1 to 0.2 mm via bicubic

interpolation can decrease the maximum distance error (E1)

from 2.94 mm to at most 1.45 mm, but E1 will not change

much from spatial resolution of 0.4 mm (spatial amplifi-

cation of 2.5 9 2.5) while the time consumed can increase

substantially. The error will not take the minimum value at

the highest spatial resolution. It seems that a spatial

amplification of 3 9 3 could attain a good trade-off

between accuracy and time consumption (with

E1 = 1.45 mm and time = 15.42 s).

A comparative experiment has been carried out to

compare the performance of simple curve smoothing and

B-spline curve fitting. Simple curve smoothing was pre-

ferred as it yielded a smaller average E1 (1.89 mm) than

the curve fitting (E1 = 1.91).

Tumor and cerebral edema are the major contributing

factors to MLS through mass effect. In our model, these

two factors will impact the dML through the geometrical

center P and the pathological region (Fig. 2). To see the

influence of P, we carry out experiments with the

Fig. 10 The error distribution

of 30 subjects

Table 2 Statistics of the errors between the approximated and

ground truth dMLs

Mean SD

E1 (mm) 1.89 1.18

E2 0.03 0.02

E3 (mm) 0.61 0.27

E4 (mm) 0.46 0.20

E1 for maximum distance error, E2 for area ratio error, E3 for meanE,

E4 for sdE, SD for standard deviation

636 Australas Phys Eng Sci Med (2015) 38:627–641

123



pathological region fixed (to be the whole lesion) while

changing the P to be the geometrical center of tumor,

edema, and the whole lesion respectively (Fig. 13).

Experiments are also carried out to see the influence of

pathological region by fixing P (to be the geometric center

of tumor) while varying the pathological region to be

respectively the tumor, edema, and the whole lesion

(Fig. 14). Quantification of these experiments is summa-

rized in Tables 5 and 6.

Fig. 11 dML of ground truth

(blue curve) (a), dML of the

proposed method with

composite local symmetry Sym

(red curve) (b), SD (green

curve) (c), SS (yellow curve)

(d), and SG (purple curve) (e) of

a subject

Table 3 Accuracy dependency of the approximated dMLs on four

ways to defined the local symmetry for all the 30 subjects

SD SS SG Sym

Mean SD Mean SD Mean SD Mean SD

E1 (mm) 2.82 1.66 2.52 1.55 2.44 1.51 1.89 1.18

E2 0.06 0.04 0.04 0.03 0.04 0.03 0.03 0.02

E3 (mm) 1.14 0.60 0.94 0.57 0.85 0.51 0.61 0.27

E4 (mm) 0.61 0.14 0.57 0.13 0.62 0.18 0.46 0.20

Fig. 12 The accuracy versus

the spatial amplification of a

patient data
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The proposed method will yield better accuracy with

P being the geometric center of tumor (Fig. 13; Table 5)

and the pathological region being the whole lesion

(Fig. 14; Table 6). This may imply that the size of the

whole lesion and the location of tumor (instead of edema or

the sum of edema and tumor) are more appropriate to

determine the extent of deformation. The mechanism of

deformation will need more investigation.

Below is a summarization of the major contributions of

this study.

(a) An enhanced Voigt model to relate the deformation

of midline to the size and position of lesions for dML

prediction to reflect the viscoelasticity of tissues on

dML.

(b) A new way to calculate the local symmetry in the

vicinity of dML has been proposed by combining

the local intensity symmetry and local intensity

gradient symmetry. In this way, the dML voxels

within the uniform regions could be better differ-

entiated than the traditional local intensity sym-

metry. The new way of quantifying local symmetry

around dML makes the dML refinement more

accurate (Table 3).

(c) For the cases with large deformation, where the

traditional local symmetry around dML is destroyed

or the anatomical markers are missing (Fig. 8a), the

proposed method could still perform well as it is

based on mechanical model and composite local

symmetry, while existing methods [1, 6–11] based

on the existence of anatomical markers will fail.

Table 4 Accuracy dependence on the interpolated spatial resolution

of a patient data with different spatial resolutions via bicubic

interpolation

E1 (mm) E2 E3 (mm) E4 (mm) Time (s)

Original 3.07 0.06 1.63 1.28 3.79

1.5 9 1.5 2.59 0.04 1.16 1.05 6.18

2 9 2 1.91 0.02 0.77 0.79 8.53

2.5 9 2.5 1.35 0.02 0.83 0.57 11.09

3 9 3 1.06 0.01 0.63 0.28 16.24

4 9 4 1.12 0.01 0.72 0.39 25.03

5 9 5 1.07 0.01 0.61 0.33 31.88

Fig. 13 Estimation of dML

based on the proposed method

with different geometric center

P and fixed pathological region:

the ground truth dML (blue

curve) (a), the ground truth

lesions (from dark to bright:

necrosis, edema, non-enhancing

tumor and enhanced tumor) (b),

dML from P being the

geometric center of tumor (c),

dML from P being the

geometric center of edema (d),

and dML from P being the

geometric center of the whole

lesion (e)

638 Australas Phys Eng Sci Med (2015) 38:627–641

123



(d) The proposed methodology has been exploited to

investigate the contribution of different pathologies

after glioma, which may be employed as a method-

ological tool for deformation study of MRI scans.

The proposed method could not handle well cases when

a large portion of dML is occupied by lesions. Figure 15

shows two scans of low- and high-grade gliomas with the

maximum error. In these cases, the portion of dML occu-

pied by lesions is even difficult to be manually delineated

by experienced radiologists.

As the proposed method approximates the dML on each

voxel, it could be explored for estimating midsagittal sur-

face which could be useful for registration and quantifying

the brain.

Conclusion

To the best of our knowledge, for delineation of deformed

midline, this is the first report on both quantification of

gliomas and delineation from MRI, which hopefully will

provide valuable information for diagnosis and therapy.

The study suggests that the size of the whole lesion and the

location of tumor (instead of edema or the sum of edema

and tumor) could be more appropriate to determine the

extent of deformation. Composite local symmetry is rec-

ommended to represent the local symmetry around the

dML. The proposed method could be potentially used to

quantify the severity of patients with cerebral gliomas and

Fig. 14 Estimation of dML

based on proposed method with

fixed P but varying pathological

regions: ground truth dML (blue

curve) (a), dML from the whole

lesions (red curve) (b), dML

from the tumor (purple curve)

(c), dML from the edema (green

curve) (d), and (e) dML form

the edema plus tumor (yellow

curve)

Table 5 Quantification of the experiments using different geometric

centers

E1 (mm) E2 E3 (mm) E4 (mm)

Tumor 1.06 0.01 0.63 0.28

Edema 1.33 0.02 0.72 0.51

Whole lesion 1.31 0.01 0.66 0.42

Table 6 Quantification of the experiments using different patholog-

ical regions

E1 (mm) E2 E3 (mm) E4 (mm)

Tumor only 1.79 0.02 0.65 0.94

Edema only 3.75 0.05 1.37 1.21

Tumor plus edema 1.58 0.02 0.84 1.06

Whole lesion 1.06 0.01 0.63 0.28
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other brain pathology, as well as to approximate mid-

sagittal surface for brain quantification.

Acknowledgments This work has been supported by National

Program on Key Basic Research Project (Nos. 2013CB733800,

2012CB733803), Key Joint Program of National Natural Science

Foundation and Guangdong Province (No. U1201257), and Guandong

Innovative Research Team Program (No. 201001D0104648280).

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict

of interest.

Ethical approval All procedures performed in studies involving

human participants were in accordance with the ethical standards of

the institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical

standards.

Funding This study was funded by National Program on Key Basic

Research Project (Nos. 2013CB733800, 2012CB733803), Key Joint

Program of National Natural Science Foundation and Guangdong

Province (No. U1201257), and Guandong Innovative Research Team

Program (No. 201001D0104648280).

Informed consent For this type of retrospective studies, formal

consent is not required. Informed consent was obtained from all

individual participants included in the study.

References

1. Liao C, Xiao I, Wong J (2006) Tracing the deformed midline on

brain CT. Biomed Eng-App Bas C 18(6):305–311

2. Legler JM, Ries LAG, Smith MA, Warren JL, Heineman EF,

Kaplan RS, Linet MS (1999) Brain and other central nervous

system cancers: recent trends in incidence and mortality. J Natl

Cancer I 91(16):1382–1390

3. Olson JD, Riedel E, DeAngelis LM (2000) Long-term outcome of

low-grade oligodendroglioma and mixed glioma. Neurology

54(7):1442–1448

4. Gamburg ES, Regine WF, Patchell RA, Strottmann JM, Mohi-

uddin M, Young AB (2000) The prognostic significance of

midline shift at presentation on survival in patients with

glioblastoma multiforme. Int J Radiat Oncol 48(5):1359–1362

5. Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna

S, Verkman AS (2004) Molecular mechanisms of brain tumor

edema. Neuroscience 129(4):1009–1018

6. Liu R, Li S, Chew L, Boon C, Tchoyosom C, Cheng K, Tian Q,

Zhang Z (2009) From hemorrhage to midline shift: a new method

of tracing the deformed midline in traumatic brain injury CT

images. In: 16th IEEE international conference on image pro-

cessing, pp 2637–2640

7. Xiao F, Chiang I, Wong J, Tsai Y, Huang K, Liao C (2011)

Automatic measurement of midline shift on deformed brains

using multiresolution binary level set method and Hough trans-

form. Comput Biol Med 41(9):756–762

8. Xiao F, Liao C, Huang K, Chiang I, Wong J (2010) Automated

assessment of midline shift in head injury patients. Clin Neurol

Neurosur 112(9):785–790

9. Liao C, Xiao F, Wong J, Chiang I (2009) A multiresolution

binary level set method and its application to intracranial hema-

toma segmentation. Comput Med Imag Grap 33(6):423–430

10. Chen W, Najarian K, Ward K (2010) Actual midline estimation

from brain CT scan using multiple regions shape matching. In: 20th

IEEE international conference on pattern recognition, pp 2552–2555

11. Liu R, Li S, Su B, Tan CL, Leong TY, Pang BC, Lim CCT, Lee

CK (2014) Automatic detection and quantification of brain

midline shift using anatomical marker model. Comput Med Imag

Grap 38(1):1–14

12. Joseph DD (1990) Fluid dynamics of viscoelastic liquids, vol 84.

Springer-Verlag, New York

13. Miller K, Chinzei K, Orssengo G, Bednarz P (2000) Mechanical

properties of brain tissue in vivo: experiment and computer

simulation. J Biomech 33(11):1369–1376

14. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Non-

invasive assessment of the rheological behavior of human organs

using multifrequency MR elastography: a study of brain and liver

viscoelasticity. Phys Med Biol 52(24):7281

15. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papa-

zoglouS Martus P, Braun J (2009) The impact of aging and

gender on brain viscoelasticity. Neuroimage 46(3):652–657

16. Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995)

Generalized viscoelastic models: their fractional equations with

solutions. J Phys-A-Math Gen 28(23):6567

17. Zhuang D, Liu Y, Wu J, Yao C, Mao Y, Zhang C, Wang M,

Wang W, Zhou L (2011) A sparse intraoperative data-driven

biomechanical model to compensate for brain shift during neu-

ronavigation. Am J Neuroradiol 32(2):395–402

18. Hu Q, Nowinski WL (2003) A rapid algorithm for robust and

automatic extraction of the midsagittal plane of the human

cerebrum from neuroimages based on local symmetry and outlier

removal. Neuroimage 20(4):2154–2166

19. Meyers MA, Krishan KC (2009) Mechanical behavior of mate-

rials. Cambridge University Press, Cambridge

Fig. 15 Two cases with maximum error of the proposed method: the

ground truth and the estimated dMLs for low- (a and b) and high-

grade (c and d) gliomas

640 Australas Phys Eng Sci Med (2015) 38:627–641

123



20. Haslach HW Jr (2005) Nonlinear viscoelastic, thermodynami-

cally consistent, models for biological soft tissue. Biomech

Model Mechan 3(3):172–189

21. Miller K, Chinzei K (2002) Mechanical properties of brain tissue

in tension. J Biomech 35(4):483–490

22. Davidson RJ, Hugdahl K (1996) Brain asymmetry. MIT Press/

Bradford Books, Cambridge

23. Lindeberg T (1993) Scale-space theory in computer vision.

Springer, New York

24. Zitnick CL, Ramnath K (2011) Edge foci interest points. In: IEEE

international conference on computer vision, pp 359–366

25. Lowe DG (1999) Object recognition from local scale-invariant

features. In: 7th IEEE international conference on computer

vision, pp 1150–1157

26. Dalal N, Triggs B (2005) Histograms of oriented gradients for

human detection. In: IEEE international conference on computer

vision and pattern recognition, pp 886–893

27. Hauagge DC, Noah S (2012) Image matching using local sym-

metry features. In: IEEE international conference on computer

vision and pattern recognition, pp 206–213

Australas Phys Eng Sci Med (2015) 38:627–641 641

123


	Automatic estimation of midline shift in patients with cerebral glioma based on enhanced voigt model and local symmetry
	Abstract
	Introduction
	Materials and methods
	Materials
	Methods
	Preprocessing
	Prediction of the deformed midline
	Composite local symmetry
	Refinement based on local symmetry


	Results
	Performance evaluation
	Performance comparison using different local symmetry metrics

	Discussion
	Conclusion
	Acknowledgments
	References




