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Abstract Electromyographic (EMG) signals are abun-

dantly used in the field of rehabilitation engineering in

controlling the prosthetic device and significantly essential

to find fast and accurate EMG pattern recognition system,

to avoid intrusive delay. The main objective of this paper is

to study the influence of Principal component analysis

(PCA), a transformation technique, in pattern recognition

of six hand movements using four channel surface EMG

signals from ten healthy subjects. For this reason, time

domain (TD) statistical as well as auto regression (AR)

coefficients are extracted from the four channel EMG

signals. The extracted statistical features as well as AR

coefficients are transformed using PCA to 25, 50 and 75 %

of corresponding original feature vector space. The clas-

sification accuracy of PCA transformed and non-PCA

transformed TD statistical features as well as AR coeffi-

cients are studied with simple logistic regression (SLR),

decision tree (DT) with J48 algorithm, logistic model tree

(LMT), k nearest neighbor (kNN) and neural network (NN)

classifiers in the identification of six different movements.

The Kruskal–Wallis (KW) statistical test shows that there

is a significant reduction (P\ 0.05) in classification ac-

curacy with PCA transformed features compared to non-

PCA transformed features. SLR with non-PCA transformed

time domain (TD) statistical features performs better in

accuracy and computational power compared to other

features considered in this study. In addition, the motion

control of three drives for six movements of the hand is

implemented with SLR using TD statistical features in off-

line with TMSLF2407 digital signal controller (DSC).

Keywords EMG � Feature extraction � Classification �
Principal component analysis � Digital signal controller

Introduction

Several researchers are attempting to develop assistive

devices for the individuals with disabilities [1, 3]. Assistive

devices are developed using bio-electric signals, speech

signals, gestures, etc. Electromyography (EMG) based

prosthetic devices have been used significantly to improve

the day-to-day activity of disabled people resulted from

accidents, peripheral vascular disease, diabetes, etc. EMG

is a muscular technology, provides the information about

the intention of the users from the recording of signals on

the individual skin’s surface. EMG signals are informative,

however the idea of control of assistive devices using EMG

is sophisticated as well as complex.

The common methodology underlying EMG based

pattern recognition control are: (i) extraction of the most

relevant features (ii) the classification/identification of ex-

tracted features for the intended movement. In addition to

identification of intention, it is vital that this recognition

does not use much computational power. EMG features can

be extracted from transient signals, steady state signals and

combining both the signals to discriminate the intentions of

the user. Till date numbers of researchers classify the in-

formation using transient [4, 11], steady state [4] and also

both transient and steady state EMG signals [9]. Hargrove

et al. [9] found that the effectiveness of the prosthetic de-

vices improves by considering both the transient and the

steady state EMG signals. In this paper, transient and
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steady state EMG signals are considered to extract time

domain statistical features as well as auto regression (AR)

coefficients.

The accuracy of pattern recognition is based on selection

of the features and the technique applied for classification.

The efficacy of classifier depends on the choices of features

used to discriminate the functionality. Feature vector with

high class separability will augment the classifier efficacy.

In the recent years, many researchers are using features like

mean absolute value (MAV) [4,11,14], number of zero

crossings (ZC) [4,11], number of slope sign changes (SSC)

[4,11], waveform length (WL) [4,11,14] and AR coeffi-

cients. In this study also, MAV, ZC, SSC, WL and fourth

order AR coefficients are considered for classification of

EMG.

It is desirable to extract increased number of features

that helps in identification of control signals accurately for

the actuation of prosthetic device. However, the dimension

of feature space burgeon with increase of number of

electrodes as well as a number of features. In order to

eschew the computation time as well as to ameliorate the

classification performance, it is indispensable to fore-

shorten the irrelevant/redundant features using feature re-

duction technique. In feature reduction techniques, the

high-dimensional feature space are projected into a low-

dimensional feature space. These feature reduction tech-

niques include principal component analysis (PCA), inde-

pendent component analysis (ICA) [15], genetic algorithm

(GA) [16,18] etc. PCA is a transformation technique that

has been typically used due to its simplicity [12] in pre-

processing [10], feature reduction [2] and design of robotic

hands [8]. In recent years, different variation in PCA has

been developed [3]. In this paper, PCA transformed using

eigenvectors are used to study the performance of 25, 50

and 75 % transformed time domain statistical features and

AR coefficients for classification of six movements.

In classification, a recurring theme is to utilize con-

structively the information available with the relevant

features. In such cases, all the features in feature spans do

not guarantee an optimum performance and it exacerbates

the curse of dimensionality especially with the increased

number of electrodes. Researchers used different classifiers

such as fuzzy logic, neural network, state vector machine,

etc. [1,2,7,17]. In the literature, it has been found that

Simple Logistic Regression (SLR) technique, is more ef-

fective and efficient in the classification of the continuous

EMG signals [6]. In addition to SLR, other classifiers such

as logistic model tree (LMT), decision tree (DT), neural

network (NN) and k nearest neighbor (kNN) are considered

to study the influence of classification with PCA trans-

formed TD statistical features and AR coefficients. The

block diagram of EMG pattern recognition based schema is

shown in Fig. 1. The block with dotted line may/may not

present in EMG pattern recognition schema, depending on

the number of features.

EMG signals acquisition

An indigenous, four channel EMG signal acquisition sys-

tem with the necessary protection circuit has been used for

acquisition of surface EMG signals. In this work, EMG

signals are collected, using a pair of Ag/Agcl (Argentum/

Argentum Chloride) disc electrodes of 10 mm diameter.

Since hand motion results from contraction of the muscles

in the forearm, the surface electrodes for four channels are

placed on flexor digitorum superficialis, supinator, extensor

digitorum communis and extensor indicis as shown in

Fig. 2. A signal conditioning circuit is designed for each

channel with high input impedance instrumentation am-

plifier. A high pass filter of 9 Hz cut-off frequency is

connected after the instrumentation amplifier to prevent

DC voltage offsets caused by skin impedance and reaction

between the skin and electrode gel. Further, the output

from the high pass filter passes through the variable gain

amplifier whose gain can be varied from 6 to 100 and to

band pass filter of 10–500 Hz to obtain signals in a

dominant energy band. A digital Signal Processing and

Control engineering (dSPACE) software with the DS1104

board is used to sample the EMG signals at a rate of 1000

samples per Sec and stored in personal computer having

Intel core Duo Processor with 2.93 GHz and 1.96 GB of

RAM.

In this study, ten healthy male subjects are considered

for acquisition of continuous EMG signals for different

limb movements. Signals acquired from the subjects

without any skin preparation. The subjects were instructed

to perform each movements, i.e. hand close (HC), hand

open (HO), wrist flexion (WF), wrist extension (WE), ulnar

deviation (UD) and radial deviation (RD) for a duration of

5 s. with the elbow resting on the table. All the subjects

performed each trial for 30 s. duration with brief relaxation

periods between each trial to avoid fatigue. Eight trials of

data are used for classification of motions. Transient period

lasted approximately for 50 ms after every change in

movement. However, it varies with the speed with which

the subject does the movement.

Data segmentation

Features are computed from the conditioned EMG signal

data stored in personal computer from a segment (window),

where a single feature vector is produced from each seg-

ment. Window size and increment in window size is cho-

sen, considering the real-time constraint of myoelectric
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hand control system which should be within 300 ms [11].

For real time myoelectric control, all processes including

the generation of control must be completed within

300 ms. Therefore, analysis is performed on 256 ms win-

dow in all cases with a window increment of (overlap)

128 ms.

EMG data, so segmented contain both transient and

steady state data to identify the intended motion, needs to be

classified. To discriminate the different intention in data, it is

necessary to extract the features for identifying the different

classes of motion. A classifier to classify the intention it is

necessary to extract the feature to discriminate the data. The

effect of classification also depends on the proper extraction

of the relevant features which should provide good separa-

tion between classes. The next section describes about the

feature extraction considered in this work.

Feature extraction

EMG signals carry information about the intention of the

subject for a specific motion. To identify the specificmotion,

four time domain statistical features such as mean absolute

value (MAV), zero crossings (ZC), slope sign changes (SSC)

and waveform length (WL) and fourth order AR coefficients

are extracted for awindow size of 256with an overlap of 128.

Feature span dimension of the TD statistical feature as well

as AR coefficients is 234 9 16 for one trial. 39 patterns are

obtained for every 5 s movement from the four channel data

of size 5000 9 4. Each pattern consists of 16 features.

From the EMG data, the MAV and WL are calculated as

in (1) and (2). ZC occurs when both (3) and (5) are satis-

fied. SSC occurs when conditions (4)–(6) are satisfied.

MAV ¼ 1

L

XL

i¼1

����yi
���� ð1Þ

WL ¼
XL

i¼1

����yi � yi�1

���� ð2Þ

ðyi [ 0 and yiþ1\0Þ or ðyi\0 and yiþ1 [ 0Þ

WL ¼
XL

i¼1

��yi � yi�1

�� ð3Þ

ðyi [ yi�1 and yi [ yiþ1Þ or

ðyi\yi�1 and yi\yiþ1Þ
ð4Þ

yi � yiþ1j j � e ð5Þ
yi � yi�1j j � e ð6Þ

where yi is ith the EMG data, e is the threshold, L is the

EMG data segment length, i is the sample in a segment.

Auto regression, model EMG signals as a linear au-

toregressive time series depends on previous outputs and

defined as

yk ¼
Xp

i¼1

kiyk�i þ ek ð7Þ

where yk is the estimated data, ki are the AR-coefficients, ek
is the estimation error and p is the order of the model

(Number of coefficients).

Feature reduction

To reduce overloading of the classifier, 16 features from

each pattern are transformed to 4 (25 %), 8 (50 %) and 12

(75 %) features using PCA. PCA extracts the predominant

data from the input feature sets. The first step of calculation

in PCA is to compute covariance matrix of feature vari-

ables. Eigenvalues are calculated for the covariance matrix.

The eigenvectors corresponding to eigenvalues are com-

puted which account for most of the variance in features.

Eigenvector with the largest eigenvalue is the principle

component of the feature vector.

In this work, four features are extracted from each channel.

Since the observation from each channel is four, the covari-

ance matrix is 4 9 4. Eigenvalues and eigenvectors are cal-

culated from the covariance matrix. Ordering the eigenvalue

from largest to smallest gives, order of significance of prin-

ciple components. Transformed feature set can be obtained by

ignoring the components of lesser significance. To reduce

feature set to 25 %of original feature vector, the first principal

component alone is considered. To find the transformed/pro-

jectednew feature vector, the chosen eigenvector ismultiplied

Data 
Segmentation 

Feature 
Extraction 

Feature 
Reduction 

(PCA)
Classification EMG  

Signals 

Fig. 1 Block diagram of EMG

based pattern recognition

Ground Channel 1 

Channel 2 Channel 3 

Channel 4 

Fig. 2 Location of the electrodes on the limb for four different

channels
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with the original feature vector. In a similar way, feature

vector size can be reduced to 50 % and 75 % of the original

feature vector size with the consideration of two and three

principal components respectively in the order of significance.

A transformed/reduced feature set is obtained by multiplying

the considered eigenvector to the original feature set. Fig-

ures 3 and 4 shows the scatter plot of 25 % transformed sta-

tistical features and 25 % transformed AR coefficients using

PCA. The scatter plots clearly evince that, TD transformed

using PCA has the better class capability than the PCA

transformed AR features for six different movements of the

hand. Features with better class separation yields good clas-

sification performance. The classification performance by

transforming TD as well as AR and non-transformed features

are discussed in the results and discussion section. The next

section discusses various types of classification techniques

considered in pattern recognition. The widely used linear

discriminant analysis (LDA) classifier is not considered in

pattern recognition, since LDA suffered from the problem of

singularity with PCA transformed features, but not with non-

PCA transformed features. In order to study the performance

of the classifiers with and without PCA transformed features,

LDA is not considered in pattern recognition.

Classification

In this section, the different classification techniques,

namely simple logistic regression (SLR), decision tree

(DT) with J48 algorithm, logistic model trees (LMT),

Neural network (NN) and k nearest neighbor (kNN) ap-

proaches are described for identification of six different

movements from PCA transformed and non-PCA trans-

formed TD statistical features as well as AR coefficients.

The classification was divided into two stages: the training

stage and the testing stage. Three trials out of 8 trials have

been considered in training. During testing, the remaining

five trials are used. The following subsections discuss the

various classifiers used in classifying the EMG data.

Simple logistic regression (SLR)

Logistic regression performs a least-square fit of a pa-

rameter to a target feature vector to form a model for each

class as shown in equation below.

i�class ¼ argmax
i

PðC ¼ ijX ¼ xÞ ð8Þ

where C is a class variable of motion, x is the feature set

which represents the class and P(C = i|X = x) is the pos-

terior class probability for an instance x.

Logistic regression models the posterior probabilities for

I classes using linear function in x ensuring that they sum to

1 and remain in [0, 1]. The linear regression model is

specified in terms of I-1 log-odds that separate each class

from the ‘‘base class’’ I, such that,

log
PðC ¼ ijX ¼ xÞ
PðC ¼ IjX ¼ xÞ ¼ aTi x; i ¼ 1; 2; ::: I � 1 ð9Þ

where

Fig. 3 Scatter plot of PCATransformed TD statistical feature vector to 4 features (25 %)
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PðC ¼ ijX ¼ xÞ ¼ ea
T
i x

1þ
PI�1

k¼1

ea
T
k
x

for i ¼ 1; 2 . . . I � 1ð Þ

ð10Þ

PðC ¼ IjX ¼ xÞ ¼ 1

1þ
PI�1

k¼1

ea
T
k
x

ð11Þ

and, ai is the parameter vector in logistic regression model.

This logistic model produces linear boundaries between

the regions in the feature space corresponding to different

classes. The logistic regression model fitting means, esti-

mating the parameter vector ai. The model is built for each

class and the class of test feature vector is identified using

the maximum value of class model aTx [13]. The standard

procedure in statistics is to look for the maximum likeli-

hood in logistic regression using numeric optimization al-

gorithms that approach the maximum likelihood solution

iteratively and reach it in the limit is in practice. Friedman

et al. [5] proposed the LogitBoost algorithm for fitting

additive logistic regression models by maximum

likelihood.

Decision tree (DT)

Decision Tree (DT) is based on the values of feature vector

from available training data to identify the class of the test

feature vector. In this work, DT is built using J48 algorithm

and nodes of trees are selected based on information gain

from the concept of entropy [19,20].

In this pattern recognition system, simple if–then rule is

applied for classification. One of the advantages of tree

classification is that they can be constructed easily. Deci-

sion tree begins with a set of cases or training data described

by a set of attributes or features which can have numeric or

symbolic values. Each training data is associated with a

label representing the name of a class it belongs to. Tree

induction splits feature space repeatedly, and stops splitting

when the feature subspace contains training data with

mostly identical class labels. Splitting consists of selection

of feature and decision on a threshold value for the feature.

A path in a DT basically corresponds to Boolean expression

of the form ‘‘Feature[ threshold’’, ‘‘Feature B threshold’’,

so a tree can be seen as a set of rules to identify feature set.

In the tree, the nodes specify the features, for which data are

branched. The branches between the node refer to the

possible value of which data is partitioned. Branch may

connect either two internal nodes or a node and a leaf. Leaf

node represents the name of the class of the input feature

vector. For classification, a new feature set is sorted down to

a leaf in the tree to predict class of the test data.

Logistic model tree (LMT)

In the logistic model tree, logistic regression and decision

trees are special cases basically consists of a tree structure

with logistic regression function at the leaves. LogitBoost

Fig. 4 Scatter plot of PCATransformed AR coefficients to 4 features (25 %)
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algorithm has been used to induce tree with linear, logistic

regression models at the leaves. LMT growth would first

involve building a standard classification tree and after-

wards building a logistic regression model at every node.

For building simple logistic regression at the child node,

simple logistic regression at the parent node is used as a

basis for fitting simple logistic regression at the child node

using LogitBoost algorithm. LogitBoost algorithm it-

eratively changes the simple linear regression class func-

tions to improve the fitting of the data by adding a simple

regression function, to fit to the response. After splitting a

node, LogitBoost iterations continue running by fitting to

the response variable of the training data on the child node

only [13].

Neural network (NN)

The multilayer neural networks are built separately for TD

statistical data and AR coefficients with PCA transformed

and non-PCA transformed data. The Neural network is

composed of an input layer, hidden layer and output layer.

The number of neurons in the input layer is same as a number

of features with an additional threshold unit. The neural

network is trained with the back-propagation algorithm.

k Nearest neighbour (kNN)

k nearest neighbour (kNN) is a very simple classification

technique based on Euclidean distance measurements.

Euclidean distance is measured between the test feature

vectors with all stored prototype vectors. Each class is

characterised by prototypes obtained from the three trials

of feature vectors. In these conditions, the class of test

feature vector is obtained by majority voting amongst k n-

earest neighbours. In this simple kNN, a number of

neighbours k is set to 9.

The class probability of kNN classifier is calculated

using the Eq. (12) given below.

PðC ¼ IjX ¼ xÞ ¼ Ki

K
ð12Þ

where K is the nearest neighbour, which is 9, Ki is the

number of neighbours of class i, The test feature vector is

belongs to class i, the largest probability estimate from

Eq. (12). The performance of the classifier was not much

different for the other higher values of k.

Results and discussion

The classification error was found to be more during the

transition of posture, for example HC to HO, compared to

steady state posture. This could be observed approximately

for initial four feature vectors which are not clustered and

found wide apart from the remaining steady state feature

vectors from the Figs. 3 and 4. Further the classification

performance was found to be varying with feature vectors.

The classification performance of 25 % (PCA-4), 50 %

(PCA-8) and 75 % (PCA-12) PCA transformed statistical

as well as AR coefficients along with non-PCA trans-

formed features are studied with five trials of data. Figure 5

shows the classification performance of SLR, DT, LMT,

NN and kNN classifiers with transformed and non-trans-

formed features. Tables 1, 2, 3, 4, 5 shows the confusion

matrix of classifiers with PCA transformed statistical and

AR data for five trials of test data. The bold values in the

Table indicate the efficiency in identifying the corre-

sponding movement. Also, Tables indicate the measure of

sensitivity and specificity for each movement in different

classifiers.

From the Tables and Fig. 5, it is clear that, the classi-

fication accuracy of the considered classifiers with PCA

transformed AR coefficients is less than 70 % irrespective

of number of transformed features. The percentage classi-

fication accuracy of kNN, NN and LMT is found to be

more than 80 % with PCA transformed statistical features.

Fig. 5 Classification

Performance of classifier with

Different Input
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Surprisingly, DT classifier with 25 and 75 % of PCA

transformed TD features is more than 80 % and performed

better than SLR classifiers with transformed features.

Further, DT classifier with 50 % of PCA transformed

classifier performance is almost close to 80 %. There is no

significant difference in the performance of DT classifiers

with PCA transformed TD statistical features, compared to

NN and LMT. Also, it is found, no significant difference in

the performance of DT with transformed and non-trans-

formed statistical features. But, there is a significant dif-

ference in performance between transformed and non-

transformed AR features with DT. However, the perfor-

mance of DT classifiers with PCA transformed features is

superior than SLR classifier performance with PCA trans-

formed features. The performance of LMT classifier with

transformed features is superior than DT, may be due to the

combination of DT and SLR. Only the performance of SLR

classifiers with 25 % of PCA transformed AR features is

inferior than the other classifiers with less than 60 % of

classification efficiency. It is clearly evinced that, SLR

classifier performs very poor with PCA transformed fea-

tures than any other classifier. From the Fig. 5 and from

Tables 1, 2, 3, 4, 5 it is also evident that the classification

results ameliorates with the increase in the transformed AR

feature data except kNN classifier. Furthermore, there is a

slight improvement/decrease and no significant difference

in the classification efficiency while increasing PCA

transformed data from 4 (25 %) to 12 (75 %) in statistical

features with the considered the classifiers.

There is a significant difference in performance of

considered classifiers compared to PCA and non-PCA

transformed features. SLR and LMT classifier with non-

transformed TD statistical feature is superior than other

classifier. Though the performance of SLR, LMT and NN

with non-transformed AR features is higher among the

other classifiers, but less than non-transformed statistical

features. The performance of kNN, classifier is always less

than 90 %, even though kNN, outperforms other classifier

with PCA transformed statistical features. From the ana-

lysis, it can be divulged that, the performance of classifiers

degrades with PCA transformed time domain features

compared to non-transformed time domain features. In

addition the performance all classifiers with non-trans-

formed statistical features is superior than non-transformed

AR features. Further, it has been observed that the per-

formance of classifiers with AR coefficients less than that

of statistical features irrespective of the transformation.

Though SLR and LMT performs equally better with sta-

tistical features, SLR with the statistical features outper-

forms other classifier in computation power as well. LMT

is a combination of DT and SLR and may require more

computing power than SLR.

DC motor actuation

The different motions of hand are implemented in off-line,

to understand the application pattern recognition in ac-

tuation of drives. The block diagram of hardware imple-

mentation for the actuation of DC motor is shown in Fig. 6.

This DC motor actuation is also implemented in the per-

sonal computer (PC) using MATLAB.

In this research during off-line stage, the stored data of

subjects for different motions of the hand are used to test

the developed pattern recognition model of the controller

using TMSLF2407. A DSC programme is developed to

extract the features namely mean absolute value (MAV),

number of zero crossings (ZC), number of slope sign

changes (SSC) and waveform length (WL) from the EMG

data stored in the memory. The extracted features are

classified using simple logistic regression (SLR) classifier.

The output of the classifier is used to generate the driving

DSC/PC 

Memory 
Extract TD 
statistical 
features 

Calculate 
i
Tx for six 

classes 

Identify the class 
which has higher 
value of i

Tx

Generation of control signal to actuate 
corresponding motor in CW/CCW 

Motor 2 
WF-CW 
WE-CCW 

Motor 3 
UD-CW 
RD-CCW 

Motor 1 
HC-CW 
HO-CCW 

EMG 
Data 

Fig. 6 Block diagram of

interfacing motor with

TMSLF2407 DSP
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signals for the actuation of the specific drive in the speci-

fied direction, through the configuration of general purpose

input and output port (GPIO). The pattern recognition al-

gorithm is carried out in the processor. The input to the

controller is the EMG data and the output of the processor

is the digital signals that are fed to the bidirectional driver

KA3082. Control signal from two GPIO pins of port2 of

DSC is fed to pin 5 and pin 6 of the bidirectional driver.

GPIO port P2.3 and port P2.4 are used to obtain control

signals for hand close (HC) and hand open (HO) motions.

GPIO port P2.5 and GPIO port P2.6 are used to obtain

control signals for wrist flexion (WF) and wrist extension

(WE). GPIO port P2.7 and GPIO port P2.8 are used to

obtain control signals for ulnar deviation (UD) and radial

deviation (RD). All the six motions are thus realised to

perform the intended limb motions by driving three DC

motors in both forward and reverse direction in off-line.

The time period of execution in offline was found to be less

than 150 ms, which is an acceptable delay in real-time

implementation of prosthetic hand [4].

Conclusion

The influence of PCA based feature reduction on pattern

recognition of different classifier is tested with 25, 50 and

75 % PCA transformation of TD statistical features as well

as AR coefficients. The performance is compared with non-

PCA transformed features obtained from the continuous

entire length of EMG signals for ten healthy subjects as

well. From the results, it has been observed that principal

component with the highest Eigenvalue contributes in

classification and other components does improve/decrease

classification accuracy slightly but not significantly. Per-

formance analysis also shows that kNN classifier is better

at classifying the EMG signal with PCA transformed sta-

tistical data compared to other classifiers in accuracy,

sensitivity and specificity. It is also found that there is not

much improvement in classification accuracy with non-

transformed and transformed TD statistical feature in DT

as well as kNN. But there is much significant difference in

DT as well as kNN with with non-transformed and trans-

formed AR coefficients. However, SLR performs better

with the statistical features compared to AR and PCA

transformed features both in accuracy and computational

power. Further, transformed features using PCA decreases

accuracy, sensitivity and specificity compared to non-

transformed features in the identification of movements

from EMG using SLR, NN and LMT. The efficient SLR

classifier is implemented in off-line to study motion control

of three drives using TMSLF2407 processor to understand

the pattern recognition in control of drives.
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