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Abstract The surface electromyography (sEMG) signal

separation and decphompositions has always been an

interesting research topic in the field of rehabilitation

and medical research. Subtle myoelectric control is an

advanced technique concerned with the detection, pro-

cessing, classification, and application of myoelectric sig-

nals to control human-assisting robots or rehabilitation

devices. This paper reviews recent research and develop-

ment in independent component analysis and Fractal

dimensional analysis for sEMG pattern recognition, and

presents state-of-the-art achievements in terms of their

type, structure, and potential application. Directions for

future research are also briefly outlined.
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Introduction

Surface electromyogram (sEMG) is a myoelectric signal

recorded from the surface of skeletal muscles and it indi-

cates the functional state of muscle fibres [25, 53]. It is a

complex and non-stationary signal with low signal to noise

ratio (SNR). While the underlying mechanism of sEMG is

complex with number of differing factors, it has been used

in applications ranging from rehabilitation to sports medi-

cine. Some of the applications include:

– Rehabilitation—example: assist system for the disabled

[76, 77]

– Human computer control—example: control of point-

ing devices [108]

– Robotic and prosthetic hand [74, 90]

– Clinical applications—example: assessment of muscle

fatigue [73] and low back pain [96].

The ability to accurately interpret sEMG signals would

enable and control the neuro-electrical interfaced systems.

The design of these systems require the following two

important factors to be considered as proposed by [28]:

1. Features of sEMG that can be related to different

muscles and muscle activity, and

2. Classification paradigm of these features to identify

these actions.

Rehabilitation process, clinical diagnosis and basic

investigations are critically dependent on the ability to

record and analyze physiological signals like Electrocar-

diography (ECG), Electroencephalography (EEG) and

EMG. However, the traditional analyses of these signals

have not kept pace with major advances in technology that

allow for recording and storage of massive data sets of

continuously fluctuating signals. Although these typically

complex signals have recently been shown to represent

processes that are non-linear, non-stationary, and non-

equilibrium in nature, the methods used to analyze these

data are often assume linearity, stationarity, and equilib-

rium-like conditions. Such conventional techniques include

analysis of means, standard deviations and other features

of histograms, along with classical power spectrum

analysis [34].

Recent findings [17, 57, 68] show that sEMG signals

may contain hidden information that is not extractable with
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conventional methods of analysis. Such hidden information

promises to be of clinical value as well as to relate to basic

mechanisms of muscle property and activity function.

Fractal theory based analysis is one of the most promising

new approaches for extracting such hidden information

from physiological time series signal like sEMG, which

can provide information regarding the characteristic tem-

poral scales and the adaptability of muscle activity

response [13, 14, 32, 34]. Number of researchers have

identified a strong relationship between magnitude and

spectral features of sEMG with the force of muscle con-

traction [25]. Various analogous measures such as

– root mean square (RMS) [12],

– windowed integration and zero-crossing count [12, 23],

– auto-regression [9, 58], and

– wavelet coefficients [61, 98]

have been used to classify the signal against the desired

movement and/ or posture.

These features are easy to implement and are a good

measure of the strength of muscle activity when there is a

single active muscle that has high level of muscle activity.

However these measures are not reliable when the muscle

activity is very subtle and when there are multiple muscles

that are simultaneously active. Alternate to the use of

global parameters such as RMS, is to decompose sEMG

and identify the action potentials [53, 57, 103]. The

shortcomings in such techniques are that these require high

level of manual supervision and are highly sensitive to the

location of the electrodes. There are number of possible

rehabilitation and defence applications of sEMG that are

currently infeasible because there are no reliable features of

sEMG that can be related to low-level of muscle contrac-

tion without manual supervision.

The classification of these features has been achieved

using a range of parametric and non-parametric techniques,

ranging from Bayesian statistical classifiers, neural net-

works [18, 62] and a predictive approach [19]. Some of the

recent research work on classification of hand movements

has been presented as follows:

– Nagata et al. presented a classification method of hand

movements using 96 channels matrix-type (16 9 6) of

multi-channel surface EMG [76].

– Crawford et al. proposed the classification of electro-

myographic signals for robotic control using amplitude

of five channel EMG as features and support vector

machines as classifiers [21].

– Englehert et al. used pattern recognition to process four

channels of MES, with the task of discriminating

multiple classes of limb movement [28].

– Momen et al. used RMS of two channel EMG as features

and segmented using fuzzy C-means clustering [74].

– Tenore et al. [107] have reported an accurate hand and

finger gesture identification system using 16 bipolar

surface-EMG electrodes that were placed on the

forearm. This system has overcome the shortcoming

of cross-talk with the use of an array of electrodes.

Large array of electrodes and number of channels adds

to the complexity and cost of the system and thus limits

the application of this system. Further, mounting of an

array of electrodes may not have user acceptability,

may require the help of an expert and would not be easy

to use by a lay person.

The features used in these techniques are a good

indicator of high level muscle activation. However at

low-level of muscle contraction, these measures are not

reliable in identifying the muscle activation from the

background activity and requires a better classifier for

separation of classes of movements. In order to deter-

mine the reliable measure of low-level muscle activity,

there is need to extract a feature set from sEMG, that

interprets the complex property of the muscle during

subtle activity.

Most methods used to model and analyse sEMG are

linear. However more complex activity such as sEMG

recordings during small and complex maintained hand

actions cannot be modelled by such linear techniques. With

the need for identifying complex and subtle actions and

gestures, nonlinear methods are emerging to characterize

sEMG. The following three new approaches has been

proposed in [89] for characterisation of sEMG:

1. Methods that characterise the sEMG spectral dis-

tribution i.e., Logarithmic representation of sEMG

spectrum

2. Poisson representation of sEMG spectrum, and

3. Method that examines the ‘complexity’ of raw sEMG

i.e., Fractal dimension (FD) of sEMG

Out of these approaches, FD of sEMG has been found

sensitive to magnitude and change of force, because sEMG

is self—similar over a range of scales and the statistical

properties of a part (structure of MU) are proportional to

those of the whole [33, 37].

Biosignals such as sEMG are a result of the summation

of identical motor units that travel through tissues and

undergo spectral and magnitude compression. Burst within

burst behaviour of sEMG in time has the property that

patterns observed at one sampling rate are statistically

similar to patterns observed at lower sampling rates. These

nested patterns suggest that sEMG has self-similarity [4].

Researchers have studied fractal of sEMG to characterize

normal and pathological signals [2]. To better represent the

properties of sEMG signal, fractal properties of sEMG has

been proposed [4, 43, 115].
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In sEMG recordings multiple sensors are used to record

some physiological phenomena. Often these sensors are

located close to each other, so that they simultaneously

record signals that are highly correlated with each other.

Therefore, the sensors not only record the muscle activity

transmitted by volume conduction from a few dynamic

muscles but also from artificial signals, such as noise

independent of muscle activities, that overlap with actual

muscle activity which may be present in all sensors.

Extraction of the useful information from such kind of

sEMG becomes more difficult for low level of contraction

mainly due to the low signal-to-noise ratio. At low level of

contraction, sEMG activity is hardly discernible from the

background activity. Therefore to correctly identify the

number of individual muscles (sources) sEMG needs to be

decomposed. There is little or no prior information of the

muscle activity, and the signals have temporal and spectral

overlap, making the problem suitable for blind source

separation (BSS) techniques.

These literatures review is based on the study of ICA,

fractal theory and use of fractal analysis of sEMG to

determine the complex property of the muscle during

subtle activity. This paper provides an overall review of the

various researches that have been conducted in the analysis

of sEMG for measurement and properties of human hand

muscle movements. The review in this section covers two

major research areas:

– Use of sEMG signals in identification of subtle human

hand movement, and

– Fractal theory based measurement analysis of sEMG

for identification of subtle human hand movements.

Surface electromyography

Surface EMG is the recording of the muscle’s electrical

activity from the surface of the skin. In clinical application,

sEMG is used for the diagnosis of neuro-muscular disorder

and for rehabilitation. It is also used for device control

applications where the signal is used for controlling devi-

ces such as prosthetic devices, robots, and human–machine

interface. The advantage of sEMG is due to its non-inva-

sive recording technique and it provides a safe and easy

recording method. The underlying mechanism of sEMG is

very complex [35] because there are number of factors

such as neuron discharge rates, motor unit recruitment and

the anatomy of the muscles and surrounding tissues that

contribute to the recording. Surface EMG is a quick and

easy process that facilitates sampling of a large number of

MUAPs [12, 27]. Surface EMG is also used as a diag-

nostics tool for identifying neuromuscular diseases,

assessing low back pain, kinesiology and disorders of

motor control. Beyond medical applications, sEMG has

been proposed for control of computer interfaces. It can

also be used to sense isometric muscular activity where no

movement is produced. This enables definition of a class of

subtle motionless gestures to control interfaces without

being noticed and without disrupting the surrounding

environment.

Factors that influence sEMG

The action potentials recorded in sEMG signals are gen-

erated by the electrical activities in the muscle. The signal

contains information related to muscle contraction and

condition. Therefore, it is useful to analyse the signal to

reveal the information without the need to intervene the

muscle. The information immersed in sEMG signal is

related to the following factors that influence the signal.

– Level of contraction The level of contraction affects the

magnitude of the recorded SEMG [20]. The magnitude

of sEMG increases as the level of contraction increases

as there is an increase in the number of motor units

involved in the contraction.

– Localised muscle fatigue Localised muscle fatigue can

be observed from the shift of the median frequency of

the signal towards the lower frequency and the increase

in the signal’s magnitude [12, 20, 61]. This is due to the

synchronisation of the stimulation of different motor

units and the variation in the electrical properties of the

muscle fibers.

– The thickness of body tissue The body tissue tends to

attenuate the high frequency component of the signal.

The thicker the body tissue, the lower the frequency

and amplitude of the signal are. The sEMG signals

recorded from facial muscle have a frequency of up to

500 Hz, while sEMG recorded from deep muscles have

lower frequency range.

– The inter-electrode distance The size and inter-elec-

trode distance also have a known effect to the signal. If

the distance between electrodes increases, the recording

covers a wider area. As a result, the recorded signal

consists of a larger number of action potentials, which

lowers the frequency and increases the amplitude of the

signal.

– The artefacts and noises The properties of some of the

noises and artefacts are predictable. The power-line

interference appears sharply at 50 Hz, while the ECG

artefacts appears at frequency up to 60 Hz [20].

Although the frequency component of power-line and

ECG components are well predicted, they are not easily

removed due to the frequency overlapping between the

artefacts and the sEMG spectrum.
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– Crosstalk muscle signals Crosstalk is the signal detected

over a muscle but generated by another muscle close to

the first one. The phenomenon is present exclusively in

surface recordings, when the distance of the detection

points from the sources may be relevant and similar for

the different sources [31].

sEMG signal analysis techniques

The sEMG signal is a time and force (and possibly other

parameters) dependent signal whose amplitude varies in a

random nature above and below the zero value. Thus,

simple average aging of the signal will not provide any

useful information. Some of the measures of sEMG are

explained below [22]:

– Rectification A simple method that is commonly used

to overcome the above restriction is to rectify the signal

before performing mode pertinent analysis.

– Averages or means of rectified signals The equivalent

operation to smoothing in a digital sense is averaging.

By taking the average of randomly varying values of a

signal, the larger fluctuations are removed, thus

achieving the same results as the analog smoothing

operation.

– Integration The most commonly used and abused data

reduction procedure in electromyography (EMG) is

integration. It applies to a calculation that obtains the

area under a signal or a curve. The units of this

parameter are volt seconds (Vs). It is apparent that an

observed sEMG signal with an average value of zero

will also have a total area (integrated value) of zero.

Therefore, the concept of integration may be applied

only to the rectified value of sEMG signal.

– RMS value Mathematical derivations of the time and

force dependent parameters indicate that the RMS

value provides more a more rigorous measure of the

information content of the signal because it measures

the energy of the signal. The recent increase is due

possibly to the availability of analog chips that perform

the RMS operation and to the increased technical

competence in sEMG.

– Zero crossings and turns counting This method consists

of counting the number of times per unit time that the

amplitude of the signal contains either a peak or crosses

a zero value of the signal.

– Frequency domain analysis Analysis of the sEMG

signal in the frequency domain involves measurements

and parameters that describe specific aspects of the

frequency spectrum of the signal. Fast Fourier trans-

form techniques are commonly available and are

convenient for obtaining the power density spectrum

of the signal.

These various measures are used to extract some

meaningful information from sEMG for various applica-

tions. Currently, there are three common applications of

sEMG [22]. They are:

– To determine the activation timing of the muscle; that

is, when the excitation to the muscle begins and ends

– To estimate the force produced by the muscle.

– To obtain an index of the rate at which a muscle

fatigues through the analysis of the frequency spectrum

of the signal.

These information from sEMG are being used as a

control input to activate or control various devices. To

determine these information of sEMG from forearm, there

is a need to study the anatomical and physiological prop-

erties of the low level muscle activation. The muscle

activation is at low-level when there is little movement in

the corresponding muscle group. When the strength of

muscle contraction is small, there is small overlap of the

MUAP, for example, in simple wrist and finger flexion

movements. This in result shows small changes in recorded

sEMG, which in turn requires different measures in iden-

tifying these small changes.

The main criterion that influence these small changes in

sEMG is crosstalk between muscles. This is due to the

volume conduction properties in combination with the

source properties, and it is one of the most important

sources of error in interpreting sEMG signals. The problem

is particularly relevant in cases where the timing of acti-

vation of different muscles is of importance, such as in

movement analysis [31]. The aim is to interpret these small

changes in sEMG during finger and wrist movements

which has many applications in prosthesis and human

computer interfaces.

ICA

Independent component analysis (ICA) is a data analysis

procedure that attempts to estimate unobserved signals or

‘sources’ from observed mixtures. ICA has been engaged

quite successfully in a variety of areas; in biosignals such

as EEG and sEMG, it has been used for signal artifact

reduction and source separation. Here, the concepts behind

ICA is illustrated.

Let x1; x2; x3; . . .; xn be a set of n observed random

variables expressed as a linear combinations of another

n random variables s1; s2; s3; . . .; sn, which is

xi ¼ ai1s1 þ ai2s2 þ . . .þ ainsn ¼ aijsj; ð1Þ

where i ¼ 1; . . .; n. aij. The si are assumed to be statistically

mutually independent. Let x and s represent the random

vectors containing the mixtures x1; x2; x3; . . .; xn and
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s1; s2; s3; . . .; sn, respectively and let A denote the matrix

with entries Aij = aij . The mixing representation above can

then be expressed in simplified form as

x ¼ As ð2Þ

In terms of the equation presented above, the task

involved in ICA consists of finding s in terms of some

given x by identifying a appropriate selection of the matrix

elements of A. In ICA the objective is to find an

N 9 N invertible square matrix such that

ŝ ¼ Wx ð3Þ

where the components of ŝ are as independent as possible.

It is eminent that the solution of ICA is allowed up to

intrinsic indeterminations that are permutation and scaling.

Despite the success of using standard ICA in many appli-

cations, the basic assumptions of ICA may not hold for

some kind of situations where there may be dependency

among the signal sources. The ICA source separation

process is shown in Fig. 1.

ICA is a method for finding underlying factors or

components from multidimensional (multivariate) statisti-

cal data or signals [46, 47]. ICA builds a generative model

for the measured multivariate data, in which the data are

assumed to be linear or nonlinear mixtures of some

unknown hidden variables (sources); the mixing system is

also unknown. In order to overcome the underdetermina-

tion of the algorithm, it is assumed that the hidden sources

have the properties of non-gaussianity and statistical

independence. These sources are named Independent

Components (ICs). ICA algorithms have been considered

to be information theory based unsupervised learning rules.

Given a set of multidimensional observations, which are

assumed to be linear mixtures of unknown independent

sources through an unknown mixing source, an ICA

algorithm performs a search of the unmixing matrix by

which observations can be linearly translated to form

independent output components. When regarding ICA, the

basic framework for most researchers has been to assume

that the mixing is instantaneous and linear, as in Infomax.

ICA is often described as an extension to Principal Com-

ponent Analysis (PCA), that uncorrelates the signals for

higher order moments and produces a non-orthogonal

basis. More complex models assume for example, noisy

mixtures [39, 69], nontrivial source distributions [51, 102],

convolutive mixtures [6, 63], time dependency, underde-

termined sources [45, 67], and mixture and classification of

independent component [60, 65]. A general introduction

and overview can be found in [64].

Challenges of source separation in bio signal processing

In biomedical data processing, the aim is to extract clini-

cally, biochemically or pharmaceutically relevant infor-

mation (e.g metabolite concentrations in the brain) in terms

of parameters out of low quality measurements in order to

enable an improved medical diagnosis [88, 97]. Typically,

biomedical data are affected by large measurement errors,

largely due to the noninvasive nature of the measurement

process or the severe constraints to keep the input signal as

low as possible for safety and bio-ethical reasons. Accurate

and automated quantification of this information requires

an ingenious combination of the following four issues:

– An adequate pretreatment of the data,

– The design of an appropriate model and model

validation,

– A fast and numerically robust model parameter quan-

tification method and

– An extensive evaluation and performance study, using

in-vivo and patient data, up to the embedding of the

advanced tools into user friendly user interfaces to be

used by clinicians

A great challenge in biomedical engineering is to non-

invasively asses the physiological changes occurring in

different internal organs of the human body. These varia-

tions can be modeled and measured often as biomedical

source signals that indicate the function or malfunction of

various physiological systems. To extract the relevant

information for diagnosis and therapy, expert knowledge in

medicine and engineering is also required.

Fig. 1 Independent component analysis (ICA) block diagram. s(t) are

the sources. x(t) are the recordings, ŝðtÞ are the estimated sources A is

mixing matrix and W is un-mixing matrix
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Biomedical source signals are usually weak, geosta-

tionary signals and distorted by noise and interference.

Moreover, they are usually mutually superimposed.

Besides classical signal analysis tools (such as adaptive

supervised filtering, parametric or non parametric spectral

estimation, time frequency analysis, and higher order sta-

tistics), intelligent blind signal processing (IBSP) tech-

niques can be used for preprocessing, noise and artifact

reduction, enhancement, detection and estimation of bio-

medical signals by taking into account their spatio-tem-

poral correlation and mutual statistical dependence.

Exemplary ICA applications in biomedical problems

include the following:

– Fetal electrocardiogram extraction, i.e removing/filter-

ing maternal electrocardiogram signals and noise from

fetal electrocardiogram signals [88, 97].

– Enhancement of low level electrocardiogram compo-

nents [88, 97]

– Separation of transplanted heart signals from residual

original heart signals [113]

– Separation of low level myoelectric muscle activities to

identify various gestures [15, 54, 78–80, 83, 84]

– Extraction of MUAP and time frequency representation

of ICA of sEMG data [98, 105]

– Muscle fatigue synchronisation using ICA of sEMG

[85, 86, 104]

– Identifying dependency and independency nature of the

ICA separated sEMG sources [1, 81, 82]

One successful and promising application domain of

blind signal processing includes those biomedical signals

acquired using multi-electrode devices: ECG [88, 97, 100,

113], EEG [88, 97, 110, 113], Magnetoencephalography

(MEG) [38, 75, 91, 94, 106, 110] and sEMG. Surface EMG

is an indicator of muscle activity and related to body

movement and posture. It has major applications in bio-

signal processing, next section explains sEMG and its

applications.

Validity of the basic ICA model for sEMG applications

The application of ICA to the study of sEMG and other bio

signals assumes that several conditions are verified, at least

approximately: the existence of statistically independent

source signals, their instantaneous linear mixing at the

sensors, and the stationarity of the mixing and the ICs. The

independence criterion considers solely the statistical

relations between the amplitude distributions of the signals

involved, and not the morphology or physiology of neural

structures. Thus, its validity depends on the experimental

situation, and cannot be considered in general. There are

however, two other practical issues that must be

considered:

1. Firstly, to ensure that the mixing matrix is constant the

sources must be fixed in space (this was an implied

assumption as only the case of a constant mixing

matrix was considered). This is satisfied by sEMG as

motor units are in fixed physical locations within a

muscle, and in this sense applying ICA to sEMG is

much simpler than in other biomedical signal process-

ing applications such as EEG or fMRI in which the

sources can move [50].

2. Secondly, in order to use ICA it is essential to assume

that signal propagation time is negligible. Signals from

Gaussian sources cannot be separated from their

mixtures using ICA [71] because Gaussianity is a

measure of independence. Mathematical manipulation

demonstrates that all matrices will transform this kind

of mixtures to another Gaussian data. However, a

small deviation of density function from Gaussian may

make it suitable as it will provide some possible

maximization points on the ICA optimization land-

scape, making Gaussianity based cost function suitable

for iteration. If one of the sources has density far from

Gaussian, ICA will easily detect this source because it

will have a higher measure of non Gaussianity and the

maximum point on the optimization landscape will be

higher. If more than one of the independent sources

has non Gaussian distribution, those with higher

magnitude will have the highest maximum point in

the optimization landscape.

Given a few signals with distinctive density and sig-

nificant magnitude difference, the densities of their linear

combinations will tend to follow the ones with higher

amplitude. Since ICA uses density estimation of a signal,

the components with dominant density will be found easily.

The fundamental principle of ICA is to determine the

unmixing matrix and use that to separate the mixture into

the ICs. The ICs are computed from the linear combination

of the recorded data. The success of ICA to separate the

independent components from the mixture depends on the

properties of the recordings.

Source separation of sEMG

MUAP separation is a new biomedical application of ICA.

In previous applications of ICA to sEMG, researchers have

treated the sEMG activity from entire muscles as ICs. Each

muscle contains up to 100 individual motor units and the

sEMG activity from an entire muscle is the superposition

of the activity from each motor unit within the muscle.

It has been shown that it is possible to apply ICA to isolate

sEMG signals from individual muscles [8, 72]. Treating

sEMG activity from entire muscles as ICs is useful in some

applications, especially when studying muscle activity in
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performing movements. For example, ICA has been used to

determine the exact sequence of muscle contractions in

swallowing by McKeown et al. [72] in order to diagnose

dysphagia (disorder of swallowing). The focus on treating

sEMG activity from entire muscles as ICs arises from a

desire to analyse human movement. The most important

application of sEMG is as a clinical tool for neuromuscular

disease diagnosis. In clinical applications physicians seek

to analyse individual motor units. BSS techniques such as

ICA is proposed as a novel approach for isolating indi-

vidual MUAPs from sEMG interference patterns by treat-

ing individual motor units as independent sources. This is

relevant to clinical sEMG as motor unit crosstalk can make

it difficult to study individual MUAPs [56].

During the sEMG recordings of the digitas muscles to

identify the hand gestures for human computer interface,

the cross talk due to the different muscles can result in

unreliable recordings. The simplest and most commonly

used method to improve the quality of the recording is

rejection [10]. This is done by discarding a section of the

recording that has artefact exceeding a threshold. This

method is simple, but causes a significant loss of data and

its reliability is questionable since it is predominantly

based on visual examination. There is little safeguard that

prevents the removal of some small but important features

of the signal. It is also very dependent on the technician

making it less dependable, and very expensive.

The other commonly used techniques to improve the

quality of bio signals recordings include spectral filtering,

gating and cross-correlation subtraction [11]. Spectral fil-

tering is often not useful due to the overlap of the fre-

quency spectrum of the desired signals and the artefact

component. On the other hand, gating and subtraction may

introduce discontinuity in the reconstructed signal. In the

recent past, techniques such as time domain [42, 109], and

frequency domain regression [112, 114], have been

attempted. However, simple regression in time domain can

over-compensate the artefacts [93, 111]. The regression

techniques depend on the availability of a good regressing

channel—a separate channel to record the corresponding

artefact as a reference. This is often not possible when

recording sEMG. Therefore, better artefact removal tech-

niques are necessary to overcome the disadvantages of the

previous methods. One property of the sEMG is that the

signal originating from one muscle can generally be con-

sidered to be independent of other bioelectric signals such

as ECG, EOG, and signals from neighbouring muscles.

This opens an opportunity of the use of ICA for this

application.

A number of researchers have reported the use of ICA

for separating the desired sEMG from the artefacts and

from sEMG from other muscles. While details differ, the

basic technique is that different channels of sEMG

recordings are the input of ICA algorithm. The outputs of

ICA are the ICs and the estimated unmixing matrix W. He

et al. [40] have used ICA to remove ECG artefact from

sEMG data. A variation of the same has been attempted by

the Djuwari et al. [24], for removing ECG artefact from

sEMG of the lumbar muscles. They attempted to overcome

the limitation of the number of signals to be equal to the

number of recordings and remove the ambiguity of the

order. Their work utilized ICA in two sequential steps. In

the first step, ICA with multichannel sEMG recordings that

was corrupted with ECG artefact as the input gave one pure

ECG signal in one of its row. In the next step, vector

z found by concatenating the row of the output matrix

u = Wx contained the ECG artefact and each single row of

x in turn was used as its input. The output of this step is a

matrix y = Bz that contains ECG artefact in row and the

‘cleaned’ sEMG of corresponding channel in its other row.

While in both cases, the visual inspection suggested the

successful removal of the artefact, and statistical analysis

seem to suggest an improvement compared to other tech-

niques, because of the unknown properties of the signal,

the quality of the signal before and after could not be

compared in a better way. Similar work is also reported by

Yong et al. [44] where ICA has been employed to filter the

sEMG of the lumbar muscles. Azzerboni et al. [7] dem-

onstrated the artefacts removal in sEMG using ICA and

Discrete Wavelet Transform (DWT). ICA has also been

used by Nakamura et al. [87], to decompose the sEMG

recordings in terms of the MUAPs. In their paper, they

have acknowledged the drawbacks and the necessary

conditions required for the success of the ICA, but have

not demonstrated the suitability of their experimental

data for ICA application. The earlier work done by the

researchers mainly focussed on sEMG source separation

and identification.

One difficulty associated with ICA is that it is an iter-

ative process and the initialization is random in nature.

Because of this reason, the outcome of the separation has a

randomness associated with it and the overall performance

is not optimum. The quality of the separation has an

associated randomness. This results in reduced average

accuracy and reliability [83, 84]. Hence extended ICA

techniques such as multirun ICA (MICA) has been pro-

posed [79]. The MICA provided a substantial improvement

(from 65 to 99%) in the accuracy of identification of hand

gesture based on sEMG. The problem associated due to

randomness in ICA algorithms is overcome by multiple

estimation of the unmixing matrix and selecting the best

unmixing matrix based on the highest signal to interference

ratio (SIR). This selected matrix is then used to decompose

and classify the sEMG features. The applications of

extended ICA are identification of hand gestures, muscle

fatigue analysis and other source separation methods.
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Basic properties of fractal

Fractals model complex physical processes and dynamical

systems. The underlying principle of fractals is that a

simple process that goes through infinitely many iterations

becomes a very complex process. Fractals attempt to model

the complex process by searching for the simple process

underneath [36]. FDs are used to measure the complexity

of these objects. The important and famous two examples

are Sierpinski triangle and the Koch curve, which are

shown in Fig. 2.

Let ‘F’ represent a Fractal. The basic properties of ‘F’

are [3, 30]:

1. F has a fine structure i.e. detail on arbitrarily small

scales.

2. F is too irregular to be described in traditional

geometrical language, both locally and globally.

3. F has some self similarity, perhaps approximate or

statistical.

4. Usually FD of F is greater than its topological

dimension.

The concept of a fractal is most often associated with

geometrical objects satisfying the two important properties:

– self-similarity

– fractional dimensions

Mathematically, the self-similarity property should hold

on all scales but in the real world, there are necessarily

lower and upper bounds over which such self-similar

property applies. The second criterion for a fractal object is

that it has a fractional dimension. This requirement dis-

tinguishes fractals from Euclidean objects, which have

integer dimensions. As a simple example, a solid cube is

self-similar since it can be divided into sub-units of 8

smaller solid cubes that resemble the large cube, and so on.

However, the cube, despite its self-similarity, is not a

fractal because it has a dimension =3 [14, 32].

The concept of a fractal structure, which lacks a char-

acteristic length scale, can be extended to the analysis of

complex temporal processes. Although time series are

usually plotted on a 2-dimensional surface, it actually

involves two different physical variables. The important

challenge is in detecting and quantifying self-similar

scaling in complex time series [14, 34].

Self-similarity

An important defining property of a fractal is self-simi-

larity, which refers to an infinite nesting of structure on all

scales. In this section, the properties and definition of self-

similarity are explained.

Self-similarity is a distinctive feature of most fractals.

Self-similar processes are the ones in which a small portion

of the process resembles a larger section when suitably

magnified indicating scale invariance of the process. Self-

similarity, in a strict sense, means that the statistical

properties of a stochastic process do not change for all

aggregation levels of the stochastic process. The stochastic

process looks the same irrespective of any magnification of

the process. The following will illustrate various types of

self similarity as well as present some real world examples

[13, 14, 32, 48].

- Exact self similarity

Exactly self-similar fractal objects are identical regardless

of the scale or magnification at which they are viewed.

Strict self-similarity refers to a characteristic of a form

exhibited when a substructure resembles a superstructure in

the same form. The well known Koch snowflake curve

created by starting with a single line segment and on each

iteration replacing each line segment by four other shapes

as shown in Fig. 3 is a good example for this kind.

- Approximate self similarity

The more common type of self similarity is the

approximate self-similarity. Approximate self-similar

objects has recognisably similar object at different scales

but are not exactly the same.

- Statistical self similarity

The self-similar units of a time series signal sometimes

cannot be visually observable but there may be numerical

or statistical measures that are preserved across scales to

determine the self-similar units. This is termed as statisti-

cally self-similar. Most physiological signals fall into the

category of having statistically self-similar property. An

example of statistical self-similar object is 1/f noiseFig. 2 Sierpinski triangle [14]
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(Fig. 4), where the units are statistically resemble across

multiple zooming levels.

The self-similarity of a time series related process can

be verified using the procedure [52] as follows:

– If y(k) be a time series representing the process, then

y(m)(k) is the aggregated process with non-overlapping

blocks of size m such that:

yðmÞðkÞ ¼ 1

m

Xm�1

l¼0

yðkm� lÞ

– For the signal or process, y(k) to be self-similar, the

variance of the aggregated process decays slowly with

m and this self-similarity is measurable by H , that is,

VarðyðmÞÞ � m�b

with 0 \ b\ 1 and

H ¼ 1� b=2

where H expresses the degree of self similarity; large

values indicate stronger self-similarity.

– If H�ð0:5; 1Þ then the time aggregated series is long-

range dependant (LRD).

It explains that the repeated occurrence of a particular

pattern or a set of particular patterns creates a part and the

whole time series. FD can be applied to determine this

statistical self-similarity i.e., the similarity between a part

and the whole time series [4, 99].

Fractal dimension (FD)

FD of a process measures its complexity, spatial extent or

its space filling capacity and is related to shape and

dimensionality of the process. The concept of fractal can be

applied to physiological processes that have self similar

fluctuations over a multiple scale of time and have broad

band frequency spectrum [37].

There are many FDs reported in literature [30, 32, 66]

including morphological (self-similarity, Hausdorff, mass),

and entropy (gyration dimension, information, correlation,

variance). The dimension is simply the exponent of the

number of self-similar pieces with magnification factor N

into which the figure may be broken.

Given a self-similar set S, the FD D of this set S defined

as ln k/ln M where k is the number of disjoint regions that

the set can be divided into, and M is the magnification

factor of the self-similarity transformation [13, 34, 70].

This definition of the FD of a self-similar object is

expressed as

Fractal dimension

¼ logðnumber of self� similar piecesÞ
logðmagnification factorÞ

ð4Þ

A simple example of computation of FD of the Sierpinski

triangle is illustrated below. Consider the Sierpinski triangle

shown in the Fig. 2 consisting of 3 self-similar pieces, each

with magnification factor 2. So the FD of this triangle as per

the above expression (Eqn. 4) is

Fractaldimension ¼ log 3

log 2

¼ 1:58

Hence the dimension of Sierpinski triangle is between 1

and 2. FD is a measure of complexity of a self-similar

structure and it measures how many points lie in a given

set. A plane is larger than a line, while the dimension of

Sierpinski triangle lies in between these two sets [23].

Fig. 3 Example of exactly self-similar object [36]

Fig. 4 Example of statistical self-similar object [36]
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The fractal properties of a time series signal can also be

characterised by computation of FD. As explained in

Section 4.1, the irregularity seen on different scales of time

series is not visually distinguishable, an observation that

can be confirmed by statistical analysis [59, 92]. The

roughness of the time series signals like biosignals, pos-

sesses a self-similar or scale-invariant property and their

complexity can be analysed using FD.

The nonlinearity of physiological systems may have

relevance for modelling complicated sEMG, for example,

low-level movements in which interactions and cross-talk

occur over a wide range of temporal and spatial scales.

A fundamental methodological principle underlying these

interpretations is important for analyzing continuously

sampled variations in physiological output, such as muscle

activity. Dynamical analysis demonstrates that there is

often hidden information in physiological time series and

that certain fluctuations previously considered noise actu-

ally represent important information [34, 49, 92]. This

research proposes the use of fractal theory in sEMG for

identification of low-level muscle contraction.

Self-similarity of sEMG

In complex bio signals like sEMG, there exists self simi-

larity phenomenon, in which there is a small structure

(motor unit) that statistically resembles the larger structure.

The source of sEMG is a set of similar action potentials

originating from different locations in the muscles.

Because of the self-similarity of the action potentials that

are the source of the sEMG recordings over a range of

scales, sEMG has fractals properties.

Preliminary analysis was performed to establish the

suitability of the use of fractal analysis of sEMG record-

ings. The recording of sEMG while performing simple

contraction was conducted to test the presence of self-

similarity. To determine the self-similarity in the recorded

muscle activity (sEMG), the procedure explained in

Sect. 4.2 was followed :

– A new time series y(m) (k) of the aggregated sEMG

signal over scale, m was generated from the recorded

sEMG signal.

yðmÞðkÞ ¼ 1

m

Xm�1

l¼0
yðkm� lÞ

– The natural log of variance between the original and the

aggregated series was plotted against the natural log of

m. This is shown in the Fig. 5.

– From the Fig. 5, it is observed that the variance decays

slowly with m with

b ¼ 0:9573\1:

– From this b value and the plot in Fig. 5, the self-

similarity index of recorded sEMG signal was

computed with

H ¼ 0:5213

Based on the value of b being less than 1, it is confirmed

that the signal has self-similarity and is long-range

dependant (LRD). This confirms the use of FD to deter-

mine this self-similar property of sEMG, while determining

the muscle properties and muscle activation.

Method to determine Fractal dimension

There are many FDs reported in literature [26, 37, 92]

including morphological (self-similarity, Hausdorff, mass),

entropy (gyration dimension, information, correlation,

variance) and wavelet transforms (Vrhel et al., 1995,

Mallat 1989). Most common way to estimate FD of a

spatial dataset is using the box-counting approach [101].

However, a disadvantage in the box counting dimension is

the choice of initial and final size of the magnification

factor and the computation takes more time [16].

FD analysis is frequently used in physiological signal

processing like sEMG, EEG, ECG [26, 37, 92]. Applica-

tions of FD in these physiological signals include two types

of approaches [29]:

– Signals in the time domain The former approaches

estimate the FD directly in the time domain or original

waveform domain, where the waveform or original

signal is considered a geometric figure and,
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Fig. 5 Logarithmic plot of the variance and the scale m for a sample

sEMG recording to determine the self-similarity property
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– Signals in the phase space domain Phase space

approaches estimate the FD of an attractor in state

space domain.

Calculating the FD of waveforms is useful for transient

detection, with the additional advantage of fast computa-

tion. It consists of estimating the dimension of a time-

varying signal directly in the time domain, which allows

significant reduction in program run-time [29]. The FD of

sEMG is calculated to determine the transients in sEMG,

that is related to the overall complexity of the muscle

properties. Three of the most following prominent methods

for computing the FD of a waveform [41, 55, 95] have been

applied to the analysis of signals, and a variety of engi-

neering systems.

– Higuchi’s Algorithm

– Katz’s Algorithm

– Petrosian’s Algorithm

Study by [29] have shown that Higuchi’s algorithm

provides the most accurate estimates of the FD. Katz’s

method was found to be less linear and its calculated FDs

were exponentially related to the known FDs, whereas

Petrosian’s algorithm was found to be relatively linear and

demonstrated the least dynamic range for the estimated FD.

Based on this, Higuchi’s algorithm was considered for the

computation of FD of sEMG in this study.

Review—Fractal theory based analysis of sEMG

Fractals refer to objects or signal patterns that have frac-

tional dimension. These objects exhibit self-similarity. This

defines that the objects or patterns on any level of magni-

fication will yield a structure that resembles the larger

structure in complexity [70]. The measured property of the

fractal process is scale dependant and has self-similar

variations in different time scales. FD of a process mea-

sures its complexity, spatial extent or its space filling

capacity and is related to shape and dimensionality of the

process [33]. The concept of fractal can be applied to

physiological process that are self-similar over multiple

scales in time and have broad band frequency spectrum.

Fractals manifest a high degree of visual complexity [37].

Recent studies of fractal analysis of sEMG is summa-

rised as follows:

– Anmuth et al. [4] determined that there is a small

change of the FD of the surface EMG signal and is

linearly related to the activation of the muscle

measured as a fraction of maximum voluntary contrac-

tion. They also observed a linear relationship between

the FD and the flexion-extension speeds and load.

– Gitter et al. [33] determined that FD can be used to

quantify the complexity of motor unit recruitment

patterns. They also demonstrated that the FD of EMG

signal is correlated with muscle force.

– Hu et al. [43] distinguished two different patterns of FD

of sEMG signals.

– Gupta et al. [37] reported that the FD could be used to

characterize the EMG signal.

– Recent study by Arjunan et al. [5] have also determined

the fractal nature of other biosignals such as Electro-

myogram (EMG), where they have identified the

relationship of FD with the size of the muscles. They

have also reported the use of maximum fractal length

(MFL) of biosignal as a measure of the signal strength.

The FD represents the scale invariant non-linear prop-

erty of the signal and is an index for describing the irreg-

ularity of a time series. Based on the theoretical studies, FD

is the property of the system or source of the signal and in

the case of sEMG, it is the property of the muscle. It should

be a measure of the muscle complexity and not a measure

of the level of muscle activity.

Research study by [37, 43] have attributed change in FD

to change in level of muscle contraction during high level

muscle activity. But at low-level muscle contraction, this

research work attribute the small changes in the FD to the

changes in muscle properties such as size and length due to

the contraction and not to the changes in muscle force.

Studies by [12] have indicated that for low level of iso-

metric muscle contraction, there is no change in the size of

the muscle. Based on the above facts, it has been proposed

that for low-level of muscle contraction, FD would not

change with change in the level of muscle contraction and

that FD would be a measure of the size and complexity of

the muscles [5].

Summary

This review has described the background of ICA methods,

the motivation for using ICA for source separation and

identification in sEMG signal processing. This survey has

discussed the issues of ICA applications in bio medical and

real time data. This paper has presented and described an

overview of the recent work and the background of utili-

zation of sEMG in identification of human movement and

the feature extraction methods for identification of low-

level muscle activation. This paper has also presented

recent studies on the use of fractal theory for analysis of

sEMG. This literature review has discussed the strengths

and limitations of the features used for identification of

subtle muscle movements. While this review has conducted

conclusive studies related to fractal analysis of sEMG,

there is scope for improved understanding of multi fractal

analysis when there are signals of different properties.
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There is the need for increased number of subjects and to

conduct experiments over a longer period of time to

determine the impact of inter-experimental variations.

Some of the limitations of using ICA and FD include :

– Order and ambiguity problem associated with ICA may

limit the source separation

– Overcomplete ICA, where number of sources exceed

number of recordings which may reduce the reliability

of the system

– Choice of scale and algorithm to compute FD for

particular application will be a limiting factor and

– Computation of FD will defer due to the noise and

crosstalk.

There still exists numerous unsolved problems of ICA

and FDs in sEMG signal processing. Some of the important

ones includes:

– To combine these fractal features with ICA to deter-

mine the source dependant properties. In order to

overcome the crosstalk from different muscles recorded

from different sensors or channels based on ‘complex’

nature of signal, future analysis on these fractal features

with ICA has to be investigated

– To investigate the feasibility of the MFL from single or

two channels recording of different bio-signals like

EEG, EOG. The study on using these physiological

signals has been increased for applications in the field

of HCI and medical systems and control for disabled

individuals.

– Order of the separated sEMG signals using ICA and

– Normalisation of the estimated independent compo-

nents to measure MUAP conduction velocity

References

1. ICA based identification of sources in sEMG (2007) doi:

10.1109/ISSNIP.2007.4496914

2. Acharya Bhat SP, Kannathal N, Rao A, Lim CM (2005) Anal-

ysis of cardiac health using fractal dimension and wavelet

transformation. ITBM-RBM 26(2):133–139

3. Akujuobi C, Baraniecki A (1992) Wavelets and fractals: a

comparative study. Statistical signal and array processing, 1992.

Conference proceedings., IEEE sixth SP workshop on pp. 42–45

4. Anmuth CJ, Goldberg G, Mayer NH (1994) Fractal dimension

of electromyographic signals recorded with surface electrodes

during isometric contractions is linearly correlated with muscle

activation. Muscle Nerve 17(8):953–954

5. Arjunan SP, Kumar DK (2007) Fractal based modelling and

analysis of electromyography (EMG) to identify subtle actions.

29th Annual international conference of the IEEE engineering in

medicine and biology society pp. 1961–1964

6. Attias H, Schreiner CE (1998) Blind source separation and

deconvolution: the dynamic component analysis algorithm.

Neural Comput 10(6):1373–1424

7. Azzerboni B, Carpentieri M, La Foresta F, Morabito FC (2004)

Neural-ICA and wavelet transform for artifacts removal in

surface EMG. In: Neural networks, 2004. Proceedings. 2004

IEEE international joint conference on 4:3223–3228

8. Azzerboni B, Finocchio G, Ipsale M, La Foresta F, Mckeown

MJ, Morabito FC (2002) Spatio-temporal analysis of surface

electromyography signals by independent component and time-

scale analysis. In: Engineering in medicine and biology, 2002.

24th Annual conference and the annual fall meeting of the

biomedical engineering society. EMBS/BMES conference,

2002. Proceedings of the 2nd joint 1:112–113. doi:10.1109/

IEMBS.2002.1134411

9. Baris N (2007) The adaptive ARMA analysis of EMG signals.

J Med Sys 32(1):43–50

10. Barlow JS (1979) Computerized clinical electroencephalogra-

phy in perspective. IEEE Trans Biomed Eng BME-26(7):377–

391. doi:10.1109/TBME.1979.326416

11. Bartolo A, Roberts C, Dzwonczyk RR, Goldman E (1996)

Analysis of diaphragm EMG signals: comparison of gating vs.

subtraction for removal of ecg contamination. J Appl Physiol

80(6):1898–1902

12. Basmajian Deluca C (1985) Muscles alive: their functions

revealed by electromyography, 5th edn. Williams & Wilkins,

Baltimore, USA

13. Bassingthwaighte J, Liebovitch L, West B (1994) Fractal

physiology. Oxford University Press, New York

14. Bourke P (2007) Self similarity. Fractals, Chaos URL http://

local.wasp.uwa.edu.au/*pbourke/fractals/selfsimilar/

15. Calinon S, Billard A (2005) Recognition and reproduction of

gestures using a probabilistic framework combining PCA, ICA

and HMM. In: ICML ’05: Proceedings of the 22nd international

conference on machine learning, pp. 105–112. ACM. doi:

10.1145/1102351.1102365

16. Carlin M (2000) Measuring the complexity of non-fractal shapes

by a fractal method. Patt Recog Lett 21(11):1013–1017

17. Chen B, Wang N (2000) Determining EMG embedding and

fractal dimensions and its application. In: Engineering in med-

icine and biology society, 2000. Proceedings of the 22nd annual

international conference of the IEEE 2:1341–1344

18. Christodoulou CI, Pattichis CS (1999) Unsupervised pattern

recognition for the classification of EMG signals. IEEE Trans

Biomed Eng 46(2):169–178

19. Coatrieux JL, Toulouse P, Rouvrais B, Bars RL (1983) Auto-

matic classification of electromyographic signals. EEG Clin

Neurophysiol 55:333–341

20. Cram J, Kasman G, Holtz J (1998) Introduction to sur-

face electromyography. Aspen Publishers Inc., Gaithersburg,

Maryland

21. Crawford B, Miller K, Shenoy P, Rao R (2005) Real-time

classification of electromyographic signals for robotic control.

Tech rep, University of Washington

22. De Luca C (2006) Electromyography. Encyclopedia of medical

devices and instrumentation. Wiley, Indianapolis, pp. 98–109

23. Devaney RL (1995) Chaos in the classroom. Mathematics and

statistics at Boston University. URL http://math.bu.edu/DYSYS/

chaos-game/chaos-game.html

24. Djuwari D, Kumar D, Raghupati S, Polus B (2003) Multi-step

independent component analysis for removing cardiac artefacts

from back sEMG signals. In: ANZIIS, pp. 35–40
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