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Abstract
Purpose  Cardiac CT is a valuable diagnostic tool in evaluating cardiovascular diseases. Accurate segmentation of the heart 
and its structures from cardiac CT and MRI images is essential for diagnosing functional abnormalities, treatment plans 
and cardiovascular diseases management. Accurate segmentation and quantitative assessments are still a challenge. Manual 
delineation of the heart from the scan images is labour-intensive, time-consuming, and error prone as it depends on the 
radiologist's experience. Thus, automated techniques are highly desirable as they can significantly improve the efficiency 
and accuracy of image analysis.
Method  This work addresses the above problems. A new, image-driven, fast, and fully automatic segmentation method was 
developed to segment the heart from CT images using a processing pipeline of adaptive median filter, multi-level threshold-
ing, active contours, mathematical morphology, and the knowledge of human anatomy to delineate the regions of interest.
Results  The algorithm proposed is simple to implement and validate and requires no human intervention. The method is 
tested on the 'Image CHD' DICOM images (multi-centre, clinically approved single-phase de-identified images), and the 
results obtained were validated against the ground truths provided with the dataset. The results show an average Dice score, 
Jaccard score, and Hausdorff distance of 0.866, 0.776, and 33.29 mm, respectively, for the segmentation of the heart's cham-
bers, aorta, and blood vessels. The results and the ground truths were compared using Bland-Altmon plots.
Conclusion  The heart was correctly segmented from the CT images using the proposed method. Further this segmentation 
technique can be used to develop AI based solutions for segmentation.

Keywords  Heart chambers · Active contours · Masks · Cardiac CT · Subjective evaluation

Introduction

Cardiovascular diseases (CVD) such as coronary artery dis-
ease, heart failure, hypertension, stroke, and arrhythmias are 
among the leading cause of death in individuals [1]. A WHO 

factsheet of 2021 states that CVDs account for nearly 32% of 
all deaths [2]. While genetic conditions may not be treated 
completely, detecting these diseases at the early stages 
allows for effective management and treatment. An insight 
into the internal structures is necessary to treat and diagnose 
CVD. Cardiac Computed Tomography (CT) Cardiovascular 
Magnetic Resonance Imaging (MRI) [3] and the coronary 
angiography are widely employed imaging modalities for 
structural and functions assessment of the heart respectively. 
These modalities produce unprecedented high-resolution 
images of the heart and have become a valuable method for 
non-invasive evaluation of the heart. These images contain 
regions of interest (ROI), i.e., heart and blood vessels, along 
with organs in the vicinity like lungs, ribs, spine, and liver. 
Image segmentation and extracting the volume of interest 
(VOI) and shape of the anatomical structures are among the 
key procedures employed while treating CVD. Separating 
the heart and its vessels from the rest is essential for further 
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analysis and diagnosis. It enables the computation of cardiac 
functional parameters like stroke volume, ejection fraction, 
etc., which are important in assessing cardiac function, heart 
failure, and congenital heart disease. Manually delineating 
the ROI is time-consuming, demands technical and clinical 
knowledge, subject to inter and intra-observer errors, and not 
easily reproducible. Thus, it is desirable to have automatic 
segmentation to ensure unbiased, reproducible, and consist-
ent results. Fully automatic whole-heart segmentation has 
excellent potential for many cardiac applications [4, 5].

For review of state-of-the art techniques, the clinical and 
technical journals were considered from MEDLINE, PUB-
MED and Mesh headings databases. Traditionally, segmen-
tation in medical images was performed by a radiologist 
slice by slice who manually delineates the ROI. This process 
is time-consuming, error-prone, subject to inter and intra-
observer variability, and not reproducible [6]. The accuracy 
and efficiency of segmentation are paramount since they can 
affect the clinical decisions. One area of research focuses on 
hybrid methods for segmentation [4]. These methods involve 
the use of manual and automated methods. It leverages 
human interaction and expertise to provide the seed points 
or initial guidance. These hybrid methods have shown to 
improve the accuracy and efficiency in segmentation. Model 
fitting segmentation methods use knowledge of shape and 
geometry of the ROI [7]. A model is created using training 
images to learn the characteristics and geometry of the ROI. 
This model is then applied to new images where it selects 
the object that matches itself closely. This method is seen to 
provide robust results and can cope well with deformation 
in images [8]. There is also research in developing methods 
using traditional image processing techniques. These are 
data-driven and considered low-level segmentation algo-
rithms. Studies have used edge detection, region growing, 
and thresholding techniques to segment the heart. These 
research efforts indicate the potential of traditional image 
processing techniques in achieving accurate heart segmenta-
tion. Much research has been done on the heart segmenta-
tion, but, most of these focus on segmenting just the left 
ventricle or myocardium, as the quantitative assessment of 
the left ventricle and myocardium is sufficient for diagnosing 
many coronary heart diseases [9].

With the rising cases of CVDs, having a fast, consist-
ent, automated, and accurate form of segmentation becomes 
important. This work aim to devise a fully automatic heart 
segmentation from the cardiac CT images with the help of 
image processing techniques and exploiting the human anat-
omy. It also complements segmentation with a method to 
calculate the volumes of the extracted ROI to help for faster 
diagnosis. Hence the aim is defined through two objectives.

•	 Develop an automated method for segmenting the heart 
chambers and blood vessels from CT images.

•	 Compute the volumes and evaluate the accuracy of the 
method by comparing with the ground truths (GT).

Materials and Methods

The required Cardiac CT images in NifTII format were 
downloaded from ImageCHD [10] database which has six-
teen types of congenital heart diseases. These images were 
single energy and single-phase CT acquisition. Table  1 
details the image acquisition parameters. These images 
are captured using a SIEMENS biographTM 64 CT scan-
ner. The image resolution was 512*512*(137–551) with a 
voxel size of 0.25*0.25*0.5 mm3. For data privacy, patient 
demography, image scanner details and clinical details were 
removed from the nifTII file headers. After image collec-
tion, we checked the data completeness (for missing DICOM 
attributes) and any cases with incomplete tag details were 
discarded. Certain dataset needed data pre-processing to 
improve the tissue contrast by reducing the quantum noise. 
As the quality of the image directly affects the accuracy and 
efficiency of the segmentation, we considered only diag-
nostic quality images. The dataset also includes manually 
delineated GT defined by experts for the whole heart seg-
mentation. The segmentation labels were fulfilled by one 
radiologist, and seven substructures were labelled: LV, RV, 
LA, RA, Myocardium, Aorta, and Pulmonary Artery. The 
manual delineation (GT) was performed by 4 senior cardiol-
ogists (32-, 20-, 16-, and 14-years experiences) using MIm-
ics software. One cardiologist labelled the segmentation and 
other three reviewed it. To avoid bias or inter-observer vari-
ance among three opinions, the voting policy was followed. 
Like this, each one worked independently on 25% of the 
dataset in their image pool and created the GT labels. The 
results in this work are validated with these labels. We also 
have included five retrospective cases from Radiodiagnosis 
and imaging department, Kasturba Hospital, Manipal and 
there is no plans for prospective cases.

The block diagram of the work is shown in Fig. 1. The 
segmentation algorithm consists of three major steps. The 

Table 1   The Cardiac CT imaging acquisition details

Format DICOM, nii (nifti)

Patient demography Anonymized (de-identified according to EDPR)
Source Multi centre, clinically approved
Sample size 90
Data authenticity Validated as per DICOM PS3.1 2022b
Dimension 2D, 3D, 4D
Scan date Last 5-6 years
MDCT 64 and 128 slices
Slice thickness 0.4–1.0 mm
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first is the pre-processing of the images for contrast enhance-
ment, calculation of statistical parameters, and removal of 
noise and extra artifacts. The next step is the segmentation 
of the heart. The knowledge of human anatomy and the 
intensity levels corresponding to various organs are used 
extensively in this step. Each of these steps is explained in 
detail below.

Pre‑processing

Pre-processing is not a mandatory step in medical image 
processing. It is done based on the clinical task. At the 
start, the background air, and artifacts like the scanning 
table (Fig. 2) were removed. The borders and intensity 

differences between the tissues are also not very promi-
nent. This was resolved to enhance the image quality 
through following steps.

•	 Rotate the images to have the spine face downwards to 
allow for more effortless exploitation of human anatomy 
during segmentation.

•	 Contrast enhancement to enhance the intensity differ-
ences.

•	 The quantum noise was reduced using adaptive median 
filter.

•	 Computation of statistical parameters to be used during 
the segmentation stage.

Fig. 1   Methodology of the 
proposed work

Fig. 2   Dataset slice and volume 
a Sample slice from the CT 
image dataset, b volume render-
ing of CT images
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•	 Retain only the largest connected component in the vol-
ume to remove all unwanted objects (artifacts).

Statistical Parameters Calculation

In second step, the statistical parameters were calculated 
for separating the other organs from CT images [11]. 
Let n , m , and p be the dimensions of the 3D CT scan. 
Let the CT volume be represented as f (x, y, z) , where 

x = 1 ∶ n, y = 1 ∶ m, andz = 1 ∶ p . For each axial slice,  the 
following parameters are computed (Fig. 3):

•	 Mean of the pixels, �(k): The image histogram shows 
several distinct peaks. Of these, the valley points belong 
to the air, and the highest belongs to bones. The mean 
� of the intensities corresponds to the air due to its pre-
dominance and can be used to separate the air and back-
ground from the rest of the image (Fig. 4b).

Fig. 3   Image after pre-process-
ing a single slice, b volume 
rendering

Fig. 4   Thresholding the image with the statistical parameters: a Original Slice, b Thresholding with μ(k), c Thresholding with μsup(k), d Thresh-
olding with μsup(k) + σ(k), e Thresholding with μglobal, f Thresholding with μglobal + σ(k))
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•	 Mean intensity of the pixels with intensity greater 
than μ(k) in a given slice k, µsup(k): The intensity cor-
responding to this parameter is the interval of intensities 
where the blood and bone marrow are included. Masks 
obtained with this value as a threshold contain tissues 
where the oxygenated blood flows along with the bones. 
Thus, it is used to segment the aorta, ribs, and spine 
(Fig. 4c).

•	 The standard deviation of intensities in the kth slice, 
with intensity greater than μ(k), σ(k): The threshold 
μsup(k) + σ(k) separates ribs from the surrounding mus-
cles for precise segmentation. The gray level correspond-
ing to this value is useful in separating the outer layer of 
bones and structures (Fig. 4d).

•	 Global Mean, μglobal: The value corresponds to the inten-
sity of muscular tissues and depends on the intensity lev-
els of the whole CT scan. It is computed as the mean 
of the parameter μsup(k) plus the standard deviation of 
μsup(k) (Fig. 4f)

•	 Noise and extra artifacts removal: The background 
noise and other unwanted objects must be removed 
(Fig. 3a, b) for effective segmentation. A series of binary 
masks are generated by thresholding the axial slices with 
the computed parameter �(k). This mask allows to seg-
ment the air and background from the image. Once all 
images are segmented, all the connected components 
except the largest component in the volume are dis-
carded. This allows to refine the volume and retain just 
the thoracic cavity.

These statistical parameters are chosen as the images have 
definitive Hounsfield Units (HU – the voxel intensity) uni-
formly distributed within the ROI and the intra-ROI voxels 
variations are too less. In the case of images with mottle 
also, as images are pre-processed using median operator and 
contrast is enhanced, the intra-ROI voxels variations is less. 
In these two contexts, the above-mentioned parameters helps 
for noise removal and keep the dataset ready for the next 
steps. This was tested with images acquired at 80 kVp and 
100 kVp . These parameters might not work as expected if 
images with less than 80 kVp and more than 100 kVp are 
considered. This was not tested due to non-availability of the 
datasets with these two kVp.

Segmentation

Segmentation of the heart is done in a series of steps. First, 
the aorta is separated from the images. Next, the ribs are 
removed, followed by the spine removal. Liver and heart has 
similar intensities; hence a separate step is necessary to sep-
arate the two. Ultimately, the heart's chambers are extracted, 
and the aorta is added back. The aorta is delineated first as 

it is closely associated with the spine and can get removed 
during the spine removal. Also, the knowledge of the loca-
tion of the aorta helps us determine the location of the spine 
relative to itself. It is also the only ROI in slices with excess 
liver and can get removed during liver removal.

Generation of Aorta Mask

The descending aorta is seen as a circular cross-section in 
the axial slices when thresholded with �sup(k) + �(k). A 
set of binary masks is generated by segmenting the images 
with the parameter μsup(k) + σ(k). The mask is then scanned 
for circular objects of sizes like that of the aorta. Once the 
circle masks are obtained for all slices, only that connected 
component from all the slices is retained. This component 
gives the location of the aorta (Fig. 5e). Active contours are 
used as a seed mask to refine the aorta.

Ribs Removal

The width of the rib cage can be visualized on the anterior 
side due to the removal of the lungs, which helps to create 
a disk-like mask that encompasses the ribs (Fig. 5g and h). 
The rib disk mask for a slice is created as follows,

1.	 For every column of the image, find the indices of the first
and last nonzero element.

2.	 Set the corresponding elements of a binary
mask ribsOut to 1.

3.	 Initialize a binarymask ribsIn to ribsOut.
4.	 Erode the ribsInmask with a disk-shaped structuring

element of radius equal to the rib width of that slice.
5.	 The rib disk mask is obtained by subtracting ribsIn

from ribsOut

Spine Removal

The images from the previous step now contain the heart, 
spine, and liver. The next challenge is to remove the spine 
effectively. Generation of the spine mask is done from the orig-
inal processed volume and not the output of the previous step, 
as the output has a disconnected spine. First, the processed 
volume is subjected to k-means clustering [12], and only those 
regions corresponding to the highest intensities are retained 
(Fig. 5i, and 5j). This disconnects the spine from other organs 
by removing muscular tissues. Binary masks are generated 
by thresholding the images obtained with μsup(k) + σ(k). The 
resulting masks contain just the heart, aorta, and spine. All 
muscular tissues are removed, causing the spine to be detached 
from the heart. In cases where the heart, aorta, and spine are 
very close, and the muscular edge is not very prominent, they 
can remain connected. Since the aorta is already segmented 
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out, we subtract the aorta masks from the above masks and 
morphologically open the mask to separate the heart and spine.

Liver Removal

The liver has intensities like heart and hence needs special 
care during removal to prevent the loss of the ROI. It is 
observed that only 10-20% of the slices contain the liver 
regions. To address the height differences from the bottom 
of the image, we consider the left and right halves sepa-
rately and then calculate the mean of the heights obtained. 
The right lobe of the liver from overpowering and caus-
ing us to lose the apex of the heart, the height of the liver 
is calculated in 2 halves, one for the left lobe and another 
for the right. The mean of the two is the liver height. A 
threshold value corresponding to the liver regions is cal-
culated by considering the mean of nonzero values in the 
bottommost nonzero slice in the volume post-spine removal. 
A mask corresponding to the heart is obtained by subject-
ing the volume to k-means clustering (k = 3) and retaining 
the regions corresponding to the highest intensities. These 
masks remove muscles in the vicinity and refine the vol-
ume to contain only the heart regions. The segmentation 
of chambers is performed employing the algorithm Isodata 
[13], which provides the threshold value as follows:

Results

The results are shown in Fig. 5a–l. Due to space constraints, 
we could not show all the intermediate steps results on MPR 
slices. Only two axial slices are shown in Fig. 5a and 5d to 
illustrate the pre-processing and visualization. The remaining 
figure are the results of processed 3D volume. There is a slight 

1.Compute the initial threshold t1 as themean gray level of
the nonzero pixels of the slice

2.Compute twomean values − �1 and �2 as themean gray
levels of nonzero pixels of the two
classes obtained by thresholding the imagewith t1.

3.Compute a new threshold t2 as themean of �1 and �2.

4. If the difference between t1 and t2 is less than 1%, go to
step 5.Else, assign t2 to t1 (t1 = t2) and go to step 2.

5.Return the new threshold value t2.

Fig. 5   The input axial CT images, intermediate and final results of segmentation
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variation in color in Fig. 5k and 5l as it is due to the different 
illumination model used in our work and in GT.

Validation

The accuracy of the segmentation results was evaluated by 
computing similarity metrics between the results and the GT 
(results in Table 2). These are the recommended [14–17] and 
widely used metrices. They are,

•	 Dice Index (Eq. 1) value 1 indicates a perfect overlap/
match between the two datasets.

•	 Jaccard Index (Eq. 2) compares the overlap of two 
results. Higher value, better is segmentation.

•	 Absolute Volume Difference (AVD) measures the abso-
lute difference between the volumes of the result and 
the GT. The lower the AVD, the better the segmentation 
(Eq. 3).

•	 Symmetric Surface Distances (SSD) is based on the 
distance between the surface voxels of the two volumes. 
Surface voxels are defined as any voxel with at least one 
non-object voxel in its 8 neighbourhood. SSD is obtained 
by measuring the Euclidean distance for every surface 
voxel in the segmented volume Vs to the closest surface 
voxel of the reference or GT volume VR. Let S(SEG) 
denote the set of all surface voxels of segmentation and 

(1)Dice =
2 ∗ |X ∩ Y|
|X| + |Y|

(2)Jaccard =
|X ∩ Y|
|X ∪ Y|

(3)AVD =

|||Vseg − Vgt
|||

Vgt

∗ 100

S(GT) denote the set of surface voxels of the GT. The 
shortest distance of a voxel to S(SEG) is defined as,

•	 Average Symmetric Surface Distance (ASSD) meas-
ures the average distance (in mm ) between the surfaces of 
the GT and the results. It considers both the false positive 
and false negative errors. It is 0 for perfect segmentation.

•	 Root Mean Square Symmetric Surface Distance 
(RMSSD) calculates the square of the distances between 
surface voxels in mm (eqn 6). It gives an opinion on the 
distribution of the distance error. Perfect segmentation 
has an RMSSD value of 0.

•	 Maximum Symmetric Surface Distance (MSSD), also 
called Hausdorff distance, is determined similarly to 
ASSD and measured in mm. The differences between the 
surface voxels are computed using Euclidean distances 
(Eq. 7), and the maximum among these values yields 
MSSD. For perfect segmentation, this value is 0.

(4)d
(
vGT , S(SEG)

)
= minvGT∈S(GT)(|vgt − S(SEG|)

(5)

ASSD
(

Sseg, SGT
)

= 1
|

|

|

Sseg
|

|

|

+ |

|

SGT ||
∗

(

∑

vSEG∈S(SEG)
d(vSEG, S(GT))

+
∑

vGT∈S(GT)
d(vGT , S(SEG))

)

(6)

RMSSD
(

Sseg, SGT
)

= 1
|S(SEG)| + |S(GT)|

∗

(

∑

vSEG∈S(SEG)
d(vSEG, S(GT))

+
∑

vGT∈S(GT)
d(vGT , S(SEG))

)

Table 2   Accuracy metrics calculated on the results

↓ indicates lower the better, and ↑ indicates higher the better

CT Image Dice↑ Jaccard↑ AVD↓ (%) ASSD↓ (mm) RMSSD↓ (mm) MSSD↓ (mm) Volume (mm3)

CT_1001 0.9164 0.8456 13.19 0.67 1.81 25.18 149486.3
CT_1004 0.9681 0.9382 2.61 0.39 1.50 23.07 343192.1
CT_1012 0.8550 0.7468 23.46 1.42 3.67 28.07 41870.34
CT_1019 0.8838 0.7919 8.48 1.54 3.77 32.98 54602.1
CT_1023 0.9298 0.8688 10.17 0.6 1.53 24.46 165982.9
CT_1037 0.8727 0.7741 13.88 1.82 4.29 27.58 259461.9
CT_1060 0.9217 0.8548 1.14 1.03 3.35 35.53 79428.3
CT_1074 0.9065 0.8289 7.3 0.65 1.92 29.84 43503.2
CT_1081 0.7490 0.5987 30.06 1.71 3.11 21.93 26314.4
CT_1121 0.9271 0.8641 11.12 0.59 1.41 23.26 269789.1
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•	 Volumetric measure helps evaluate the changes in an 
organ or tissue volume over time. The volume of the 
extracted structure is calculated by counting the nonzero 
pixels in each slice, and the total sum is multiplied by 
the pixel size in x and y directions of patient coordinate 
system.

Discussion

Evaluation

The method was tested on 30 single energy and single-
phase CT dataset from imageCHD [10]. This work relied 
on single-phase images as the aim was to segment the 
heart chambers as a first step. A study in [18], illustrates 
the benefit of multiphase CT compared to single-phase 
which gives better tissue details of arteries at different 
time during scanning (but at the cost of extra radiation 
to the patient [19]). Hence, time resolved multi-phase 
images will be considered for future work for arteries 
segmentation. The results were objectively validated 
with the GT using Eqs. 1–6 and subjectively by a car-
diologist. A series of similarity metrics (section "Eval-
uation") calculated are shown in Table 2. Due to space 
constraints, only 10 subjects are shown. Dice coefficients 
towards 1.0, Jaccard index towards 100 and AVD of lower 
value indicates the accuracy of the predicted segmenta-
tion and the GT. Volume measurement includes voxel 
count in the segmented volume multiplied by their size 
( sizex ∗ sizey ∗ slicethickness ). For the lower slice thickness 
of 0.4−1.0mm , the results were good compared to 2.5mm 
and 5mm . As observed, ASSD, RMSSD and MSSD were 
computationally expensive for the entire volume. Most of 
the scores show that the algorithm performs well. In few 
cases due to quantum noise (less photons during scanning) 
the contrast difference between the chambers and the mus-
cle tissues was not enough and hence low accuracy was 
achieved. Noise reduction was not attempted from such 
images and retest segmentation as it was not part of the 
objective.

In the segmentation context, metr ics such as 
Dice, Jaccard,AVD,ASSD,RMSSD and MSSD are ideal. 

(7)

MSSD
(

Sseg, SGT
)

=max

(

max

(

∑

vSEG∈S(SEG)
d(vSEG, S(GT))

)

,

max

(

∑

vGT∈S(GT)
d(vGT , S(SEG))

))

(8)
Volume =(Total nonzero voxels in the volume)

∗ sizex ∗ sizey ∗ sizez

Addition to subjective validation, clinicians still consider 
these as best statistical parameters which have been wit-
nessed in many radiology conferences and clinical jour-
nals. Hence, the objective and subjective clinical evalu-
ation can use these numbers and the results on 2D MPR 
and 3D views. Segmenting and classifying the arteries to 
sixteen types of CHD and providing exact measurement 
is the scope of future work. Table 3 shows the mean value 
of measurements with reference to values from Table 2.

The correlation between the manual measurements 
(A) and the automated measurements (B) is plotted and 
quantitatively analysed through Bland-Altmon plot (BA-
Plot) (Fig. 6) with the help of MedCalc Version 22.014 
software. This method uses mean ( d ) and standard devia-
tions (σ) of the differences. The difference between GT 
and the measurement ( y-axis ) is plotted against the mean 
of the two measurements ( x-axis ). Fig. 6 shows the plots 
of comparing the DICE (row 1) and Jaccard metrics (row 
2) between A and B. As we got only the dice and Jaccard 
values from the reference work, only these two param-
eters were compared and not others like AVD, ASSD, 
RMSSD, MSSD and volume. Difference and LoA (Limits 
of Agreement) calculations are based on regression analy-
sis (Fig. 6b and e). The calculations in BA-Plot are, Aver-
age difference = 0.04 , LoA = −0.05&0.13 and p = 0.3903 
for DICE (Fig.  6a) and Averagedifference = −0.02 , 
LoA = −0.23&0.19 and p = 0.0853 for Jaccard (Fig. 6d). 
The repeatability coefficient at 95%CI  for the selected 
A and B is 0.11[0.08 − 0.2] in DICE (Fig.  6c) and 
0.2[0.14 − 0.35] in Jaccard (Fig. 6f). In this study, 95% of 
the data points lie within ±2� of the mean difference which 
is a good agreement. These results were acceptable by the 
radiologist (Table 4).

Compared to [4, 6, 7], our method is automatic, cor-
rectly delineated the heart boundary without any segmen-
tation leak problem and it also works for images acquired 
with slight less tube current ( mA ). And compared to 
method discussed in [9], this method segmented all four 
chambers correctly. The segmentation leak problem was 
visually inspected using roamthrough navigation (from 
inferior to superior direction and vice-versa in z-axis ) by 

Table 3   Summary of segmentation evaluation metrics

Similarity metric Mean Maximum Minimum

Dice ↑ 0.8846 0.9681 0.7043
Jaccard ↑ 0.7966 0.9382 0.5436
AVD ↓ 9.81 41.27 0.33
ASSD ↓ 1.30 5.08 0.39
RMSSD ↓ 3.50 10.85 1.18
MSSD ↓ 34.91 63.46 11.75
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Fig. 6   Bland-Altmon plots of comparing the DICE (row 1) and Jac-
card metrics (row 2) between experimental values and the GT. Graph 
shows the data points (10 data points) as dots. The dotted line indi-
cates the average difference, and the dashed lines indicate the (LoA). 

a and d Plot of differences between method A and method B vs. the 
mean of the two measurements. b and e Regression line between 
hypothetical measurements done by method A and method B. c and f 
Quantile plot of two sets of quantiles

Table 4   The Bland-Altmon plot calculation for DICE and Jaccard score

CT image Dice Jaccard

A B Mean (A + B)/2 (A − B) (A − B)/Mean% A B Mean (A + B)/2 (A − B) (A − B)/Mean%

CT_1001 0.9164 0.875 0.8957 0.0414 4.623 0.8456 0.71 0.7778 0.1356 17.433
CT_1004 0.9681 0.924 0.94605 0.0441 4.662 0.9382 1.03 0.9841 − 0.0918 − 9.329
CT_1012 0.8550 0.810 0.8325 0.045 5.405 0.7468 0.70 0.7234 0.0468 6.470
CT_1019 0.8838 0.800 0.8419 0.0838 9.953 0.7919 0.87 0.83095 − 0.0781 − 9.40
CT_1023 0.9298 0.971 0.9504 − 0.0412 − 4.335 0.8688 0.91 0.8894 − 0.0412 − 4.632
CT_1037 0.8727 0.872 0.87235 0.0007 0.080 0.7741 0.61 0.69205 0.1641 23.712
CT_1060 0.9217 0.951 0.93635 − 0.0293 − 3.13 0.8548 0.97 0.9124 − 0.1152 − 12.626
CT_1074 0.9065 0.834 0.87025 0.0725 8.331 0.8289 0.81 0.81945 0.0189 2.306
CT_1081 0.7490 0.700 0.7245 0.049 6.763 0.5987 0.72 0.65935 − 0.1213 − 18.397
CT_1121 0.9271 0.829 0.87805 0.0981 11.172 0.8641 0.98 0.92205 − 0.1159 − 12.57

d 0.03641 4.35 − 0.01981 − 1.703
σ 0.0438 0.5 0.1153 14.5
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zooming the boundary on axial CT and on 3D surface 
rendered images.

Clinically, in cardiology applications like coronary 
angiography or cardiac CT, segmentation of ROI and VOI 
respectively plays a key role for the correct assessment of 
vascular structures. Specially in Myocardial ischemia due to 
calcium deposition on the coronary arteries surface, blood 
flow reduces. Calcium scoring and risk assessment are 
still a hot topic for the researchers. Clinical parameters of 
patients like comorbidities, age and family history are also 
part of risk scoring. There exist state-of-the-art methods in 
quantitative assessment of the calcium deposition but the 
measurement accuracy is still lacking and mostly the process 
is manual. Also, the arteries blockage percentage is purely 
subjective with inter-observer variation which would lead to 
clinical decision of unnecessary vascular procedure. A mil-
limetre artery measurement variation on the axial slice could 
lead to variation in the block percentage. In this direction, 
the proposed solution has potential to segment the cardio-
vascular structures and clinically is significant.

Infrastructure Requirements

The work was carried out on a laptop using MATLAB 2021b 
with Intel core i5, 8 GB RAM, and 2 GB Iris XE Graphics 
card and also tested in two more configurations with AMD 
Ryzen 5 4600 CPU, 8 GB memory, and NVIDIA GeForce 
GTX 1650 GPU with 4 GB memory. In MATLAB, tool-
boxes of Computer Vision, Image Processing, Parallel Com-
puting, Statistics and Machine Learning, Signal Processing, 
and Deep Learning (For calculation of Similarity Metrics) 
were used. The algorithm takes approximately 1.5 ± 0.5 
seconds/CT slice, with a maximum running time of 15.5 
min for 551 slices and a minimum of 2.5 min for 137 slices. 
Overall, the methodology defined produces good and fast 
results.

Limitations

This study has few imitations. Some CT images have poor 
or uneven illumination due to less tube voltage during image 
acquisition. Since the segmentation depends on the pixels, 
this causes the algorithm to either retain more or less of the 
ROI. The collar bones were present near the heart and have a 
similar intensity range. This causes it to be retained in most 
results, lowering the similarity metrics. The fine branches of 
the blood vessels get lost during segmentation if they don't 
have any common pixels with the segmented heart when 
added separately. In some cases, few rib bones, sternum, or 
spine remained in the final segmentation due to their proxim-
ity. Even if they are removed successfully during the initial 
stages, they may get added back during the mask expansion 
via active contours or during the blood vessel addition. In 

some cases, the heart chambers could not be separated due 
to the lack of clear boundaries.

Conclusion

The proposed approach has successfully delineated the heart 
from the CT scans. The results show an average Dice score, 
Jaccard score, and Hausdorff distance of 0.866, 0.776, and 
33.29 mm, respectively. The result of this project has the 
potential to make a significant impact on patient care. After 
clinical validation by the doctors, the work would be inte-
grated to the cardiac image acquisition workflow. The result 
of this work is aimed at helping cardiologists and interven-
tional cardiologists obtain segmentation results faster. Accu-
rate segmentation can help to identify and monitor various 
cardiovascular conditions, leading to better patient outcomes 
and management of heart diseases. Comparing the heart's 
structure and shape over time can help analyze the growth 
and function of the heart with age. This can help study the 
changes over time in case of congenital defects. Whole 
heart segmentation can be used to create a 3D model of the 
patient's heart to help plan interventional surgeries better. 
Scope of our future work is to further explore the clinical 
characteristics, VOI morphology analysis and radiomics fea-
tures extraction which has great potential to still improve the 
scientific results. We are excited and interested to see how 
the method performs in case of high-resolution CT images. 
Also, to reduce the mottle and re-segment so that the seg-
mentation algorithm becomes more robust.
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