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Abstract
In clinical rhythmology, intracardiac bipolar electrograms (EGMs) play a critical role in investigating the triggers and sub-
strates inducing and perpetuating atrial fibrillation (AF). However, the interpretation of bipolar EGMs is ambiguous due to 
several aspects of electrodes, mapping algorithms and wave propagation dynamics, so it requires several variables to describe 
the effects of these uncertainties on EGM analysis. In this narrative review, we critically evaluate the potential impact of such 
uncertainties on the design of cardiac mapping tools on AF-related substrate characterization. Literature suggest uncertain-
ties are due to several variables, including the wave propagation vector, the wave’s incidence angle, inter-electrode spacing, 
electrode size and shape, and tissue contact. The preprocessing of the EGM signals and mapping density will impact the 
electro-anatomical representation and the features extracted from the local electrical activities. The superposition of mul-
tiple waves further complicates EGM interpretation. The inclusion of these uncertainties is a nontrivial problem but their 
consideration will yield a better interpretation of the intra-atrial dynamics in local activation patterns. From a translational 
perspective, this review provides a concise but complete overview of the critical variables for developing more precise 
cardiac mapping tools.

Keywords Atrial fibrillation · Bipolar electrogram (EGM) · Cardiac conduction system · Cardiac mapping · Catheter 
ablation · Multi-electrode array

Introduction

Atrial fibrillation (AF) is a global health burden that affects 
an estimated 60 million people worldwide [1, 2]. It is the 
most common arrhythmia in humans, which occurs in the 
presence of irregular and disorganized electrical activities in 
the atrial conduction system (ACS) [3–9]. An electrical sig-
nal passes rhythmically through specific (cardiac) conduc-
tion pathways and maintains the heart’s pumping activity in 
sinus rhythm (SR) [10, 11]. However, structural remodeling 
of the arrhythmogenic substrates disrupts regular cardiac 
conduction dynamics in ACS, leading to AF.

Catheter-based isolation of the pulmonary veins rep-
resents the cornerstone of interventional AF treatment. 
Electro-anatomical mapping of local intracardiac bipolar 
electrograms (EGMs) is an established way to character-
ize the atrial substrate and identify potential ablation tar-
gets [12–14]. Bipolar EGMs are constructed from unipolar 
EGMs to quantify the arrhythmogenic substrates because 
bipolar EGMs are less likely to be contaminated with far-
field potentials, i.e., ventricular artefacts [13–18]. However, 
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multiple variables, including wave propagation direction 
relative to the bipolar electrode orientation, electrode size, 
inter-electrode spacing, electrode-tissue contact, filtering, 
mapping density, and mapping resolution, impact bipolar 
EGM [19–23]. This review aims to evaluate the effects of 
the variables on bipolar EGM-based AF mapping.

Cardiac Conduction Dynamics and Atrial 
Fibrillation

There are four fundamental characteristics of the cardiomy-
ocyte cells, i.e., contraction, autorhythmicity, intercellular 
conduction and electromechanical coupling [10, 11, 24–30]. 
The sinoatrial (SA) node is the natural pacemaker located 
in the upper region of the right atrium, which initiates each 
heartbeat. Electrical impulses from the SA node propagate 
through junctional fibers to the atrioventricular (AV) node in 
the right atrium and via the inter-atrial Bachmann’s bundle 
in the left atrium. With a delay in the AV node, impulses 
are then passed into the bundle of His where they bifurcate 
into right and left branches. Finally, the impulses proceed 
down to the Purkinje fibers throughout the ventricular walls. 
Figure 1 illustrates the components and conduction pathways 
of the cardiac conduction system.

Mapping Intracardiac Ablation Target

The current intervention, intracardiac catheter ablation, is 
based on various hypotheses regarding AF initiation and 
perpetuation over time. Haissaguerre et al. have shown that 
ectopic electrical impulses coming from pulmonary veins 
could cause AF. Electrically isolating pulmonary veins may 
restore SR and has become a standard intervention for AF 
[31, 32]. A hypothesis of substrate-based AF characteri-
zation refers to ectopic source identification. The sources 

produce disruptive signals in the atrial anatomy and disturb 
regular cardiac conduction dynamics. Autonomic nerv-
ous system plays role in AF initiation and maintenance, 
and recent studies have identified ganglionated plexuses as 
ablation targets [33–35]. Other hypotheses include multiple 
wavelets, primary rotors and multiple functional re-entry 
circuits [3–6, 8, 36–38] (Fig. 2).

Current ablation strategies depend on accurately identify-
ing AF-related substrates (ablation targets) based on EGM 
characteristics. Structural changes associated with an elec-
trical scar or diseased myocardium may introduce re-entry 
circuits within the ACS. Low voltage areas (bipolar peak-
to-peak voltage < 0.5 mV) are assumed to be an indication 
of scar or structural defects [39–43]. Fractionated EGMs 
are sometimes the ablation targets [44, 45]. According to 
Nademanee et al., fractionated EGMs follow two criteria 
[46]. Atrial EGMs have two and more deflections and a vari-
able baseline with complex atrial activation patterns, show-
ing transient activities (i.e., cycle length ≤ 120 ms) over a 
prolonged 10 s period. However, inconsistent definitions of 
EGM fractionation can impede success in clinical ablation 
[45, 47]. Local activation time and conduction velocity-
based AF source mapping are potential alternatives in the 
clinical setting [48–50]. Recent studies have proposed recur-
rent wave cycle length and their morphological similarity-
based ablation target detection [51–53]. Additional bipolar 
EGM-derived features such as dominant frequency and 
Shannon entropy have been clinically used to investigate 
the propagation of predominant waves and to identify the 
pivot of a rotor, respectively, which may guide substrate-
based ablation [54–56].

Genesis of Focal Ectopic Source and Reentry Circuit

AF mechanisms manifest in ectopic firing, and various re-
entry circuits in the ACS are assumed to occur due to atrial 
fibrotic substrates. Pathological fibrosis results from mal-
functioning ion channels, unusual Ca2+ handling, autonomic 
neural regulation dysfunction, or structural remodeling. 
Extracellular matrix (ECM) triggers its regulatory protein 
cells to adjust for any changes during fibrosis to maintain 
cardiac homeostasis [57–64]. ECM provides structural sup-
port to cardiomyocytes, facilitates intra- and inter-cardio-
myocyte cellular crosstalk, and transduces critical signals 
to vascular and interstitial cells [61]. The essential compo-
nents of ECM include transcriptionally active fibroblasts 
and endothelial cells [65]. When ECM starts synthesizing 
its proteins for fibrogenesis as a response to microenviron-
mental inflammatory and pro-fibrotic changes, increased 
fibroblasts and myofibroblasts may interfere with intra- and 
inter-cardiomyocyte electrical conduction. Fibroblasts and 
cardiomyocytes scarcely share similar intra- and inter-cellu-
lar conduction dynamics, and their complex interplay might 
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Fig. 1  Cardiac conduction system with its components
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cause disturbances in physiologic ACS [59–61]. Recent 
studies implicated that asynchrony between endocardial and 
epicardial conduction causes AF initiation and maintenance 
[57, 66–70].

Complex cardiomyocyte-fibroblast interactions alter the 
electrophysiological properties of atrial cardiomyocytes 
[59–63, 63, 64, 71]. For example, the shortening of action 
potential duration and effective refractory period due to 
ion channel dysfunction could cause the fibrotic substrates 
to develop spontaneous re-entry circuits. Ca2+ handling 
abnormalities and errors in autonomic neural regulation 
sometimes result in focal ectopic firing, which is a potential 
manifestation of AF-related substrates. Focal ectopic sources 
further trigger re-entry circuits. Ca2+ handling abnormali-
ties can also contribute to structural remodeling leading to 
fibrotic or scar tissues and conduction blocks that induce 
re-entry circuits. Figure 3 describes the complex interac-
tions between the cardiomyocytes and ECM protein cells 
and the induction of AF. Takahashi et al. have studied that 
fibrosis, growth intercellular space, myofibrillar loss and 
reduced nuclear density are histological correlates of struc-
tural remodelling causing AF [72].

Uncertainties Introduced by The Catheter

Unipolar Versus Bipolar Signal Acquisition

For unipolar EGMs, an electrode is connected to the anodal 
(positive) input of the recording amplifier and the cathodal 
(negative) input is connected to a remote amplifier (refer-
ence electrode) [16, 73, 74]. A bipolar EGM can then be 
constructed by subtracting two unipolar EGMs [16, 73, 75]. 
Figure 4 shows unipolar and bipolar recording configura-
tions from the myocardial surface. Both unipolar and bipolar 
EGM have specific advantages and disadvantages for AF-
related substrate characterization.

In unipolar mapping, only one electrode within the heart 
is used, with the second electrode located outside the heart. 
The anode can be Wilson’s central terminal, which uses the 
extremity electrodes, an electrode located within the infe-
rior vena, or an internal close unipolar reference electrode 
[76]. Unipolar mapping has a critical role, particularly dur-
ing ablation; the signal of interest is obtained from the tip 
electrode rather than a combined signal from a distal and 
proximal electrode.

Right Atrium

Left Atrium

(a) Rapidly Discharging Focus (b) Primary Rotor (c) Multiple Re-entry Circuits

Fig. 2  Different hypotheses of atrial fibrillation genesis and maintenance
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Fig. 3  Pathogenesis of atrial conduction block, focal ectopic source and re-entry circuit from a complex interplay between fibroblasts and cardio-
myocytes. [Created with https:// www. BioRe nder. com]

Fig. 4  A schematic illustration 
of unipolar and bipolar EGM 
signal acquisition system from 
myocardium surface

https://www.BioRender.com
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Because the reference electrode is placed at a distance 
from the heart, unipolar EGM is contaminated by far-field 
potentials, e.g., ventricular artefacts [13–17, 77]. Ventricular 
artefacts, i.e., undesired signals originating from ventricles, 
are the dominant sources that can be distinguished during 
sinus rhythm. However, AF is characterized by chaotic 
and disorganized electrical activities within atria that may 
potentially corrupt local EGM morphology by the superpo-
sition of waves [15, 78]. Constructing a bipolar EGM from 
a pair of unipolar electrodes may inherently reduce far-field 
artefacts [18]. However, bipolar EGM is affected by several 
measurement uncertainties due to bipolar vector orientation, 
inter-electrode spacing, and tissue contact [20, 22, 75, 79].

Electrode Size and Inter‑electrode Spacing

Electrode material, size, shape, thickness and inter-electrode 
spacing are catheter design specifications and impact EGM-
derived features for substrate characterization, for exam-
ple, when differentiating between healthy and scar tissues 
[79–81]. An electrode’s size, shape and thickness define the 
coverage area for signal acquisition and influence both uni-
polar and bipolar EGM [16, 79, 80, 82]. Takigawa et al. have 
demonstrated that larger electrodes increase the amplitude 
and duration of unipolar and bipolar EGMs [80]. Thus, scar 
detection using a low-voltage threshold may be impacted. 
Inter-electrode spacing also affects substrate characteriza-
tion. Closer inter-electrode spacing intrinsically reduces 
the contribution of far-field signals and better identifies the 
boundary between scar and healthy tissues [81].

Relation Between the Angle of Incidence 
and Bipolar EGM Vector

Bipolar EGMs are less prone to far-field artefacts and pre-
dominantly capture changes in local electrical activities; 
however, they depend highly on bipolar vector orientation. 
From a signal processing perspective, bipolar vector orienta-
tion could be exploited as a mapping tool for accurate iden-
tification of AF sources [18, 83–86]. Figure 4 demonstrates 
the directional placement of electrodes (bipolar vector ori-
entation) and wave propagation vector. Assuming a plannar 

wave propagating through a two-dimensional medium, a 
bipolar EGM measures either the maximum amplitude of 
a signal if the angle of incidence is 0◦ or the minimum of 0 
mV if the angle of incidence is 90◦ . Although variability in 
EGM measurement using diverse bipolar vector orientations 
is obvious, the extent of uncertainty during AF-related sub-
strate characterization requires rigorous clinical validation 
[18, 75, 82–87]. AF is a pathological condition delineat-
ing very complex and chaotic electrical wave propagation 
dynamics in a three-dimensional anatomical network of the 
atria. Thus, interpreting the impact of bipolar vector orienta-
tion on AF-related substrate characterization should not be 
straightforward.

Variable Tissue Contact

Identification of AF-related sources depends on the precise 
reconstruction of the atrial electro-anatomy and the spati-
otemporal distribution of myocardial electrical potentials 
and associated features [13, 14]. Continuous mechanical 
contraction of the complex atrial anatomy makes the posi-
tioning of catheter electrodes onerous [21, 23]. Sometimes 
the electrodes are not in full contact with the surface, which 
may impact the EGM characteristics leading to some record-
ing points being excluded from the analysis. If the distance 
between electrode and recording surface is too large to main-
tain acceptable signal quality, the corresponding EGMs are 
excluded. Figure 5 illustrates variable electrode-tissue con-
tact. Nonetheless, the earlier cardiac mapping tools allow 
us to verify anatomical landmarks and atrial geometry with 
computed tomography or magnetic resonance scans, intra-
cardiac echocardiographic and positron emission tomogra-
phy imaging for guiding the ablation procedure [13, 14, 23, 
88]. Registering the recording points with the corresponding 
atrial anatomy is key to successful AF mapping. Notably, 
recent cardiac mapping systems (e.g., CARTOTM , EnSite 
PrecisionTM and Rhythmia HDxTM ) use non-fluoroscopic, 
i.e., magnetic- or impedance-based localization of electrodes 
[13]. Inaccurate localization of the electrode postion (i.e., 
EGM recording point) may mislead the electrophysiological 
interpretation of AF [19].

Fig. 5  Variable electrode-tissue 
contact due to continuous con-
traction of the heart
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Sources of Mapping Uncertainties

Preprocessing of EGM Signals

Constructing a bipolar EGM may reduce noise contents’ 
dominance over local atrial signals intrinsically. However, 
further processing is essential to eliminate noise and arte-
facts while preserving local EGM morphology [89]. Zero-
phase band-pass filtering is typically applied to eliminate 
baseline shifts and high-frequency noise [73]. The cut-off 
frequencies clinically used are 30 Hz and 300 Hz [18, 90]. 
Botteron and Smith proposed band-pass filtering with cut-off 
frequencies of 40 Hz and 250 Hz, followed by rectification 
and low-pass filtering to discern the spatial organization of 
AF dynamics [91]. This filtering technique has also been 
utilized to extract dominant frequency mapping [73, 92]. 
Ciaccio et al. demonstrated the frequency range 3 − 12 Hz 
associated with main atrial components. Band-pass filter-
ing might distort the local EGM morphology by eliminat-
ing potential low-frequency signal of interest [93]. Thus, 
there is a trade-off between noise or artefacts elimination and 
preserving local EGM morphology. Comprehensive retro-
spective clinical studies correlating substrate characteriza-
tion with ablation outcomes can evaluate the efficacy of any 
signal processing method.

Electroanatomic Mapping System: Density 
and Resolution

Multimodal electroanatomic cardiac mapping systems such 
as CARTOTM , EnSite PrecisionTM and Rhythmia HDxTM 
detect the electrode positions during EGM recording, which 
is represented by a three-dimensional point cloud after 
matching each point with the corresponding atrial anatomy 
[13, 94]. The electrode position information is typically as 
accurate as 1 mm [88], though the accuracy in electrode 
localization strongly depends on the mapping system in 
use. Mapping density refers to the tightness of point cloud 

(i.e., recording sites) distribution. It depends on the inter-
electrode spacing and sequential navigation of the catheter 
electrodes inside the atrial anatomy. Densely collected points 
may offer a better resolution of reconstructed atrial anatomy.

Once the three-dimensional point cloud is approximated 
from the cardiac mapping system, the next step is to recon-
struct the atrial anatomical surface with representations of 
spatio-temporal distributions of EGMs [95]. Using methods 
derived from computational geometry (e.g., Delaunay trian-
gulation), first, the surface is reconstructed so that anatomi-
cally relevant information is preserved. Then, the surface 
is represented in colored maps (rendering by EGM-derived 
features) to investigate AF-related sources [13]. Due to 
irregularly spaced points, the resolution of the reconstructed 
atrial anatomy is nonhomogeneous. Figure 6 shows an irreg-
ularly spaced two-dimensional point cloud to illustrate sur-
face reconstruction and color rendering.

Consequences of Uncertainties for Data 
Interpretation

Electro-anatomical mapping of AF requires a comprehen-
sive clinical environment with multimodal electro-magnetic 
devices and medical instruments [13, 88]. Cardiologists’ 
skillful maneuvering of mapping catheters in the pres-
ence of mechanical contraction of the heart and continuous 
blood circulation further affects the quality of EGM signals. 
Innovation in the catheter design enables the navigation of 
electrodes inside the complex atrial anatomy and acquir-
ing high-fidelity local EGM signals, potentially leading to 
a successful AF source localization. From an engineering 
perspective, bipolar vector orientation, electrode size, inter-
electrode spacing, electrode-tissue contact, filtering, map-
ping density and mapping resolution are essential variables 
to be included while constructing 3-dimensional electro-ana-
tomical maps [13, 18, 21, 73, 75, 79–86, 88, 89, 93, 94]. The 
extent of the impact of the variables above requires further 
clinical validation. Kim et al. have rigorously discussed the 

Fig. 6  A schematic illustration of surface reconstruction from irregularly sampled points (a 2D point cloud) and color rendering of an arbitrary 
feature set
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potential pitfalls of state-of-the-art cardiac mapping systems 
and highlighted the technological advances [19].

Although ablation targets (AF sources) identification is 
sometimes onerous, various clinically accepted AF initiation 
and perpetuation hypotheses exist. Analyzing EGM signals 
to define clinically relevant features associated with the 
hypotheses for identifying AF sources is often ambiguous. 
Besides pulmonary vein isolation [31, 32], a widely accepted 
precursor procedure, other substrate-based ablation strate-
gies depend upon characterizing ectopic sources, re-entry, 
and rotational circuits. Fibrotic or scar tissues are suppos-
edly responsible for re-entry and rotational circuits while 
obstructing common cardiac conduction pathways [3–6, 8, 
36]. Complex AF source identification in atrial anatomy is 
demanding, and uncertainties in EGM interpretation pose 
additional challenges. However, recent innovations in signal 
processing algorithms, including mutual information or arti-
ficial intelligence-based analysis of multi-electrode arrays, 
may offer complementary information to clinical decision-
making [96, 97].

Voltage mapping enables defining low-voltage areas 
(peak-to-peak voltage < 0.5 mV) associated with the scar of 
fibrotic tissues [39–43]. Studies have implicated that bipolar 
vector orientation, inter-electrode spacing, and electrode-
tissue contact directly impact the amplitude of EGM signals 
and thus voltage mapping [18, 80, 81, 85, 86]. Studies have 
demonstrated in silico that the diagnostic catheter shapes 
influence the EGM-derived markers for AF [98–101]. These 
variables also impact other EGM-derived features such as 
local activation time, conduction velocity, fractionated 
EGM, dominant frequency and Shannon entropy [49, 50, 
54–56].

The State‑of‑The‑Art Diagnostic Catheters

Multi-electrode array with innovative catheter design is 
at the forefront of cardiac mapping tool development, 

advancing personalized diagnostic and therapeutic interven-
tions. Table 1 lists some state-of-the-art diagnostic catheters 
with their specifications and design strengths [18, 40, 75, 76, 
79–81, 83–86, 102–109]. Recently introduced OctaRayTM 
mapping catheter attributes 48 electrodes, and their simulta-
neous recordings enable faster mapping of the whole atrium 
than its predecessor PentaRayTM mapping catheter [76, 
103–105]. OctaRay multi-electrode catheter with CARTOTM 
signal processing unit renders the atrial anatomy based on 
locally collected EGM features and assists clinicians in 
detecting ablation targets more accurately. HD GridTM cathe-
ter has been another sought-after mapping tool in the clinical 
community because of its orthogonally arranged electrodes 
[18, 40, 75, 79–81, 83–87, 106, 107, 110–119]. IntellaMap 
OrionTM and ConstellationTM catheters are basket catheters 
having 64 electrodes and can cover a large area simultane-
ously [120–122]. Notably, the constellation catheter is not 
on the market anymore, but the design showcases innova-
tion in the cardiac mapping industry. The multi-electrode 
catheter technology has evolved significantly from single 
spline DecapolarTM (flexible) or LassoTM (circular) catheters 
to multi-spline HD GridTM , OctaRayTM or OptrellTM . Unlike 
grid-type catheters, OctarayTM and PentarayTM are multi-
spline catheters featuring flower shape open branch design. 
Simultaneous EGM from the electrode array can integrate 
advanced signal processing and artificial intelligence-based 
algorithms for more accurate ablation target selection and, 
thus, superior intervention outcome [73, 97, 98].

The Principle of Wavefront Direction‑Aware EGM

Innovation in multi-electrode mapping catheters, espe-
cially grid-type HD GridTM and OptrellTM catheters, enable 
integrating multiple bipolar electrode orientations into a 
wavefront direction-aware omnipolar technology [85, 87, 
110–119]. Deno et al. proposed the construction of omnipo-
lar EGM from multiple bipolar EGM considering specific 

Table 1  A list of some state-of-the-art diagnostic catheters featuring multi-electrode

Diagnostic
Catheter

Manufacturer No. of 
splines

No. of 
electrodes

Electrode 
size (mm)

Inter-electrode 
distance
(Centre-to-
Centre, mm)

Design strength

OptrellTM Biosense Webster 6 48 ∼ 0.9 2.4 Orthogonal electrode orientations
OctaRayTM Biosense Webster 8 48 ∼ 0.5 2 Electrodes in circular formation
HD GridTM Abbott 4 16 1 4 Orthogonal electrode Orientations
PentaRayTM Biosense Webster 5 20 1 1 Electrodes in circular formation
IntellaMap OrionTM Boston Scientific 8 64 2.82 2.5 Flexible basket covering broad area
ConstellationTM (60mm) Boston Scientific 8 64 2.66 6.5 Flexible basket covering broad area
DecapolarTM Biosense Webster 1 10 1 3 Electrodes on a flexible spline
LassoTM (Circular) Biosense Webster 1 20 1 3 Electrodes on a circular spline
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alignments of the electrodes, called clique [85, 110]. Assum-
ing four unipolar electrodes arranged in a square area and W 
is a propagating wavefront passing through locally (Fig. 7), 
omnipolar technology exploits the wavefront characteristics 
such as propagation direction. Then, bipolar EGMs from 
orthogonally placed bipolar electrode pairs can be calculated 
without maneuvering the catheter. If Vx and Vy are voltages 
captured by two mutually orthogonal bipolar orientations 
using a triangular clique, omnipolar technology features 
the maximum measurable voltages using a particular map-
ping catheter. Notably, the type of clique formation can vary 
using different sets of bipolar orientations [123]. For a more 
detailed calculation of the omnipolar voltage, please refer to 
[85, 110]. Omnipolar EGM explicitly reduces the impact of 
the directionality of bipolar orientations [85, 87, 110–119].

Saha et al. proposed a beamforming-inspired spatial fil-
tering technique for minimizing the impact of directionality 
while utilizing the diversity gain from multiple bipolar elec-
trode orientations [18]. Current grid-type mapping catheters, 
such as HD GridTM and OptrellTM , offer special arrange-
ments of the electrodes, allowing the simultaneous process-
ing of various EGMs. Array signal processing is a popular 
topic in the wireless or cellular communication industry 
[124, 125], and the advancements may contribute to cur-
rent cardiac mapping tools after adequate clinical validation. 
Figure 7 schematically compares the concepts of omnipolar 
and beamforming EGM constructions for reducing the effect 
of directionality.

Future Perspectives and Conclusion

There are still scopes for improvement while considering 
the uncertainties of bipolar EGM-based cardiac mapping 
tools, as discussed in the review. Three factors could be vital 
for the next frontier of AF mapping technologies, i.e., the 
user-centric design of catheter electrodes, the precision of 
electrode localization, and the integration of artificial intel-
ligence (AI) [13, 14, 18, 19, 23, 40, 75, 76, 79–81, 83–86, 
88, 102–107, 126–128]. The intrinsic nonlinearity in the 

AI-based algorithm may capture the time-variant and non-
stationary EGM dynamics for AF source mapping utiliz-
ing multi-electrode catheters. The in silico simulation is a 
precursor for validating novel algorithms while quantifying 
their differences in AF source selection [98–101].

Cardiologists’ feedback on the existing state-of-the-art 
cardiac mapping tools concerning maneuverability, ease-
of-use and accuracy in ablation target identification can 
revise the problem statement for engineers, prompting them 
to develop catheter electrodes fulfilling user needs. Then, 
increasing the accuracy of electrode localization (registering 
electrodes in the atrial anatomy) tools could play an essential 
role in AF target selection. Finally, how effectively we could 
integrate artificial intelligence in the mapping system, from 
surface reconstruction to AF-related source localization, is 
crucial.

Comprehensive studies from engineering perspectives 
are critical for demonstrating the effects of the variables 
reviewed in this paper and the clinical implications of detect-
ing unsuitable ablation targets (AF-related sources). Recent 
advances in multielectrode catheter design provide high-den-
sity acquisition of spatially distributed atrial electrical activi-
ties. Retrospective investigation of the collected data and 
clinically annotated AF-related targets could be a precursor 
to exploiting the power of advanced signal processing and 
artificial intelligence to identify the AF sources accurately.
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