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Abstract

Purpose—Although segmentation of Abdominal Aortic
Aneurysms (AAA) thrombus is a crucial step for both the
planning of endovascular treatment and the monitoring of
the intervention’s outcome, it is still performed manually
implying time consuming operations as well as operator
dependency. The present paper proposes a fully automatic
pipeline to segment the intraluminal thrombus in AAA from
contrast-enhanced Computed Tomography Angiography
(CTA) images and to subsequently analyze AAA geometry.
Methods—A deep-learning-based pipeline is developed to
localize and segment the thrombus from the CTA scans. The
thrombus is first identified in the whole sub-sampled CTA,
then multi-view U-Nets are combined together to segment
the thrombus from the identified region of interest. Polygonal
models are generated for the thrombus and the lumen. The
lumen centerline is automatically extracted from the lumen
mesh and used to compute the aneurysm and lumen
diameters.
Results—The proposed multi-view integration approach
returns an improvement in thrombus segmentation with
respect to the single-view prediction. The thrombus segmen-
tation model is trained over a training set of 63 CTA and a
validation set of 8 CTA scans. By comparing the thrombus
segmentation predicted by the model with the ground truth
data, a Dice Similarity Coefficient (DSC) of 0.89 ± 0.04 is
achieved. The AAA geometry analysis provided an Intraclass
Correlation Coefficient (ICC) of 0.92 and a mean-absolute
difference of 3.2 ± 2.4 mm, for the measurements of the total
diameter of the aneurysm. Validation of both thrombus

segmentation and aneurysm geometry analysis is performed
over a test set of 14 CTA scans.
Conclusion—The developed deep learning models can effec-
tively segment the thrombus from patients affected by AAA.
Moreover, the diameters automatically extracted from the
AAA show high correlation with those manually measured
by experts.

Keywords—Thrombus segmentation, Convolutional Neural

Network, Multi-view integration, Abdominal Aortic Aneur-

ysm.

INTRODUCTION

An aortic aneurysm can be defined as a permanent
localized dilatation of the aorta with at least a 50%
diameter increase compared with the expected normal
diameter.4

An Abdominal Aortic Aneurysm (AAA) is an aortic
aneurysm that has a diameter of 3 cm or greater and it
is located in the abdominal aortic section, which ex-
tends from the infrarenal aorta to the common iliac
arteries.4 AAA is a relatively common disease and its
rupture is one of the commonest causes of death
overall.4 In 75% of the clinically-relevant AAA
patients there is an intraluminal thrombus.18

The severity of the disease, determined by AAA
characteristic diameters and lengths, is currently
assessed by the analysis of Computed Tomography
Angiography (CTA) scans.15

While the aortic lumen detection is facilitated by the
contrast-medium enhancement, the manual assessment
of the thrombus boundaries from the surrounding
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tissues can be challenging. In particular, when dealing
with segmentation of anatomical structures, the seg-
mentation of the thrombus is a time consuming task
and should be performed by trained-users.11

An automatic tool performing thrombus segmen-
tation would speed-up and standardize the analysis of
AAA anatomy, overcoming the problem of intra- and
inter-observer variability. In particular, an automatic
segmentation tool would ensure a fast-moving throm-
bus delineation procedure in large databases, facili-
tating clinical research, and would cope with situations
where segmentation is needed quickly.

Some studies have previously addressed the problem
of semi-automatic and automatic AAA segmentation
to overcome the above-mentioned difficulties.

Maiora et al.15 proposed a segmentation approach
based on a supervised Random Forest classifier
applied on a set of features extracted from each voxel
and its neighborhood. The adopted approach is semi-
automatic and no comparison with ground truth seg-
mentations was reported in the paper.

Lareyre et al.11 developed an automatic pipeline to
detect the vascular system and the AAA structures.
The lumen is first extracted from the CTA scans, then
thrombus segmentation is performed exploiting lumen
contour propagation.

In recent years, deep learning approaches have
achieved excellent performance in medical image
analysis.21 In the following, some deep-learning studies
focusing on automatic thrombus segmentation are
reported. These methods are fully automatic, thus they
do not require neither user interaction, nor a priori
knowledge of the thrombus geometry.12,13

Hong and Sheikh9 proposed an automatic approach
to perform preoperative AAA detection and segmen-
tation. The method is based on two Deep Belief Net-
works (DBN) for detection: one network is used to
detect large aneurysms, while the other one detects
small aneurysms, bones, and air. The detection is done
in 2D with samples coming from a unique dataset. The
thrombus segmentation consists of another DBN
trained over 40 image samples, and the obtained results
were not quantitatively compared with ground truth
segmentations.

The work proposed by Lòpez-Linares et al. starts
with the paper published in 201812 and expands with
the paper published in 2019.13 The initial work
exploited a Convolutional Neural Network to detect
the thrombus and a modified Holistically-Nested Edge
Detection (HED) Network to perform segmentation.
The dataset was composed of 13 postoperative CTA.
The models were trained on 2D single slices in the axial
view, and a Gaussian filter was applied on the z-di-

rection to enforce spatial consistency. In the second
paper, the pipeline proposed in Lòpez-Linares et al.12

was extended using 3D networks instead of 2D net-
works, increasing the segmentation performance
working on 3D volumes and taking into account spa-
tial coherence. Since 3D networks are data demanding,
the used dataset was increased up to 80 CTA preop-
erative and postoperative scans.

Finally, the work by Caradu et al.3 assessed the
quality of PRAEVAorta, a fully automatic software
developed by Nurea (https://www.nurea-soft.com/)
used to detect the aortic lumen and thrombus.

Once thrombus segmentation is performed, aneur-
ysm treatment involves its geometric measurements
collection. In particular, geometrical analysis of the
lumen and thrombus is an important factor when
planning an EndoVascular Aneurysm Repair (EVAR)
procedure or investigating morphological changes of
the vessel during follow-up.

Given the need to perform diameters and volume
measurements on the obtained segmentations, it is
desirable that the measurement procedure is automatic
and fast.

Singh et al.22 carried out a work studying intra- and
inter- observer variability in the measurements of
abdominal aortic and common iliac artery diameter
with CT. Their work pointed out that interobserver
variability between expert measurements with CT is
not negligible and is higher than intraobserver vari-
ability. Moreover, the variability was higher for mea-
surement of patients with aneurysms.

Kaladji et al.10 studied a dataset of 32 patients with
AAA and measured maximum and minimum diameter
of the aneurysm using Endosize (V. 3.1.25 64 bits
Therenva SAS, Rennes, France), a semi-automatic
three dimensional sizing software. The software needs
an initialization step to perform lumen extraction, and
it takes 13.1 ± 4.53 minutes to perform one sizing. An
Intraclass Correlation Coefficient (ICC) above 0.9 is
computed comparing software results with manual
measurements. These results show a good correlation
between manual and semi-automatic procedures, thus
stressing the effectiveness and low human-effort
requirement in semi-automatic approaches.

In Caradu et al.,3 the aortic centerline and oblique
cross-sectional planes normal to the centerline are ex-
tracted to compute the quantitative measures related to
aortic geometry. This computation is performed to
limit the interobserver variability affecting the maxi-
mum cross-section diameter measurements.

In order to segment and quantify the abdominal
aortic aneurysm from CTAs, the present study pro-
poses a fully automatic deep learning-based approach.
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More in detail, following the approach proposed in a
previous study which deals with aortic lumen seg-
mentation,7 in this work we make use of a first Con-
volutional Neural Network (CNN) to localize the
thrombus from the whole CTA scans and other three
multi-view CNNs to perform a finer segmentation. The
novelty of our segmentation approach lies in the inte-
gration of 2D networks trained on orthogonal views.
In contrast to 2D approaches, the segmentations
obtained with our method consider the 3D spatial
context. Compared to 3D CNNs, computational and
memory requirements are reduced and the dataset
available for training is larger. Finally, our pipeline
also includes automatic extraction of thrombus mea-
surements, which allows faster geometric analysis of
AAA.

Automatic aneurysm geometrical analysis is per-
formed using Vascular Modeling ToolKit (VMTK)
open source library.1

MATERIALS AND METHODS

The proposed approach for automatic thrombus
segmentation and geometric evaluation is illustrated in
Fig 1. In a first phase, both the aortic lumen and the
thrombus are automatically segmented from the input
CTA scans using two different deep learning-based
procedures. Secondly, the centerline is automatically
extracted from the lumen segmentation mask and
exploited to perform geometrical evaluations on the
thrombus and lumen.

Dataset

The dataset used in this study has been provided by
IRCCS Ospedale Policlinico San Martino (Genoa,
Italy) and consists of 85 preoperative CTA scans of
patients affected by AAA as primary pathology se-
lected by an expert vascular surgeon to represent a
large variability of cases.

The IRCCS Ospedale Policlinico San Martino is the
regional reference center for aortic pathologies highly
experienced in open and endovascular procedures. The
CTA images have been acquired in four different
hospital departments using four different scanners
(General Electric Medical Systems Optima CT660,
General Electric Medical Systems LightSpeed 16, Sie-
mens SOMATOM Flash, Siemens Sensation). For the
collected dataset, pixel spacing varies from 0.57 mm to
0.98mm, with an average value of 0.76 ± 0.08 mm.
Slice thickness varies in the range 0.5-5 mm, with a
mean value of 0.82 ± 0.56 mm.

The mean age of the patients is 75 years (range: 60-
91 years), with a male predominance (81% males). The
study protocol has been submitted to the local Ethic
Committee and patients’ informed consent has been
waived due to the retrospective nature of the data.

The collected dataset has been manually segmented
by a trained expert (A.Fi.) and by a trainee (F.B.) using
the MITK segmentation toolset23 and the expert
operator performed the segmentations twice.

Intra-observer and inter-observer variability returns
a Dice Similarity Coefficient of 0.96 ± 0.2 and 0.93 ±

0.2, respectively.

FIGURE 1. Proposed method for aneurysm segmentation and evaluation.
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The CTA scans and the corresponding segmenta-
tions have been pre-processed following the steps de-
scribed in our previous work.7 The CTAs have been
resampled and image intensity has been rescaled in
range 0-255. Details regarding data preprocessing can
be found in the Supplementary Material.

To address the segmentation problem, the whole
dataset has been divided into three sets: a training set
used to train the network in thrombus segmentation (n
= 63 scans); a validation set used to prevent overfitting
and tune the model (n = 8 scans); and a test set (n =
14 scans) used to assess the model performance.

The geometrical analysis, performed using the
Vascular Modeling ToolKit (VMTK),1 has been car-
ried out only on the test set. The VMTK is a collection
of C++ classes wrapped by python that enable lar-
gely automated geometric characterization and visu-
alization of vascular structures from medical images,
requiring low user-interaction. In particular, the geo-
metric analysis heavily depends on centerline defini-
tions from the segmented structures. The library relies
on two major open source frameworks: the Visualiza-
tion Toolkit (VTK) and the Insight Toolkit
(ITK).1,17,20

Pipeline

Two different steps have to be performed in order to
segment and analyze an AAA from a CTA scan. First,
the thrombus and the lumen are segmented from the
CTAs, then the geometric analysis is performed. The
aortic lumen segmentation is already implemented in
Fantazzini et al.,7 while the thrombus segmentation is
addressed in this paper as described in the following.

Thrombus Segmentation

Following the pipeline for lumen segmentation de-
scribed in Fantazzini et al.,7 a first U-Net (Ron-
neberger et al.19) is trained on low resolution CTA
scans to perform a coarse segmentation of the throm-
bus. The network is trained to segment downsampled
CTA scans parsed into axial view (downsample factor
= 4). After coarsely segmenting the thrombus, the
centroid of the low-resolution segmentation is identi-
fied. Then, the centroid is reported in the full resolu-
tion CT scan, and a cuboid centered in the thrombus is
used to crop the CTA scan and focus on the region of
interest.

The cuboid has dimensions of 384x384x384, with
pixel size set to 0.73mm and slice thickness of 0.62 mm.
To choose the size of the cuboid, a bounding box was
calculated for each manual segmentation in the data-
set. In order to size the final cuboid, the maximum
bounding box dimension on the x, y, and z axis is

extracted and rounded up to the nearest power of 2, as
the U-Net architectures work correctly only if each
downsampling/upsampling layer operates on images/
feature maps whose height and width are even num-
bers.

Thus, the bounding box is much larger than the size
of the thrombus in the dataset: this allows greater
robustness in the case the centroid obtained with
coarse segmentation is less accurate. In fact, the coarse
segmentation plays a key role in localizing the
bounding box: if the preliminary coarse segmentation
presents several errors, the calculated centroid could be
in the wrong area and consequently the ROI would not
fully enclose the thrombus.

In our case, given that the aneurysms in our dataset
are of small-medium size and that the bounding box is
quite large in size, the chosen bounding box did not
result in loss of accuracy in the final segmentation. In
any case, the bounding box value should be verified
and eventually updated in case aneurysms of larger
diameter were added to the dataset.

Unlike the work performed in,7 since the cuboid is
quite small in size, the cropped scans have full reso-
lution.

The bounding box extraction is used to focus the
attention on the relevant regions and to exclude the
background areas. In addition to the advantage of
focusing on the area of interest, cropping a Region of
Interest (ROI) from the whole CTA is desirable as the
computational requirements are reduced.

Starting from the slices detected in the ROI, each
CTA scan is parsed into 2D axial, sagittal, and coronal
views and three separate U-Nets are used to segment
the three orthogonal views separately. These networks
are referred to as single-view networks because they
process the orthogonal planes independently.

Finally, the raw probability maps provided by the
axial, sagittal, and coronal models are integrated into a
single final probability map. This aggregation step
aims to regularize voxel prediction by considering the
spatial information of the three orthogonal views. In
order to integrate all the predictions together, the
sagittal and coronal segmentations are resliced into the
axial view so that the average segmentation can be
coherently calculated as follows:

pfinal xð Þ ¼ 1

3
pax xð Þ þ 1

3
psag xð Þ þ 1

3
pcor xð Þ

where paxðxÞ, psagðxÞ, pcorðxÞ are the voxel predic-

tion in axial, sagittal, and coronal views respectively.
Then, the validation set is used to select the best

threshold value to binarize the probability map com-
puted with multi-view aggregation and obtain the final
segmentation.
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We refer to this integration step as a multi-view
approach because results obtained with single-view
models are merged together, thus considering axial,
sagittal, and coronal views.

This integration step regularizes final predictions,
avoids the local errors, and improves model accuracy
(Fig. 2).

AAA Geometrical Analysis

Once the thrombus has been segmented from the
CTAs, both lumen and thrombus segmentations are
used as input to the geometric analysis pipeline, without
the need for user interaction. Thrombus segmentation
spatial extent is used to mask the lumen segmentation,
which extends from the aortic root to the common iliac
arteries. To perform the geometrical analysis, both lu-
men and thrombus isosurfaces are reconstructed using
Marching Cubes algorithm.14 To analyze only the
abdominal aneurysm and exclude the healthy tracts of
the aortic lumen, the lumen segmentation is clipped
considering the first and last slices where the thrombus
is segmented. Then, the clipped lumen segmentation
and the thrombus segmentation are paired to obtain the
abdominal aneurysm segmentation.

Given the aneurysm segmentation, the first step in the
geometric analysis pipeline involves the automatic
extraction of the centerline from the 3D model of the
aneurysm. Using the VMTK library,1 the centerline can
be extracted by specifying its initial and final seed points.
In our pipeline, the source seed is automatically computed

as the centroid of the first slice of the cropped lumen
segmentation, whereas target seeds can be one or two (in
the case of iliac involvement) and are calculated as the
centroid(s) of the lumen segmentation in the last slice.

A smoothing factor of 0.5 and a resampling step of
2.5 are set as centerline generation parameters (Fig. 3).

Once the centerline is obtained, the cross-sections
are generated at every point on the centerline using the
vmtkcenterlinesections function. The same centerline is
adopted to extract both the lumen and total aneurysm
cross-sections. These sections are generated perpen-
dicular to the computed centerline, and for each sec-
tion the maximum diameter is computed. Finally, the
section with the maximum aneurysm diameter value is
extracted and both the aneurysm and lumen diameters
calculated on this section are compared with manual
measurements.

To summarize, the developed pipeline is able to:

1. Reconstruct the lumen and thrombus polygo-
nal meshes from their segmentations.

2. Extract the total aneurysm and lumen diame-
ters.

3. Compute the volumes of the lumen and of the
total aneurysm.

Data Analysis

The segmentations predicted by the multi-view
segmentation network are compared against manual
annotations.

FIGURE 2. Proposed pipeline for multi-view thrombus segmentation. On the left, the low resolution CTA scan is processed
through a first U-Net to identify the thrombus region of interest (ROI). On the right, the ROI is processed with three U-Nets networks
trained on orthogonal views. The single network predictions are then combined into a final segmentation.
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� Dice Similarity Coefficient (DSC) This metric is
used to evaluate the segmentation performance
as an overlap measure between the predicted
and the manual segmentations. By denoting the
manual segmentation as the Ground Truth
(GT) and the predicted value with P, the DSC
between two binary segmentations is defined as
follow:

DSC ¼ 2 GT \ Pj j
GTj j þ Pj j

� Symmetric Surface to Surface Distance This
metric is used to evaluate how far the surfaces
obtained from the predicted and GT segmen-
tations are from each other. The distances are
computed using the distance maps proposed by
Maurer et al..16

The results obtained from automatic geo-
metric analysis are compared to manual mea-
surements, performed by an expert surgeon
(G.S.), through different approaches.

� Intraclass Correlation Coefficient 1-1 (ICC 1-1)

This coefficient estimates the degree of absolute
agreement among any two measurements made
on randomly selected objects. It is used to
compare model measurements with the mea-
surements made by an expert. To compute the
coefficient, the approach described by A.
Salarian in2 has been implemented. First of all,
the measurement matrix M is created and the
number of rows and columns of M are denoted
as n and k respectively. Secondly, mean squared
error for the rows (MSR) and within-judge

variability (MSW) has to be computed.
Hence, ICC 1-1 is defined as:

ICC1;1 ¼
MSR�MSW

MSRþ k� 1ð ÞMSW

� Mean absolute difference This index expresses
the mean difference between the measured val-
ues and their real values. By denoting the real
value with GT, the measured value with P, and
the number of data with N, the mean absolute
difference is computed as follow:

XN

i¼1

GTi � Pij j
N

Both automatic segmentation and geometric analy-
sis results are compared to manual measurements
using:

� Interquartile range (IQR) This metric quantifies
the 50% extension of the element distributions
located around the median value. It is based on
dividing a rank-ordered dataset into four equal
portions. The values that separate parts are the
first, second, and third quartiles, denoted by Q1,
Q2, and Q3 respectively. The IQR range lies
between the lower and upper quartiles, Q1 and
Q3.

Q1 = median of the n smallest values
Q3 = median of the n largest values
where n depends on the number of elements

in the dataset.

FIGURE 3. Steps for centerline extraction from lumen and thrombus volumes.
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EXPERIMENTS AND RESULTS

Experimental Settings

The 85 preoperative CTAs included in the dataset
were acquired in the same hospital. The Convolutional
Neural Networks employed for multi-view thrombus
segmentation are implemented in Keras5 framework
based on Tensorflow6 platform supported with GPU.
The binary cross-entropy is chosen as loss function and
it is minimized with a mini-batch gradient descent
method, using Adam optimizer (learning rate =
0.0001). At each iteration, the random mini-batch is
augmented through random rotations, shifts, and
zooms. To prevent overfitting during the training
process, early stopping criteria are adopted and the
patience is set to 15 epochs. Training, validation, and
testing scripts are developed using Python 3.6 on a
NVIDIA GeForce RTX 2080 Ti graphic card with
CUDA compute capability = 7.5, under Windows
operating system. Table 1 summarizes the hyperpa-
rameters used for the four CNNs.

Aneurysm geometry analysis is implemented using
functionalities of the Vascular Modeling ToolKit
(VMTK).1

Thrombus Segmentation

Table 2 shows the dimension and the number of
images, the training time, and the number of epochs in
which the coarse segmentation and the three networks
achieved the best model configuration on the valida-
tion set. The training process is time expensive for all
the three views networks. After the single-view train-
ing, the validation set has been used to compute the
best threshold value (Th= 0.4). This threshold is used
to binarize the final segmentation, obtained after the
multi-view integration step.

The quantitative results obtained using single-view
and multi-view models on the test set composed by 14
CTA patients are reported in Fig 4; in particular, for

each patient, the computed DSC, mean and maximum
distance are shown.

Figure 4(a) shows that the DSCs obtained with the
multi-view integration are higher than the ones pro-
vided by an approach based on the single view. The
plots of mean and maximum distances (Figs. 4(b) to
(c)) show how the integration step reduces the surface
to surface distance obtained with the single-view seg-
mentations. In particular, Patients 1 and 3 present
large mean and maxima distances in the axial and
sagittal views respectively. At the same time, Patient 11
presents a very large peak in maximum surface dis-
tance in the sagittal view. These errors occur because
patients’ single-view segmentations include wrong parts
with similar texture and pixel intensities to the
abdominal thrombus, but located in another area. For
example, axial segmentation of Patient 1 includes part
of the thoracic aortic thrombus, although there were
no examples of it in the ground truth segmentations
because the model is focused on the abdominal aortic
section. Because of these extra segmented parts, single-
view segmentations return large maxima and mean
distances from the ground truth. Despite this, in all the
three cases those peaks are not present in the inte-
grated segmentation. Indeed, the integration step al-
lows to exclude the false recognitions from the final
segmentation, improving mean and maxima distances.
Moreover, it can be noticed that in more than one
patient one of the three views returns poor results, and
despite this the final segmentation is equal to or better
than the view that returns more satisfactory results. It
means that the integration step gives enough stability
to our method, preventing that a single wrong seg-
mentation strongly affects the final one.

The final results reported in Table 3 confirm the
discussed plots.

Figures 5(a) and (b) display the 3D reconstructions
of the thrombus segmentation predicted by the net-
work and produced by the experienced operator,
respectively. Comparison between prediction and
ground truth is displayed in (c), overlapping the sur-

TABLE 1. Summary of the hyperparameters used for the 4 CNNs.

Hyperparameters Coarse segmentation Axial, sagittal, and coronal segmentation

Learning rate 0.0001 0.0001

Optimizer ADAM ADAM

Patience 15 15

N� Convolutional layers 23 23

N� filters 32 64
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TABLE 2. Coarse segmentation and three orthogonal views training information.

Coarse segmentation Axial Sagittal Coronal

Number of 2D slices 88 826 29 184 29 184 29 184

Images dimension 128 9 128 384 9 384 384 9 384 384 9 384

Training time (min) 200 863 862 1294

Number of epochs 3 2 2 11

FIGURE 4. Each plot displays results of the single three orthogonal view and the multi-view integration. (a) Graphic of Dice
coefficient. (b) and (c) are graphics of mean and maximum distance respectively.

TABLE 3. Results obtained from comparison between networks prediction over the test dataset and ground truth segmentations.

Axial Sagittal Coronal Integration

Mean DSC 0.86 � 0.06 0.85 � 0.05 0.83 � 0.06 0.89 � 0.04

IQR DSC 0.83–0.90 0.81–0.90 0.78–0.90 0.87–0.92

Mean distance (mm) 1.63 � 1.53 2.21 � 2.14 2.03 � 1.25 1.09 � 0.72

IQR mean distance (mm) 0.85–1.44 0.90–1.91 1.21–2.09 0.58–1.13

Max distance (mm) 36.95 � 24.94 52.05 � 35.5 30.47 � 17.14 26.7 � 16.46

IQR max distance (mm) 17.88–42.59 24.69–75.37 18.92–32.49 15.03–33.15

Prediction time (s) – – – 63 � 14

DSC distances, IQR and prediction time are displayed.
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faces. The agreement between both reconstructed
thrombi is satisfactory, despite spurious points.

Aneurysm Geometrical Analysis

Geometric analysis to retrieve information on an-
eurysm volume, and lumen and total aneurysm diam-
eters is computed on the 14 patients of the test set for
thrombus segmentation. Maximum diameters of the
total aneurysm and the lumen are computed over the
same perpendicular centerline section, by considering
the section with the largest total diameter. The auto-
matic pipeline returns a mean maximum total aneur-
ysm diameter of 55.3 � 11.5 mm, and a mean lumen
diameter of 32.3 � 10.3 mm.

By coupling the aorta and thrombus 3D recon-
structions, the total aneurysm and abdominal lumen
volumes can be computed. The mean total volume of

the 14 patients is assessed to be 143:6� 104 cm3,
while the mean abdominal lumen volume is 68.2 �
58:7cm3.

The maximum total aneurysm and lumen diameters
extracted are compared with the ones manually mea-
sured by an expert in order to evaluate the perfor-

mances obtained with the geometrical analysis. Mean
absolute difference, Intraclass Correlation Coefficient,
and Interquartile range of absolute difference are
reported in Table 4. These metrics are computed sep-
arately for the total aneurysm and the lumen.

Figure 6 reports an example of the manual mea-
surements extraction of maximum and minimum
diameters of the total aneurysm and lumen in the axial
view. Figure 7 shows the 3D reconstruction of the
same patient, the section extraction made by our model
and the representation of the maximum diameter sec-
tion of the aneurysm and the lumen.

DISCUSSIONS

Starting from our previous work on lumen seg-
mentation,7 the aim of this work is to extend the
proposed segmentation model for thrombus segmen-
tation, allowing a fully automatic analysis of AAAs.

Once the multi-view segmentation method has been
trained to extract the thrombus from the CTAs, the
automatic extraction of aneurysm geometric informa-
tion has been addressed. In fact, aneurysm treatment

FIGURE 5. (a) 3D reconstruction of thrombus segmentation predicted by the model. (b) 3D ground truth thrombus segmentation.
(c) Prediction (red) and ground truth (yellow) thrombus segmentations overlapped.

TABLE 4. Intraclass correlation coefficient (ICC), mean absolute error, and Interquartile Range (IQR) between model and ground
truth measurements.

ICC Mean absolute difference (mm) IQR absolute difference (mm)

Total aneurysm diameter 0.92 3.2 � 2.4 1.70–3.45

Lumen diameter 0.89 3.18 � 3.76 1.15–3.32

Time extraction (s) 115 � 84
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involves measurements of diameters and volumes in
order to decide the best procedure to follow.

In this work, by coupling the models for lumen and
thrombus segmentation, a fully automatic pipeline for
aneurysm measurements extraction has been imple-
mented and validated.

The results obtained with thrombus segmentation
are promising. The mean DSC achieves 0.89, providing
satisfactory results compared to the state-of-the-art
works as briefly discussed in the following.

FIGURE 6. (a) Manual measurements of the total aneurysm and (b) lumen diameters from CTAs. Both measurements are
computed using Endosize software.10

FIGURE 7. (a) 3D reconstruction of lumen and thrombus segmentations. (b) Sections for both lumen and total aneurysm,
generated perpendicular to the centerline with the maximum aneurysm diameter section highlighted (purple). (c) Section with
maximum aneurysm diameter: thrombus area is in red; lumen area is in green.

BIOMEDICAL
ENGINEERING 
SOCIETY

BRUTTI et al.544



Table 5 summarizes the main aspects of literature
works approaches for thrombus segmentation and
analysis, considering only the ones that provide com-
parison with ground truth.

As in our study, the datasets of the four works
reported in Table 5 are obtained from different CT
scanners. However, the datasets of these studies in-
clude fewer CTAs. López et al.13 present a dataset
similar to ours in terms of the number of data but uses
a 3D approach, while we split each CTA into the three
orthogonal views. In this way, the dataset used to train
each neural network involved in our pipeline is much
larger (Table 2). For what concerns the validation of
the manual segmentations, inter-observer variability is
performed over three12 or two3 operators and no intra-
observer variability is provided.

Among deep learning-based methods, the perfor-
mance of our model is consistent with the ones
reported in both the works of Lòpez et al.,12,13 but
unlike them it presents a 2.5D approach by combining
three single-view U-Net CNNs with a final multi-view
integration step. Since 3D networks require a lot of
data and computation power, several studies24 have
suggested the use of 2.5D segmentation approaches
that fuse volumetric spatial information into 2D CNNs
to improve the accuracy while reducing the computa-
tional cost. Integrating the segmentations obtained
from different planes allows to decrease the computa-
tional cost and improve the accuracy of the final seg-

mentation, as will be shown in the results. Moreover,
the results obtained by Caradu et al3 using PRAE-
VAorta software are comparable with those obtained
by Lòpez et al.12 exploiting the 2D approach. Finally,
our pipeline does not require a priori knowledge of the
lumen region, as in the case of the work of Lareyre
et al.11 which addressed a feature-based approach
strongly dependent on lumen segmentation, and as in
the case of Caradu et al.3 which set lumen segmenta-
tion as the initial level for segmenting the thrombus.

For what concerns the maximum aneurysm diame-
ter extraction, Lòpez et al.12,13 perform the diameter
computation considering the axial segmentation of the
aneurysm, without computing the lumen centerline.
For each segmented slice the minimum enclosing circle
of the aneurysm mask is computed, and finally the
largest diameter is selected among those extracted. In
their work, aneurysm diameter extraction is performed
using this automatic method on both network-pre-
dicted and manual segmentations. Therefore, the mean
absolute maximum diameter difference is only used to
assess the quality of the automatic segmentation
method, as the obtained maximum diameter is not
compared with the diameter manually measured by the
expert.

In contrast, Caradu et al.3 calculate aneurysm
diameters starting from centerline extraction and
cross-sections computation. The centerline was com-
puted based on the lumen segmentation and defined as

TABLE 5. Results of automatic and semi-automatic models for thrombus segmentation and analysis proposed in the literature

Dataset DSC Approach Technique

Computational

time* (s)

Mean absolute diameter

difference (mm)

Lòpez et al.

(2018)

13 CTA 0.82 ± 0.07 DL

Single 2D HED CNN on axial slices

Automatic 60 5.8 ± 7.1

Lòpez et al.

(2019)

80 CTA 0.87 ± 0.06 DL

3D HED CNN

Automatic – 3.3 ± 6.0

Lareyre

et al.

(2019)

40 CTA 0.88 ± 0.12 ML

Active contour method from lumen seg-

mentation

Automatic Range:

5–60

–

Caradu

et al.

(2021)

38 CTA 0.81 ± 0.10 PRAEVAorta software

starting from lumen segmentation

Automatic 90 Model vs Senior sur-

geon:

2.3 ± 2.1

Model vs Junior surgeon:

3.4 ± 4.2

Present

study

85 CTA 0.89 ± 0.04 DL

2D U-Net CNNs on single three views

slices + multi-view integration

Automatic 60 3.2 � 2.4

ML machine learning, DL deep learning.
*For thrombus segmentation..
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the path along the lumen keeping the largest distance
to lumen boundaries. The maximum transverse diam-
eter was then defined as the maximum diameter com-
puted in the planes orthogonal to the centerline,
including the lumen and the thrombus. In addition,
they compare the diameters obtained with the auto-
matic method to those manually measured by a junior
and an experienced surgeon.

In the clinical practice, experts visually inspect the
CTA slices and take measurements of the diameters in
the slice where the thrombus diameter appears larger.
The measurements of lumen and aneurysm diameters
depend on the choice of the target CTA slice, and the
slice identification is subject to inter- and intra-opera-
tor variability. In our automatic pipeline, the centerline
extracted from the lumen segmentation is used to
compute the aneurysm and lumen diameters from the
corresponding 3D models. The diameters are extracted
from sections that are perpendicular to the lumen
centerline, and the section with maximum aneurysm
diameter is chosen. Thus, the difference between
automatic and manual measurements, reported in
Table 4, may depend on the planes selected to perform
the measurements. Moreover, Singh et al.22 have
recorded an absolute interobserver difference of the
maximal infrarenal aortic diameter of 82% between
interobserver pairs and a mean interobserver variabil-
ity in the infrarenal aortic section of 4.2 mm. Caradu
et al.3 dealt with this aspect too by computing the
difference in the maximum infrarenal aortic diameter
obtained by a senior and a junior surgeon. The eval-
uation returns a mean absolute difference of 2.8 � 3.8
mm. It means that manual measurements are not
objective and hardly reproducible, hence model results
on measurements extraction strongly depend on the
manual measurements taken.

Our measured ICC value agrees with the one pro-
vided by Caradu et al.,3 where they show that the semi-
automatic manual segmentations present low interob-
server variability given intraclass coefficient values
greater than 0.90. In addition, our IQR of the mean
absolute difference in total aneurysm maximum
diameter is smaller than those in Caradu et al.3 It
means that the spread of the middle 50% of values is
quite smaller and our measurements have less vari-
ability. Hence, we can state that the accuracy of seg-
mentation and analysis of AAA proposed in this work
performs similar to analysis made by experts and takes
considerably less time than manual segmentation and
analysis. In particular, Table 3 shows that the pro-
posed automatic thrombus segmentation takes about 1
minute versus the 25-40 minutes required to perform
manual segmentation,11 and geometry analysis for
each patient is performed in about 2 minutes, as
reported in Table 4.

LIMITATIONS

Although the proposed segmentation model
achieves a very good performance, in future works it
might be necessary to increase the training and vali-
dation dataset in order to deal with patients mor-
phology variability. In particular, patients with very
large and very small aneurysms should be included in
the dataset, since our dataset involves mostly medium-
sized aneurysms. Moreover, since the current model is
trained only on preoperative CTA scans, postoperative
CTA scans could be used to extend the dataset and
provide more examples for the network.

CONCLUSIONS

The developed pipeline could be used for different
purposes. First of all, the automatic analysis of AAAs
would enable a fast screening of the CTA scans and a
consequently faster diagnosis. Secondly, the automatic
geometrical analysis would allow a faster selection of
the patients suitable for EVAR procedure, and a faster
collection of robust and reproducible measurements
for the treatment. Moreover, the model might be used
to compare the diameter and total volume of the an-
eurysm before and after the surgery. This would help
in tracking the progress of the endovascular treatment
in the long term.

Besides the clinical applications, the 3D thrombus
reconstruction can be also exploited in the future to
perform finite element simulations.8
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18Óleary, S. A., E. G. Kavanagh, P. A. Grace, T. M.
McGloughlin, and B. J. Doyle. The biaxial mechanical
behaviour of abdominal aortic aneurysm intraluminal
thrombus: classification of morphology and the determi-
nation of layer and region specific properties. J. Biomech.
47(6):1430–1437, 2014. https://doi.org/10.1016/j.jbiomech.
2014.01.041.

19Ronneberger, O., P. Fischer, and T. Brox, ‘U-Net: Con-
volutional Networks for Biomedical Image Segmentation’,
ArXiv150504597 Cs, May 2015, doi: https://doi.org/10.10
07/978-3-319-24574-4_28.

20Schroeder, W., K. Martin, and B. Lorensen. The visual-
ization toolkit: an object-oriented approach to 3D graph-
ics; visualize data in 3D—medical, engineering or scientific;
build your own applications with C++, Tcl, Java or Py-
thon; includes source code for VTK (supports Unix, Win-
dows and Mac), 4th ed. Clifton Park, NY: Kitware Inc,
2006.

21Shen, D., G. Wu, and H.-I. Suk. Deep learning in medical
image analysis. Annu. Rev. Biomed. Eng. 19(1):221–248,
2017. https://doi.org/10.1146/annurev-bioeng-071516-0444
42.

22Singh, K., et al. Intra- and interobserver variability in the
measurements of abdominal aortic and common iliac ar-
tery diameter with computed tomography. The Tromsø
study. Eur. J. Vasc. Endovasc. Surg. 25(5):399–407, 2003. h
ttps://doi.org/10.1053/ejvs.2002.1856.

23Wolf, I., et al. The medical imaging interaction toolkit.
Med. Image Anal. 9(6):594–604, 2005. https://doi.org/10.
1016/j.media.2005.04.005.

24Zhang, Y., Q. Liao, and J. Zhang. Exploring efficient
volumetric medical image segmentation using 2.5D meth-
od: an empirical study. ArXiv201006163 Cs Eess, 2020. h
ttp://arxiv.org/abs/2010.06163.

Publisher’s Note Springer Nature remains neutral with re-
gard to jurisdictional claims in published maps and institu-
tional affiliations.

BIOMEDICAL
ENGINEERING 
SOCIETY

Deep Learning to Automatically Segment and Analyze AAA 547

https://doi.org/10.1007/s11517-008-0420-1
https://doi.org/10.1007/s11517-008-0420-1
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://doi.org/10.1016/j.jvs.2020.11.036
https://doi.org/10.1016/j.jvs.2020.11.036
https://doi.org/10.1016/j.jvs.2017.10.044
https://keras.io
https://doi.org/10.5281/ZENODO.5043456
https://doi.org/10.5281/ZENODO.5043456
https://doi.org/10.1007/s13239-020-00481-z
https://doi.org/10.1007/s13239-020-00481-z
https://doi.org/10.1016/j.jvs.2017.08.069
https://doi.org/10.1016/j.jvs.2017.08.069
https://doi.org/10.1109/CSPA.2016.7515839
https://doi.org/10.1109/CSPA.2016.7515839
https://doi.org/10.1016/j.avsg.2010.03.018
https://doi.org/10.1016/j.avsg.2010.03.018
https://doi.org/10.1038/s41598-019-50251-8
https://doi.org/10.1038/s41598-019-50251-8
https://doi.org/10.1016/j.media.2018.03.010
https://doi.org/10.1016/j.media.2018.03.010
https://doi.org/10.1016/j.media.2018.03.010
https://doi.org/10.1016/j.media.2018.03.010
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1016/j.neucom.2013.01.051
https://doi.org/10.1109/TPAMI.2003.1177156
https://doi.org/10.1109/TPAMI.2003.1177156
https://doi.org/10.3389/fninf.2014.00013
https://doi.org/10.3389/fninf.2014.00013
https://doi.org/10.1016/j.jbiomech.2014.01.041
https://doi.org/10.1016/j.jbiomech.2014.01.041
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1053/ejvs.2002.1856
https://doi.org/10.1053/ejvs.2002.1856
https://doi.org/10.1016/j.media.2005.04.005
https://doi.org/10.1016/j.media.2005.04.005
http://arxiv.org/abs/2010.06163
http://arxiv.org/abs/2010.06163

	Deep Learning to Automatically Segment and Analyze Abdominal Aortic Aneurysm from Computed Tomography Angiography
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and Methods
	Dataset
	Pipeline
	Thrombus Segmentation
	AAA Geometrical Analysis

	Data Analysis

	Experiments and Results
	Experimental Settings
	Thrombus Segmentation
	Aneurysm Geometrical Analysis

	Discussions
	Limitations
	Conclusions
	Acknowledgments
	References




