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Abstract—In this paper, a novel algorithm for the accurate
detection of QRS complex by combining the independent
detection of R and S peaks, using fusion algorithm is
proposed. R peak detection has been extensively studied and
is being used to detect the QRS complex. Whereas, S peaks,
which is also part of QRS complex can be independently
detected to aid the detection of QRS complex. In this paper,
we suggest a method to first estimate S peak from raw ECG
signal and then use them to aid the detection of QRS
complex. The amplitude of S peak in ECG signal is relatively
weak than corresponding R peak, which is traditionally used
for the detection of QRS complex, therefore, an appropriate
digital filter is designed to enhance the S peaks. These
enhanced S peaks are then detected by adaptive thresholding.
The algorithm is validated on all the signals of MIT-BIH
arrhythmia database and noise stress database taken from
physionet.org. The algorithm performs reasonably well even
for the signals highly corrupted by noise. The algorithm
performance is confirmed by sensitivity and positive predic-
tivity of 99.99% and the detection accuracy of 99.98% for
QRS complex detection. The number of false positives and
false negatives resulted while analysis has been drastically
reduced to 80 and 42 against the 98 and 84 the best results
reported so far.

Keywords—QRS complex, S peak, Wavelet transform, Fu-

sion algorithm.

INTRODUCTION

In automated electrocardiogram (ECG) signal anal-
ysis, the first step is to accurately detect the QRS com-
plex, which is subsequently used for measuring other
features of theECGsignal. Perhaps, themost critical use
of QRS detection occurs in intensive care unit arrhyth-
mia monitoring systems, which includes ECGmachines
in operating room monitors. The duration, amplitude,

and morphology of the QRS complex are useful in
diagnosing cardiac arrhythmia, conduction abnormali-
ties, ventricular hypertrophy, myocardial infarction,
electrolyte derangement, heart rate variability (HRV),
and other disease states.10 Also, the precise detection of
QRS complex is required for accessing the state of the
heart, as it corresponds to the electrical excitation of the
two ventricles. Any cardiac dysfunction changes the
morphology of the waveform and the duration of the
RR interval, which is considered clinically important, as
it indicates disorders in the re-polarization and depo-
larization process preceding the critical cardiac
arrhythmia. There are substantial precedent algorithms
for the detection of the QRS complex available in the
literature. Some algorithms are based on digital filters,27

amplitude thresholding,1 derivatives of the ECG sig-
nal,15 filter bankmethod,13Hilbert transform,3 template
matching and morphological filtering,6,12,31,40 Empiri-
cal Mode Decomposition,14 wavelet trans-
form,2,4,9,20,22,30,32,36,38,39 Hidden Markov method,8

Neural network,16 total variation de-noising,35 matched
filters,18 max–min difference28 but still there are chal-
lenges to detect QRS complex accurately due to several
reasons including diversity of the QRS waveform,
abnormalities present in ECG signal, low signal-to-
noise ratio (SNR) and artifacts accompanying ECG
signals. Many of the existing algorithms are not able to
perform noise reduction and QRS complex detection
simultaneously.

The high amplitude of R peak in QRS complex
makes it the most prominent feature for detection. The
other peaks (P, Q, S, and T) present in the ECG signal
are detected by taking R peak as the reference.10 Many
a time in the noisy or diseased signal like Right Bundle
Branch Block (RBBB), left ventricular hypertrophy,
obesity, anasarca, chronic obstructive pulmonary dis-
ease (COPD), hyperinflation of lungs, pneumothorax,Address correspondence to Pooja Sabherwal, The NorthCap
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diffuse myocardial disease (e.g., myocarditis, car-
diomyopathy), hypothyroidism; the R peaks has low
amplitude and has broad and tall S peaks.11 Also,
sometimes clinically there is RsR, rS, QS type of
complexes, in which amplitude of R peak is low. In
such cases, the R peaks are difficult to detect. Also, the
noise present in ECG signal degrades the quality of the
signal a lot. The estimation of QRS complex in these
cases can be enhanced many folds using some other
information which can be extracted from the ECG
signal. As S peak is the second dominant feature which
can be estimated, therefore we propose for an inde-
pendent estimate of S peak along-with traditional R
peak detection to estimate QRS complex. The inde-
pendent detection of other peaks like S peak present in
the cardiac cycle can aid in the accurate detection of
QRS complex.

A novel algorithm has been proposed to estimate S
peak independently, previously to the best of our
knowledge QRS complex was being estimated from R
peak only. Further these detected S peaks along-with
R peaks are used to detect QRS complexes. To the best
of our knowledge, it is the first time that S peak is
detected independent of R peak from the ECG signal
and is used to aid the detection of QRS complex. The
amplitude of S peaks is quite low, therefore appro-
priate digital filters are designed for the enhancement
of S peaks. Different morphology and noise will affect
the S peak in different ways, therefore, adaptive
thresholding has been used to detect the S peak. De-
tected S peak along with detected R
peak.1–3,9,10,13–15,22,27,30,34,36,40 are fused to estimate the
QRS complex.

This algorithm gives very precise and accurate
detection of QRS complex even for highly noisy signals
having varying QRS complex morphology, small and
broad QRS complex, QRS complex with sharp and tall
P, T waves. It is validated with all the signals of MIT-
BIH arrhythmia database.26 The performance of the
algorithm is also validated by adding power line
interference, electrode motion artifact, baseline wan-
dering interference and muscle artifact to the signals of
MIT-BIH arrhythmia database and on signals of noise
stress database of physionet.org.26 The false negatives
and false positives are substantially reduced especially
for noisy signals as compared to results reported in
literature.1,3,5,9,10,13,15,19,21–23,25,29,32–34,37,38,40,41 The
algorithm attains 99.99% sensitivity and positive pre-
dictivity.

This paper has been organized as follows. ‘‘The
Proposed Method’’ constitute the main body of our
work, where the problem is discussed and we discuss
the algorithm for accurate detection of QRS complex.

Results and simulation studies are presented in ‘‘Da-
tabase and Experimental Results’’.

THE PROPOSED METHOD

Noise Suppression in ECG Signal

The ECG signal consists of P, QRS and T waves.
The accurate delineation of QRS complex is required
for the diagnosis of the state of the heart. The observed
ECG signal is corrupted by various artifacts such as
baseline wandering artifact, motion artifact, electro-
surgical and muscle contraction artifact, power line
interference and electrode contact noise, which are
superimposed on the ECG signal. The observed ECG
signal can be mathematically expressed as,

y½n� ¼ ax½n� þ w½n�; ð1Þ

where x[n] is the ECG signal, a is the attenuation
parameter where a 2 R and w[n] are the artifacts and
noise present in ECG signal. Here, the assumption is
being made that the artifacts are linearly added to the
ECG signal. For accurate detection of QRS complex,
the artifacts must be removed from the observed ECG
signal. The ECG signal consists of different waves
having different frequencies occurring at different
intervals. Therefore, the time–frequency analysis is the
best way to analyze them. Here, the wavelet-based
time–frequency analysis is used to have the complete
accurate representation of the ECG signal. For de-
noising, the observed ECG signal is decomposed by
discrete wavelet transform (DWT) with the db6 wave-
let used as the mother wavelet as its shape resembles
the QRS complex. Moreover, the performance of the
algorithm was also checked in literature2 and experi-
mentally with other wavelets. It was found that db6 is
the best suitable mother wavelet for ECG signal
analysis. The DWT analyses the signal at different
resolution (hence, multiresolution) through the
decomposition of the signal into several successive
frequency bands. The signal detail corresponding to
scale index s is defined for a finite length signal as

ds½n� ¼ hhy½n�;ws½n�i;ws½n�i; ð2Þ

where ws½n� is the mother wavelet.
For wavelets, the scale factor s is inversely related to

the frequency f. Depending upon frequency support of
the observed ECG signal, it is decomposed up to a
desired level and frequency. With the sampling fre-
quency of 360 Hz, the complete information of the
observed ECG signal is present till 10th level of
decomposition.2 Therefore the signal y[n] is decom-
posed till 10 levels and the detail coefficients obtained
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are labeled as d1½n� to d10½n� respectively. The frequency
band of each detail coefficients obtained at a particular
scale is shown in Table 1.

As in literature,2 the frequency bands of electro-
surgical noise is 100 kHz–1 MHz and muscle con-
traction noises is dc-10 kHz, they are eliminated by
discarding the details d1½n� and d2½n�. The motion
artifacts and baseline wandering noise is caused due to
respiration and has frequency varying from 0.15 to 0.8
Hz. These two types of noises are discarded by removal
of the lowest frequency component, i.e., detail coeffi-
cient d9½n� and d10½n�. The most of the ECG signal
energy is concentrated at the QRS complex.2,36 For the
energy analysis, the average energy content of the de-
tail coefficients for all signals of MIT-BIH arrhythmia
database is calculated and the plot is shown in Fig. 1.
The plot of the energy distribution of detail coefficients
shows that most of the energy is concentrated at scale
4. Therefore, it is considered that d4½n� and its neigh-
boring scales carry the dominant details of the QRS
complex. Also, according to Table 1 the detail coeffi-
cients d3½n�, d4½n� and d5½n� has the frequency band of
QRS complex (5–25 Hz). Therefore, all other approx-
imations and details are discarded and signal is esti-
mated from detail d3½n�, d4½n� and d5½n� only. But from

literature17 and experimentally it is observed that d3½n�
contains power line interference and electrode contact
noise having a frequency range of 50–60 Hz, therefore
it is discarded. The noise-free ECG signal x̂½n� is
therefore estimated from d4½n� and d5½n� only.

x̂½n� ¼ d4½n� þ d5½n�; ð3Þ

where d4½n� and d5½n� are details at level 4 and 5
respectively and is obtained from DWT of the signal
y[n].

Figure 2 shows the observed ECG signal (record
106m of MIT-BIH arrhythmia database) and signal
estimated from d4½n� and d5½n� after the removal of
artifacts. In this figure, both R and S peaks of the
signal are enhanced. But here we are aiding the
detection of QRS complex by independently detecting
the S peak. As the detection of S peaks also helps in
better estimation of QRS complex for noisy or diseased
signals. The technique to estimate the S peaks is dis-
cussed in the following subsections.

Enhancement of S Peak

The signal x̂½n� estimated after performing the wa-
velet transform on the observed ECG signal has en-
hanced S peaks but this stage is constructed to further
accentuate the S peaks and to reduce the influence of
the Q and R peaks present in ECG signal. This is done
by passing the denoised signal x̂½n� through the fol-
lowing digital filter.

ŷ1½n� ¼ x̂½n� 4� � x̂½n� ð4Þ

Figure 3 shows the enhanced S peaks obtained as the
output of the digital filter.

The enhanced S peaks in signal ŷ1½n� are further
accentuated by cubic nonlinear transform as given in
Eq. (5). Here, the cubic nonlinear transform is used as
it maintains the sign of the signal while amplifying the
peaks of the signal ŷ1½n�.

ŷ2½n� ¼
1

jŷ1½n�j
ŷ31½n�: ð5Þ

Adaptive Thresholding Technique for Finding Location
of S Peaks

The S peak in the signal ŷ2½n� corresponds to max-
imum positive amplitude in the segment corresponding
to the QRS. Therefore in order to detect the S peak
first the boundaries of the QRS complex are obtained
and then the maxima point in the estimated boundaries
of QRS complex corresponds to the S peak. The
boundaries of QRS complex are detected using feature
signal obtained by counting the number of zero

TABLE 1. Frequency distribution of detail coefficients.

Detail coefficients d1[n]–d10[n] Frequency range (Hz)

d1[n] 90–180

d2[n] 45–90

d3[n] 22.5–45

d4[n] 11.25–22.5

d5[n] 5.625–11.25

d6[n] 2.8125–5.625

d7[n] 1.40625–2.8125

d8[n] 0.703125–1.40625

d9[n] 0.3515625–0.703125

d10[n] 0.17578125–0.3515625

ˆDetail Coefficients d1[n] to d10[n]
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FIGURE 1. Energy distribution of detail coefficients.
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crossings per segment.19 Therefore a small amplitude

high-frequency signal ĥ½n� is added to the processed

signal ŷ2½n�. The amplitude of ĥ½n� is appropriately
chosen such that the frequency of non-QRS part in
resultant signal ẑ½n� is much larger than QRS part,
which helps us in detecting the QRS complex. As seen
in Fig. 3, the signal ŷ2½n� has high amplitude during
QRS complex and low amplitude otherwise. The signal
ẑ½n� is obtained as,

ẑ½n� ¼ ĥ½n� þ ŷ2½n�; ð6Þ

where the high-frequency sequence ĥ½n� is computed as,

ĥ½n� ¼ ð�1Þnê½n�: ð7Þ

The amplitude of the high-frequency sequence ĥ½n� is
calculated from the amplitude of ŷ2½n� such that the

effect of this addition increases the frequencies of non-
QRS complex part of the signal and is given as

ê½n� ¼ kê½n� 1� þ cð1� kÞ:jðŷ2½n�Þj ð8Þ

where k is forgetting factor and k 2 (0;1), c 2 [1,4] and
|.| is absolute operation. The frequency of the signal is
estimated by zero crossings in the signal ẑ½n�; which are
detected as,

k̂½n� ¼ j signðẑ½n�Þ � signðẑ½n� 1�Þ
2

j ð9Þ

Further these zero crossings are passed through a low
pass filter as in (10) to remove other artifacts. Counting
the number of zero crossings per segment with a

moving window leads to the feature signal f̂½n�, which is
defined as,
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FIGURE 2. (i) Observed ECG signal. (ii) Signal estimated after wavelet transform.
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f̂½n� ¼ kdf̂½n� 1� þ ð1� kdÞk̂½n� ð10Þ

The adaptive threshold ĥ½n� is calculated as in (11) by a
first-order recursive filter which is applied on the
obtained feature signal. For detection of S peaks, the

calculated threshold ĥ½n� is compared with feature

signal f̂½n�.

ĥ½n� ¼ khĥ½n� 1� þ ð1� khÞf̂½n� ð11Þ

where kh and kd are forgetting factors.

kh 2 ð0; 1Þ; kd 2 ð0; 1Þ ð12Þ

when the feature signal f̂½n� falls below the adaptive

threshold ĥ½n�, the sequence obtained is N1½k� and N2½k�
is the sequence obtained when feature signal rises
above the threshold.17 These N1½k� and N2½k� points are
taken as the boundaries of the QRS complex interval
in signal x̂½n�. As in (13), the maximum point obtained
in this interval is S peak

Speak½k� ¼ maxðx̂½N1½k�;N2½k��Þ: ð13Þ

The complete process of thresholding is also shown in
Fig. 4. The detected Speak are used for detecting R

peaks. From the detected S peak, traverse back with a
window of 10 ms and find the maxima point soon
before the detected S peaks. The location of maxima
point obtained is the location of R peak.

Estimation of QRS Complex by Using Fusion Algorithm

The R peak is the strongest peak present in QRS
complex and is traditionally used to detect the QRS,
therefore we suggest to fuse these two estimates to

obtain a robust and better estimate of QRS complex.
Here R peaks estimated by the suggested method is
denoted as Rs[k] and R peak detected by traditional
method is denoted by Rr[k]. These two estimates are
‘OR’ed to obtain fused detection of QRS complex as
shown in Fig. 5.

As shown in Fig. 6, the QRS complex missed by the
techniques reported in the literature34 are detected by
the proposed algorithm. The algorithm helps in
detecting the QRS complexes which were missed by
traditional methods, which is more elaborated in a
section of simulation.

DATABASE AND EXPERIMENTAL RESULTS

The proposed algorithm was validated on the 48
half-hour digitized signals of the first channel, i.e.,
modified limb lead II (ML II) taken from MIT-BIH
database of physionet.org.26 From 48 recordings, 13
recordings are of healthy persons and 35 recordings are
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FIGURE 4. Steps of adaptive thresholding.

FIGURE 5. Estimation of QRS complex by using fusion
algorithm.

Aiding the Detection of QRS Complex in ECG Signals 473



of persons with various cardiac disorders. The
recordings were digitized at 360 samples per second per
channel and each recording has 650,000 sampling
points. It has a variety of wave-forms and artifacts that
an arrhythmia detector might encounter in routine
clinical use like complex ventricular arrhythmia and
supra-ventricular arrhythmia and conduction abnor-
malities.

The performance of the algorithm is assessed using
these statistical measures:

Sensitivity ðSEÞ ¼ TP

TPþ FN
ð14Þ

Positive predictivity ðþPrÞ ¼ TP

TPþ FP
ð15Þ

Detection accuracy ¼ TP

TPþ FNþ FP
ð16Þ

MeanSquare Error ðMSEÞ ¼ Actual beats� (TP)2

Actual beats

ð17Þ

Error rate ¼ FPþ FN

TP
ð18Þ

Time (sec) ×105

4.067 4.068 4.069 4.07 4.071 4.072 4.073 4.074

y[
n]

800
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900

950

1000

1050

1100
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Detected QRS complex with proposed algorithm
Observed ECG signal (Record 106m)
Detected QRS complex with algorithm in [6]
Actual QRS complex

Detected QRS complex by the 
proposed algorithm

 which was not detected
 by earlier algorithms

FIGURE 6. Performance of the algorithm for record 106m of MIT-BIH arrhythmia database.

TABLE 2. Performance comparison with published detection methods.

QRS detector Total beats TP FN FP Se% +Pr% MSE Error rate (%)

Proposed method 109,498 109,433 42 80 99.99 99.99 0.039 0.135

Sabherwal et al.34 109,498 109,405 93 98 99.9 99.9 0.079 0.175

Rakshit32 109,494 109,410 84 99 99.93 99.91 0.064 0.167

Manikandan et al.33 109,496 109,402 94 86 99.91 99.92 0.081 0.165

Sachin Kumar et al.35 109,494 109,485 94 126 99.91 99.88 0.081 0.201

Li et al.21 109,497 109,416 67 138 99.94 99.87 0.060 0.187

Manikandan et al.24 109,494 109,415 79 140 99.93 99.86 0.057 0.200

Ma et al.23 58,854 58,798 56 44 99.90 99.91 0.053 0.170

Li et al.22 104,182 104,070 112 65 99.89 99.94 0.120 0.170

Zidelmala et al.41 108,494 108,323 171 97 99.84 99.91 0.270 0.247

Sharma and Sharma37 109,494 109,353 131 111 99.88 99.90 0.182 0.221

Smaoui et al.38 109,494 108,738 756 168 99.37 99.83 5.220 0.85

Martnez et al.25 109,428 109,208 220 153 99.80 99.86 0.442 0.342

Chiarugi et al.7 109,438 109,228 266 210 99.7 99.8 0.403 0.436

Thiamchoo et al.39 109,491 109,109 382 180 99.66 99.83 1.333 0.515

Castells-Rufas et al.5 109,494 108,880 614 353 99.41 99.63 3.443 0.888

Hamilton and Tompkins13 109,267 108,927 340 248 99.69 99.77 1.058 0.540

Pan and Tompkins29 109,809 109,532 277 507 99.75 99.54 0.699 0.716
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where TP is the number of true positives (true positive
is QRS complex detected within the 30 ms of the
annotated QRS complex), FN the number of false
negatives (false negative is annotated QRS complex
which is not detected), and FP the number of false
positives (false positive is QRS complex detected out-
side the range of 30 ms of the annotated QRS com-
plex).27

Sensitivity tells us the percentage of true QRS
complexes that are correctly detected by the algorithm
and positive predictivity tells us the percentage of QRS
complex detection that was true.10 The algorithm
consists of few parameters, i.e., forgetting factors k; kd;
and kh; which are chosen by rigorous simulations on
the available data set. The values used here for k, kd;
and kh, are 0.99, 0.97, and 0.99 respectively. Here, the
R peaks Rr½k� detected independently as in Ref. 34 the
best results reported so far and R peaks Rs½k� detected
through S peaks by the proposed algorithm are fused
together by ‘OR’ operation. The overall performance
comparison of the algorithm with the detectors avail-
able in the literature is shown in Table 2. The com-
parison of FN and FP resulted with the proposed
algorithm and the detectors available in literature, for
the signals of MIT-BIH arrhythmia database are
shown in Table 3. The fused algorithm gave better
results as compared to the techniques reported in the
literature.7,13,24,32,34,38,41 The average sensitivity of
99.99% and positive predictivity of 99.99% and the
average detection accuracy of 99.98% has been
achieved with a total number of false positive reduced
to 80 and false negatives reduced to 42 for the signals
of MIT-BIH arrhythmia database. The average error
rate comes out to 0.2% for this algorithm, which is far
better than reported results in Refs. 7, 13, 24, 32, 34,
38, and 41 Figure 7 shows the improvement against the
results reported in Ref. 34 for all the signals of MIT-
BIH arrhythmia database and it has shown improve-
ment mainly for diseased and noisy signals like 103m,
104m, 105m, 106m, 107m, 109m, 111m, 116m, 201m,
202m, 203m, 201m, 214m, 215m, 217m, 222m, 228m,
231m and 232m .

Further to understand the algorithm more, the re-
sults obtained with various noisy and diseased signal
are discussed. Figure 8 shows, the record 228m of
MIT-BIH arrhythmia database which is having high
grade noise, abrupt changes, baseline line wandering
artifacts, the QRS complexes which were not estimated
by earlier algorithms7,13,24,32,34,38,41 are easily detected
by the proposed algorithm.

Similarly as shown in Fig. 9, the record 201m of
MIT-BIH arrhythmia database is an irregular rhyth-
mic pattern with premature ventricular contractions
(PVC) and some episodes of ventricular trigeminy.
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There is Complex of RsR type, which was missed by
the algorithms reported in the literature. The proposed
algorithm detected this missed peak through detection
of S peak. Also, as shown in table III, the false negative
and false positive obtained by this algorithm for this
record are 3 and 3 respectively, which is the significant
improvement as compared to results reported in liter-
ature.7,10,13,24,32,34,38,41 The sensitivity and positive

predictivity obtained is 99.86 and 98.75% respectively
for this record.

Also, the record 222m has episodes of paroxysmal
atrial flutter/fibrillation followed by nodal escape
beats. There are several intervals of high-frequency
noise/artifact as shown in Fig. 10. But still, there is the
accurate detection of the QRS complex in this record
by the proposed algorithm.

The algorithm is also compared with the detectors
available in literature.7,13,24,32,34,38,41 Table 3 shows the
performance comparison of the algorithm with studies
of the R peak detectors reported in the litera-
ture.7,13,24,32,34,38,41 The main advantage of the present
method lies in its results with noisy and diseased sig-
nals. The number of false negatives and false positives
detected by this algorithm are significantly lower than
the other methods. The proposed method achieved
better performance than other methods proposed in
the literature.

To study the performance of the proposed algo-
rithm with noise, the algorithm is also validated by
adding noise to the ECG signals of MIT-BIH
arrhythmia database and also validated on signals of
noise stress database of physionet.org.24 This was done
to have the performance of the algorithm for the sig-
nals highly corrupted with noise. The four different
noises for which are used for evaluating the perfor-
mance of the algorithm are power line interference,
electrode motion artifact, baseline wandering interfer-
ence and muscle artifact. The power line interference
has 60 Hz pick up and harmonics, which is modeled as
sinusoidal and combination of sinusoidal. The ampli-
tude for modeling power line interference is taken 50%
of peak to peak ECG amplitude. Electrode motion

FIGURE 7. (i) Comparison of sensitivity. (ii) Comparison of
positive predictivity with algorithm.34
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FIGURE 8. Record 228m and detected QRS complexes.
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noise is transient interference that occurs due to loss of
contact between the electrode and skin. Baseline
wandering occurs due to change in electrode-skin im-
pedance with electrode motion. Muscle artifact occurs
due to contractions of muscle which result in millivolt-
level potentials. Here, the power line interference is
modeled and other three interference are taken from
the noise stress database of physionet.org which is
added linearly to the ECG signal. Each of four types of
noise is added to an ECG signal of MIT-BIH
arrhythmia database by scaling at ten different levels.
The signal to noise ratio at each scaling level is cal-
culated as,

SNRdB ¼ 10log10
Psignal

Pnoise

� �
; ð19Þ

where Psignal is signal power and Pnoise is noise power.
The sensitivity and positive predictivity are calculated
for all the signals corrupted with noise scaled at dif-
ferent levels. Then the average of sensitivity and posi-
tive predictivity obtained at particular SNR is
calculated. The plot of the average sensitivity and
positive predictivity wrt SNR is shown in Figs. 11 and
12. Figure 11(i) shows the behavior of the algorithm
when electrode motion artifact is added. The sensitivity
and positive predictivity obtained with electrode mo-
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FIGURE 9. Record 201m and detected QRS complexes.

Time (sec) ×105

3.042 3.043 3.044 3.045 3.046 3.047

y[
n]

900

950

1000

1050

1100

1150

1200

1250

Detected QRS complex by the proposed lagorithm
Observed ECG signal (Record 222m)
Detected QRS complex by the algorithm in [6]
Actual QRS complex

Detected QRS complex by 
the proposed algorithm which 

were missed by algorithms
 reported in literature.

FIGURE 10. Record 222m and detected QRS complexes.

SABHERWAL et al.478



tion artifact at SNR of 2.5 dB is 88.9 and 96.79%,
which increases with increase in SNR. At SNR of 36.5
dB, the sensitivity and positive predictivity obtained is
99.78 and 99.8% respectively. Similarly, in Fig. 11(ii)
when muscle artifact is added to signals of MIT-BIH
arrhythmia database the sensitivity increases from
90.65 to 99.89% with SNR increase from 9.9 to 48.03
dB respectively. The positive predictivity increases
from 92.88 to 99.86% with an increase in SNR from 9
to 48.03 dB. Figure 12(i) shows the average sensitivity
and positive predictivity obtained for all signals of
noise stress database. It is clear from Figure 12 that
sensitivity and positive predictivity increases with in-
crease in SNR. The sensitivity and positive predictivity
obtained for noise stress database even at SNR of 0 dB
are 97.75 and 97.2% respectively. Figure 12(ii) shows

the result when baseline wandering artifact is added.
At SNR of 2 dB, the sensitivity and positive predic-
tivity obtained is 98.30 and 97.03% respectively. Even
at 0 dB, the results obtained are pretty good for
detection of QRS complex.

CONCLUSION

In this paper, a novel and effective technique for
automatically detecting QRS complex is developed.
The proposed algorithm is based on detection of R and
S peaks independently. S peaks help in identification of
QRS complex for the signals with low amplitude QRS
complex, wide QRS complex and high level of noise.
To best of our knowledge, it is the first time that S
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peaks are detected to aid in the detection of R peaks.
Appropriate digital filters are designed to enhance S
peaks which are further detected by using adaptive
thresholding. Then the R peaks detected independently
and R peaks detected through S peaks are fused to-
gether by an ‘OR’ operation. As expected, the results
have improved for diseased and noisy signals which
can be seen in the result section. The proposed algo-
rithm is able to detect QRS complex with high accu-
racy and is robust against noise. The detections are not
affected by various artifacts and morphology of the
ECG signal. The effectiveness of the proposed algo-
rithm is tested on MIT-BIH arrhythmia database. The
detection performance is measured in terms of true
positive, false positive and false negative for each re-
cord. The results obtained were compared with existing
QRS complex detection algorithm. The algorithm is
able to achieve sensitivity and positive predictivity of
99.99%. The algorithm is also validated after adding
the noises to all signals of MIT-BIH arrhythmia da-
tabase. The performance of the algorithm is seen at
varying SNR. The performance of the algorithm is also
checked with the signals of noise stress database at
varying SNR. The future scope of the proposed algo-
rithm is that when ECG signal has large Q wave in
absence of R and S waves, as in myocardial infarction;
the algorithm can be designed to detect Q waves
independently and then fuse with the proposed algo-
rithm.
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