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Abstract

Purpose—Computational fluid dynamics (CFD) and 4D-flow
magnetic resonance imaging (MRI) are synergically used for
the simulation and the analysis of the flow in a patient-
specific geometry of a healthy thoracic aorta.
Methods—CFD simulations are carried out through the
open-source code SimVascular. The MRI data are used, first,
to provide patient-specific boundary conditions. In particu-
lar, the experimentally acquired flow rate waveform is
imposed at the inlet, while at the outlets the RCR parameters
of the Windkessel model are tuned in order to match the
experimentally measured fractions of flow rate exiting each
domain outlet during an entire cardiac cycle. Then, the MRI
data are used to validate the results of the hemodynamic
simulations. As expected, with a rigid-wall model the
computed flow rate waveforms at the outlets do not show
the time lag respect to the inlet waveform conversely found in
MRI data. We therefore evaluate the effect of wall compli-
ance by using a linear elastic model with homogeneous and
isotropic properties and changing the value of the Young’s
modulus. A stochastic analysis based on the polynomial
chaos approach is adopted, which allows continuous
response surfaces to be obtained in the parameter space
starting from a few deterministic simulations.

Results—The flow rate waveform can be accurately repro-
duced by the compliant simulations in the ascending aorta;
on the other hand, in the aortic arch and in the descending
aorta, the experimental time delay can be matched with low
values of the Young’s modulus, close to the average value
estimated from experiments. However, by decreasing the
Young’s modulus the underestimation of the peak flow rate
becomes more significant. As for the velocity maps, we found
a generally good qualitative agreement of simulations with
MRI data. The main difference is that the simulations
overestimate the extent of reverse flow regions or predict
reverse flow when it is absent in the experimental data.
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Finally, a significant sensitivity to wall compliance of
instantaneous shear stresses during large part of the cardiac
cycle period is observed; the variability of the time-averaged
wall shear stresses remains however very low.
Conclusions—In summary, a successful integration of hemo-
dynamic simulations and of MRI data for a patient-specific
simulation has been shown. The wall compliance seems to
have a significant impact on the numerical predictions; a
larger wall elasticity generally improves the agreement with
experimental data.

Keywords—Aorta, Computational fluid dynamics, Magnetic
resonance imaging, Validation, Polynomial chaos expansion.

INTRODUCTION

Techniques based on computational fluid dynamics
(CFD) have been extensively used in the last few years
to investigate hemodynamics inside arteries in both
healthy and diseased subjects (see e.g. Refs. 8,9, and 13
and the references therein). CFD enables the investi-
gation of pressure and flow field at a time and space
resolution unachievable by any in vivo measurement.
As a consequence, CFD permits to compute a variety
of quantities and indicators that are difficult to be
obtained from medical imaging, as e.g. wall shear
stresses. In addition, since medical images are now
capable to provide accurate morphological features
and CFD techniques are mature to tackle complex 3D
geometries, numerical simulations permit to investigate
hemodynamics in patient-specific geometries. This is
important since it has been shown in the literature that
the actual geometric details may deeply affect the flow
features, as e.g. the regions where the wall shear stress
takes very-high or very-low values.’
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On the other hand, different sources of uncertainties
are present in CFD models which can propagate and
affect the output quantities of interest. Among them
are boundary conditions assumed at the inflow and
outflow of the computational domain and modeling of
the vessel wall compliance properties. In previous
works, we focused on inlet and outlet boundary con-
ditions and we assessed their impact on the hemody-
namics of ascending thoracic aortic aneurysms.’ >
Once again, the integration of patient-specific medical
imaging data could be useful to reduce the modeling
assumptions. In particular, 4D-flow magnetic reso-
nance imaging (MRI)*® is a non-invasive technique
that allows not only the geometry to be acquired, but
also the velocity field to be measured at different points
in space and at different time instants, although, as
previously said, at a resolution significantly lower than
that achievable in CFD simulations. MRI data can
thus be used to provide patient-specific boundary
conditions to numerical simulations (see e.g. Refs.
14,20, and 27-29).

In the present work, a framework integrating 4D-
flow MRI data into the numerical simulation of a
healthy thoracic aorta is presented. The numerical
simulations were carried out with the open-source
software SimVascular. First, the geometry was
acquired by MRI; then, the experimental information
extracted by 4D-flow MRI was used to provide/cali-
brate inflow and outflow boundary conditions. As for
inflow conditions, a common practice is the imposition
of idealized flow rate waveform.?**> However, studies
in the literature have highlighted the impact of inlet
boundary conditions (see e.g. Refs. 4,6,14, and 28).
First, 4D-flow MRI data are used herein to obtain a
patient-specific flow rate waveform to be imposed at
the inlet. As for outflow boundaries, we adopt the
widely used 3-element Windkessel model, in which the
effect of downstream organs and vessels is described by
means of an electric circuit scheme consisting of a
proximal resistance in series with a parallel arrange-
ment of a capacitance and of a distal resistance (see e.g.
Refs. 2,25,40, and 42 and the reference therein). In
particular, analogy is identified between the voltage
difference and the drop in pressure, and between the
current and the flow rate. This approach has the fol-
lowing positive features: (i) it can be naturally imple-
mented in numerical methods as the one used in
SimVascular through Neumann boundary conditions,
(i) it is simpler and less computational demanding
than coupling 3D simulations with 1D models and (iii)
it is more accurate than classical outflow boundary
conditions, such as prescribed pressure or traction-free
conditions, which only take into account the resistance
to flow in the branches of the computational domain.
The 4D-flow MRI data are integrated herein within the

previously described approach by calibrating the
Windkessel model parameters in order to match the
experimental fractions of flow rate exiting each domain
outlet during an entire cardiac cycle.

Clearly, 4D-flow MRI data can also be used for
comparison against numerical results, to provide a
cross validation (see e.g. Refs. 30 and 36). In the pre-
sent work, comparisons are provided for flow rate
waveforms and velocity distributions at selected sec-
tions in the ascending aorta, aortic arch and descend-
ing aorta.

This comparison was first carried out assuming the
vessel walls to be rigid. From the comparison of flow
rate waveforms, it appeared that the time lag present
between each outlet flow rate waveform and the flow
rate imposed at the inlet in the MRI data could not be
captured by the rigid-wall model. This could have been
anticipated since the lag is indeed an effect of wall
compliance. We therefore evaluated the effect of wall
compliance by using a linear elastic model with
homogeneous and isotropic properties. This model is
clearly simplified compared to the actual mechanical
properties of the aortic wall.>! Despite advanced
imaging techniques enable both accurate morphologi-
cal and functional information, however, the evalua-
tion of the material properties of biological tissue still
remain difficult to be estimated. It is well know that the
material properties affect the results of a FSI simula-
tion and that the biological tissue shows differences
from healthy and pathological subjects as well as
during aging.** However, since the mechanical and the
fluid-dynamic problems must be coupled together, the
use of more sophisticated mechanical models would
lead to huge computational costs in patient-specific
numerical simulations, which may become not
affordable in the perspective of using CFD simulations
in routine clinical follow-up. Thus, the question here is
whether a linear elastic model may give accurate results
and which is the impact of the value of the Young’s
modulus, E. In order to provide a systematic quan-
tification of the effects of varying E on the output
quantities of interest, namely flow rate, velocity dis-
tributions and wall shear stresses, a stochastic
approach was adopted. In more details, £ was con-
sidered as a random uncertain parameter and a con-
tinuous response surface in the parameter space was
obtained through generalized polynomial chaos
(gPC).* Stochastic sensitivity analysis plays a funda-
mental role in different fields of biomedical
research,®!%1"1237 in particular when patient data are
used or when a comparison between experimental and
simulated data is established.! Focusing on uncertainty
quantification in blood flow simulations, different
numerical approaches have been used starting from
sampling techniques like Monte Carlo method®**-® to
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more compact projection-based methods as the poly-
nomial chaos expansions.*>!73173335 Ag a recent
example, Bozzi er al.® used the Monte Carlo method to
propagate the uncertainty in measured PC-MRI
velocity profiles applied as inflow BCs, in the CFD
model of the aorta. A total number of 600 numerical
simulations were carried out and the hypothesis of
steady-state flow was made. The simulation number
arises from the need to achieve a desired level of
accuracy and to ensure the convergence of the proba-
bility density functions (PDFs) of the output variables;
the simplified flow condition comes from the necessity
to reduce the computational time. In our work the gPC
approach was adopted because it converges much
faster than Monte Carlo based methods,'® allowing
thus to obtain accurate response surfaces of the
quantities of interest in the parameter space starting
from a few deterministic simulations. In this way,
computational costs can be reduced and more accurate
and complex computational models can be used, as e.g.
unsteady flow and compliant walls.

The remaining of the manuscript is organized as
follows. Information about the acquisition of MRI
data is provided in “MRI Data Acquisition and Pro-
cessing’ section, whereas the numerical methodology,
the computational set-up, and the stochastic approach
for sensitivity analysis are presented in “Modeling and
Numerical Methods”—Methodology for Stochastic
Sensitivity Analysis’ sections. “Flow Rate Waveforms
and Wall Motions” section focuses on the comparison
of the flow rate waveforms obtained in representative
sections along the aorta and of the wall motions.
Velocity maps are compared and analyzed in “Velocity
Maps” section and in “Wall Shear Stresses” section
the effects of E on the wall shear stress distributions
are presented. Finally, “Discussion and Concluding
Remarks” section provides some concluding remarks
and highlights possible objects of future work.

MRI DATA ACQUISITION AND PROCESSING

Two different types of MRI acquisitions have been
performed by means of a 3T MR-scanner on one
healthy subject (28 years, male) with tricuspid aortic
valve. Firstly a 2D balanced turbo field echo (BTFE)
sequence has been acquired for an axial section
including a projection of both ascending and
descending aorta. This type of acquisition (Fig. 2a)
enables an increased signal from fluid, allowing a more
accurate wall motion and cross sectional area evalua-
tion. Secondly, phase contrast sequences with three-
directional velocity encoding (4D-flow MRI) have
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been acquired. The 4D flow volume of acquisition was
oriented along a sagittal plane encompassing the
ascending aorta, the aortic arch and the thoracic aorta.
An isotropic voxel resolution of 2 x 2 x2mm?
was prescribed. The remaining parameters were:
echo time = 3 ms, repetition time = 5.32ms, flip angle
= 10°. Data were acquired with prospective ECG-
gating during free-breathing, using a respiratory navi-
gator. The velocity encoding range (VENC) was
properly set to 250cm s~! after scouting on cross-sec-
tions positioned in the ascending aorta. The MRI da-
taset volume was retrospectively reconstructed with
phase contrast angiography (PC-MRA) technique.'’
Informed consent was obtained from patient. The
study protocol conforms to the ethical guidelines of the
1975 Declaration of Helsinki as reflected in a priori
approval by the institution’s Human Research Com-
mittee. The patient-specific inner wall of the aorta was
extracted from the obtained PC-MRA volume through
a level set algorithm available in VMTKLab (Orobix
Srl, Bergamo, Italy) for semi-automated segmentation.
The aortic inner-wall surface was clipped proximally,
at the sino-tubular junction, to define the inlet surface
and distally to create the outlet surfaces for the three
sovra-aortic branches and the descending aorta
(Fig. 2b). The resulting volume was meshed with
tetrahedral cells in VMTKLab and then a linear
interpolation between voxel and cell was implemented
in order to map the MRI data into the meshed domain.
The centerline of the aorta was computed and equis-
paced planes were defined along the centerline
(Fig. 2b). The processing of the 4D flow MRI data was
performed with a custom Python-VMTK code. Three
specific planes were used to compare experimental data
with results from numerical simulations; the planes
and the 3D model share the same coordinate system.
This approach was used to guarantee the correspon-
dence between the two platforms (4D flow processing
and CFD simulations in SimVascular) without any
additional registration step. Finally, the 4D flow data
from MRI sequences have been processed to estimate
the Young’s Modulus (E) by using the Moens—Korte-
weg equation’*:

2rp PWV?
E= 20 (1

where / is the wall thickness, r the vessel radius, p the
blood density and PWV the pulse wave velocity. In this
work two different PW Vs have been derived: one for
the ascending and one for the descending portion of
the aorta in order to evaluate the corresponding F,s
and Egs. modulus.



Validation of Numerical Simulations 691

MODELING AND NUMERICAL METHODS

In the simulations, blood was considered as a
Newtonian and incompressible fluid, as widely ac-
cepted for blood in large vessels, with the following
values of density and kinematic viscosity: p =
1.06g cm™3 and v=3.77 x 10 2cm®s~'. The three-
dimensional Navier—Stokes equations for incompress-
ible flows (omitted here for the sake of brevity) were
thus considered as governing equations. No explicit
turbulent eddy viscosity was introduced in the
momentum equation. The viscosity is only the molec-
ular one, together with the contribution added by the
numerical method for stability reasons.

As for boundary conditions, at the inlet section of
the computational domain we specified a Dirichlet
boundary condition on the velocity, imposing a flow
rate waveform (see e.g. Refs. 20 and 25). At the out-
flow boundaries, we used a 3-element Windkessel
model, also called RCR model>*>*" and sketched in
Fig. 1. In this scheme the proximal and distal resis-
tances (R, and Ry) represent the viscous resistance the
blood flow undergoes inside large and small vessels,
respectively. The capacitance C quantifies the compli-
ance, and thus the capability of storing fluid, of the
major arteries (see also Ref. 5 for more details). On the
arterial wall a no-slip condition was imposed between
the fluid and the wall, i.e. uy = uy, being uy the velocity
of the fluid at the wall and u,, the velocity of the wall.
Both rigid (u, = 0) and deformable (u,, # 0) simula-
tions were performed.

The hemodynamic simulations were carried out
with SimVascular, an open-source comprehensive
package specific for cardiovascular problems.* The

governing equations are discretized by means of a fi-
nite-clement method, including SUPG/PSPG stabiliz-
ing terms.*’ The stabilized formulation makes it
possible to choose linear shape functions for both
velocity and pressure (so-called P1-P1 elements).
Additional stabilizing terms are introduced to prevent
also the numerical instabilities due to backflow at the
outlets, which is typical of cardiovascular applica-

tions.'®
When taking into account the wall compliance,
SimVascular uses a linearized kinematics approach, in
which the fluid mesh is kept fixed but the nodes at the
interface with the solid wall have in general non-zero
velocities. The strong form of the mechanical problem
for the vessel wall in the domain Q,, is the following:

sy
p——=V-64s+by x€Q,, >0, (2)
or?

where s, is the displacement field, p and 6, the vessel
wall density and stress tensor, respectively, and by, is
the prescribed volume force. The thin wall approxi-
mation allows by, to be expressed in terms of the wall
thickness { and of the surface traction t,, acting on the
wall, and thus also in terms of the traction t; acting on
the fluid: by, = t,,/{ = —t¢/{. This permits to couple the
solid and the fluid problems and to obtain a single
variational formulation in which the effect of the vessel
wall results in a Neumann-type boundary condition."”
The stress tensor is expressed as oy, = D : &, where

&y 18 the infinitesimal strain tensor, i.e. &, = Vuy =

1/2(Vuy, + (Vuy)") and the second-order tensor D is
the following:

(o)

FIGURE 1. BTFE planes () used for wall motion analysis (a), sketch of the healthy thoracic aortic geometry acquired by MRI with
computed plane (b), region of interest (vivid color), in which the experimental data showed flow rate balance and representation of

the (¥) plane in the 3D model (c).
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in which E is the Young’s modulus, vy, is the Poisson’s
ratio, and ky, is a parameter accounting for a parabolic
variation of the transverse shear stress through the
membrane.'’

For advancing in time, the generalized «-method is
used, which is an implicit technique that allows to
achieve second order accuracy in time (see Ref. 23 for
further information).

COMPUTATIONAL SET-UP

As already mentioned, boundary conditions based
on 4D-flow MRI were specified. Experimental data
showed some inconsistencies along the aorta, with
non-balanced flow rates entering and exiting the do-
main during a cardiac cycle. To avoid these errors,
probably related to the limited spatial resolution of the
experimental technique, we decided to focus on a
smaller segment where flow rate balance was found
(Fig. 2¢). Thus, the hemodynamic simulations were
performed on the whole thoracic aorta shown in
Fig. 2b, but only the experimental data in the reduced
region were actually used for comparison. In particu-
lar, we extracted three representative aortic sections in
the reference region above presented. These sections
are shown in Fig. 5. Moreover, in order to perform
comparison between patient data and numerical sim-
ulation in terms of aortic wall motions, an additional
section has been considered among those analyzed
during image acquisition through 2D BTFE MRI se-
quences (see Fig. 2b). In order to guarantee the best
level of accuracy in the post processing of the experi-
mental data, only the section in the ascending aorta
has been used for the comparison because the acqui-
sition has been set up on the parameters of this section,
due to the better contrast of the image (see Fig. 2a).

P(Y, 0()) — W il

C
FIGURE 2. Scheme of a 3-element Windkessel model: the

outflow pressure P({) is related to the flow rate Q(f) and to the
distal pressure (usually set to zero) Py(t).
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FIGURE 3. Flow rate waveform imposed at the inlet
section. The following characteristic time instants are
highlighted: the peak systole (A), the maximum deceleration
(B), the early diastole (C) and the mid diastole (D).

In all the numerical simulations, at the inlet section
we directly imposed the flow rate measured at the
proximal section of the region of interest in Fig. 2c. As
will be shown in the following, the imposition of the
flow rate waveform measured not exactly in corre-
spondence of the inlet section but a little downstream
does not affect the overall results and, thus, it can be
considered a good approximation. The flow rate
waveform is shown in Fig. 3: the velocity distribution
in the inlet section was assumed to be uniform. We
decided not to use the MRI data to impose a patient-
specific velocity distribution, as conversely done in
Ref. 14, because this would have introduced additional
sources of possible errors. Indeed, the direct imple-
mentation of the velocity map from 4D PC-MRI data
requires a previous estimation of the error introduced
by the movement of the inlet section during the cardiac
cycle, which consists in both translation and rotation.
In particular, the rotation is difficult to be tracked by
MRI. Moreover, since the space and time resolution of
MRI is significantly lower than that required for CFD
simulations, interpolation is needed both in space and
time and certainly, interpolation errors would be
introduced. Finally, as explained above, some incon-
sistencies with non-balanced flow rates are present in
the experimental data outside the area in which the
data have been specifically used for comparison;
therefore, the flow rate measured at the proximal sec-
tion of the region of interest was used as inlet condi-
tion. Such an extrapolation cannot clearly be
considered accurate for local values of velocity. Note
also that, as previously said, the analysis is focused on
a portion of the aorta significantly downstream the
inlet, where the effects of the inlet velocity distribution
may be considered small, especially if compared with
those of the flow rate. The Reynolds number, based on
the diameter of the inlet section and on the bulk inlet
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TABLE 1. Summary of the mechanical properties of the
arterial wall employed in deformable simulations.

Quantity Value
Density: p,, (gcm—3) 1.08
Thickness: hy (cm) 0.1
Poisson’s ratio: vy 0.499
Shear correction parameter: k, 0.833

velocity averaged during an entire cardiac cycle, is
Re ~ 1200.

To specify the RCR parameters at the outlet sec-
tions, we first used the same simplified 0D procedure as
described in Ref. 5. The resulting values are: R, =
780gem4s7!, C=13x10"%cm*s’g™! and Ry =
1.36 x 103 g cm™*s.

As pointed out in Ref. 20, the MRI data can be used
to calibrate the flow rates at the different outlet sec-
tions. Then, the resistances of each outlet section were
tuned so that the flow rate fractions during a cardiac
cycle could match the experimental data. In other
words, the previously computed equivalent R, and Ry
were distributed into the various outlets according to
the experimental flow rate fraction exiting each section
in a complete cardiac cycle, i.e. 74% for the descending
aorta, and 16.0, 4.5 and 5.5% for the small branches,
from proximal to distal respectively. Although the
MRI flow rates are not exactly imposed at the outlets,
this kind of approach allows experimental information
to be incorporated and at the same time possible
numerical/accuracy problems, as those occurring for
instance when imposing the mass fractions at all the
outlets, to be avoided. The effectiveness of this strategy
will be analyzed in “Flow Rate Waveforms and Wall
Motions™ section.

When considering the wall compliance of the tho-
racic aorta, the arterial wall was assumed to be a linear
elastic material, with homogeneous and isotropic
properties, and a uniform wall thickness. The values of
the mechanical properties are those reported in
Table 1, where the Young’s modulus is not present
since it was selected as uncertain parameter in the
stochastic analysis (see ‘“Methodology for Stochastic
Sensitivity Analysis™ section).

The computational domain was discretized by
means of a grid consisting of 4.0 x 10° tetrahedral
elements. The grid was refined at the wall: in detail, we
set a maximum spacing of 0.04 cm at the wall and a
growth rate of 1.1 until a maximum spacing of 0.1 cm
was reached inside the aorta. Consequently, the grid
counts 7.3 x 10° nodes, 1.4 x 10° of which on the
surface. The number of the elements at the inlet and at
the descending aorta outlet section is 5.2 x 10° and
1.3 x 10°, respectively. The total number of elements in
the outlet sections of the three small branches is
approximately 1.6 x 103. To better appreciate the
computational grid, Fig. 4 shows two sections: the
inlet section (Fig. 4a), in which the above-discussed
refinement is not present since it is a boundary, and a
slice in the descending region (Fig. 4b).

The physical time step was set to 0.0005 s for both
rigid and deformable cases, resulting in 2000 time steps
every cardiac cycle (7' = 15).

In order to make sure that the flow reached peri-
odicity after an initial transient, for each computation
we evaluated the L,-norms of the normalized differ-
ences between two successive pressure waveforms and
between two successive flow rate waveforms. These
quantities were evaluated in correspondence of the
descending aortic outlet section, and the simulations
were run until the above L,-norms were smaller than
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FIGURE 4. Computational grid in two representative sections: the inlet section (a) and a slice made in the descending region (b).
The slice, which contains tetrahedral elements sectioned, is shown to appreciate the grid refinement near the arterial wall.
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1073, We usually needed to simulate 5-10 cardiac cy-
cles in order to satisfy this criterion.

METHODOLOGY FOR STOCHASTIC
SENSITIVITY ANALYSIS

For the stochastic analysis we used the gPC
approach. In its non-intrusive form, it is based on a
truncated projection of a given random process over
an orthogonal known basis.*’ Let X(w) be a stochastic
response and o a random event, the truncated gPC
expansion can be written as follows:

T
X(w) =Y ax®(&(w)), (3)
k=0

where &(w) is the vector consisting of the independent
random variables in the event space (corresponding
thus to the set of considered uncertain parameters),
@, (&) is the gPC polynomial of index k and ay is the
corresponding Galerkin projection coefficient.

Expansion (3) is truncated to a finite limit 7. The
truncation index 7 depends on the number of the
considered uncertain parameters and on the maximum
degree of the polynomials retained in the truncated
expansion for each parameter (see e.g. Ref. 5). Using
the maximum polynomial order for all one-dimen-
sional polynomials (i.e., full tensor-product polyno-
mial expansion), 7 is obtained as follows:

T:ﬁ(Pi+1)— 1, (4)
i=1

where M is the number of the uncertain parameters
and P; is the maximum polynomial order for the ith
parameter. The coefficient @; can be computed as fol-
lows:

(X, D) 1

aC: =
T, o) (0, Dy

> / X®p(&)de,  (5)

where (-,-) denotes the usual L, scalar product
involving a weight function p(¢) depending on the
chosen polynomial family. The integrals in the scalar
products are computed numerically, here we used
Gaussian quadrature. The deterministic simulations
have to be carried out for the values of the parameters
corresponding to the quadrature points.

The polynomial family, ®;, must be a priori speci-
fied and its choice affects the speed of the convergence
of the gPC expansion: a suitable polynomial family is
able to approximate the stochastic response by means
of fewer degrees of freedom. When using Gaussian
quadrature, a optimal family has a weight function
similar to the probability measure of the random
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TABLE 2. Quadrature points for the Young’s modulus E.

Random variable 1st 2nd 3rd 4th

E (MPa) 0.50 1.00 1.65 2.15

variables. The choice of the polynomial family thus
depends on the PDF shape of the uncertain parame-
ters.

We aim to investigate here the sensitivity of the
output hemodynamic quantities of interest to the
Young’s modulus E. For this purpose, we considered
the following variation range: E € [0.37,2.28] MPa.
The considered variation contains both the average
value of the Young’s modulus calculated from our
experimental datasets for the healthy subject, which is
the mean between E,. = 0.375MPa and Eg, =
0.625 MPa obtained from Eq. (1) and the E values of
aneurysmatic subjects. We used a uniform PDF dis-
tribution of the random parameter: this seems a rea-
sonable choice in that it is the least informative
distribution with the highest variance in given inter-
vals. Legendre polynomials thus represent the optimal
polynomial family for the gPC basis, whose expansion
was truncated to the third order. The four resulting
quadrature points, corresponding to the values of E for
which deterministic simulations must be carried out,
are shown in Table 2. The lowest value corresponds to
the average value estimated from experiments, while
the highest values corresponds to those typical of
pathological patients.

FLOW RATE WAVEFORMS AND WALL
MOTIONS

This section focuses on the analysis and comparison
of the flow rates at the chosen reference section of the
descending aorta (see Fig. 5) and at the outlets of the
side branches.

Figure 6 shows the comparison between experi-
mental and simulated flow-rate waveforms at the
descending aorta reference section and at the three
outlet sections of the branches. The tuning of the
resistances appears to be effective both for the
descending aorta reference section and for the supra-
aortic branches; indeed rather good agreement with
MRI data is obtained. The difference between the peak
value given by the simulation and that measured by
MRI is equal to —8cm?®s~! for the descending aorta
reference section (minus indicates an underestimation
in numerical simulations) while the differences are
equal to + 12, + 5and —7 cm?s~! for Branches 1, 2
and 3 respectively. The main difference with the
experimental data is a time lag, approximately equal to
0.04 s, between the experimental and numerical peaks
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FIGURE 5. Three representative sections in the reference region (a): ascending aorta (b), aortic arch (c), descending aorta (d). A:
anterior, P: posterior, L: left, R: right, S: superior, I: inferior. The represented time instant is during the deceleration phase.

of the flow rate, observable in the descending aorta
section (Fig. 6a). The measurement error on the
experimental waveforms can be estimated to 5% of the
average value over the cardiac cycle*' and thus negli-
gible compared to the observed differences.

Since the time delay of flow rate waveforms along
the aorta is a peculiar characteristic of a compliant
arterial wall, we performed two deformable simula-
tions with elastic modulus respectively equal to E =
0.50 MPa, which is the value of the Young’s modulus
estimated from our experimental dataset of the healthy
subject, and £ = 1.00 MPa. The tuned RCR parame-
ters were imposed at the outlets for both values of the
elastic modulus. Figure 7 indicates that, besides
matching the measured flow rate fractions, the simu-
lated waveforms better reproduce the time delay found
in the experimental data when the Young’s modulus is
reduced (see in particular in the simulation with E =

0.50 MPa in Fig. 7a). At the descending aorta reference
section, the time lag between the flow rate peaks
obtained from MRI data and the simulation carried
out by using £ = 0.50 MPa is reduced to 0.02 s, prac-
tically half the one found for the rigid simulation. On
the other hand, smaller values of the Young’s modulus
lead to a reduction of the peak values of the flow rate
waveform for all the considered sections (see Fig. 7).
This improves the agreement with MRI data for
Branches 1 and 2, in which the flow rate peak was
slightly overestimated in rigid simulations, while the
underestimation for the descending aorta reference
section and for Branch 3, already present in rigid
simulations, slightly increases. In particular, the dif-
ference between the peak value of the flow rate wave-
form for the simulation and the MRI results is equal to
—15cm?s™! for the descending aorta reference section
and —2, 0 and —11cm?s~! for the three branches.
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FIGURE 6. Comparison between the outlet flow rate waveform obtained by MRI experimental data and the rigid simulation with
tuned RCR parameters. (a) Descending aorta, (b) Branch 1, (¢) Branch 2 and (d) Branch 3.
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Based on the previous observations, it is interesting
to carry out a systematic analysis of the effect of the
wall compliance (quantified by the Young’s modulus)
on the output quantities of interest. As previously de-
scribed, a gPC stochastic approach was used which
allows continuous response surfaces to be obtained
starting from a few deterministic simulations. In the
present case, four hemodynamic simulations were
therefore performed, in correspondence of the values
of the Young’s modulus reported in Table 2.

The flow rate waveforms at the three sections
introduced in Fig. 5 are presented in Fig. 8 in terms of
their PDF and compared with the corresponding
experimental data. Figure 8a shows that, in the section
at the ascending aorta, the PDF distribution contains
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FIGURE 8. PDF distribution and MRI data of the flow rate
waveforms in the three representative sections along the
aorta. (a) Ascending aorta, (b) aortic arch and (c) descending
aorta.

the experimental data for almost the whole time peri-
od. This indicates that the experimental waveform can
be obtained by modifying the parameter E in its vari-
ation range. In addition, this confirms that the impo-
sition at the inlet section of a flow rate waveform
measured a little downstream does not affect the re-
sults, as discussed in “Computational Set-Up” sec-
tion. Figures 8b and 8c show that the experimental
time delay at the aortic arch and at the descending
aorta is underestimated, at least in the most probable
part of the distribution (represented in blue), i.e. for
most values of E. The time delay can be reproduced by
the tail of the PDF, but at the same time the peak value
reduces; this happens for the lowest considered values
of E, as already noticed in Fig. 7 for £ = 0.50 MPa.
For the rest of the cardiac cycle the agreement is good
in the descending aorta and fair in the aortic arch
section.

Furthermore, a comparison between aortic wall
motions from MRI and simulations has been made for
the section W in the ascending portion shown in
Fig. 2c. The time behavior of the cross-section area
and of the mean radius of the selected section during a
cardiac cycle for MRI data is presented in Fig. 9a,
whereas the comparison between the obtained dis-
placements of mean radius in the cardiac cycle
obtained from MRI data and simulations is shown in
Fig. 9b. The qualitative behavior is well captured but
all the simulations underestimate the mean wall dis-
placement; the best agreement is found, once again, for
the lowest value of the considered Young’s modulus,
which is also the closest one to the patient-specific
value estimated from the experimental dataset.

VELOCITY MAPS

Now let us focus on the velocity maps in the three
reference sections along the aorta. For each time in-
stant shown with markers in Fig. 3 the comparison is
presented among the MRI data, the rigid simulation
and the deformable simulation with £ =1MPa. In
addition, the stochastic standard deviation is also
reported to give information about the variability of
the results due to variations of E.

Figure 10 refers to peak systole and indicates that
the rigid and deformable results are close. Some small
differences can be detected in the aortic arch and in the
descending region (compare Figs. 10f and 10g, and
Figs. 10j and 10k), which can be explained by noting
that the more one moves downstream, the larger is the
time delay obtained in case of deformable simulations.
This is consistent with the stochastic standard devia-
tion (Figs. 10d, 10h and 101), which in the ascending
aortic section is very low except for a limited region
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FIGURE 9. (a) Time behavior of the cross-section area and of the mean radius of the cross section during a cardiac cycle (MRI
data). (b) Displacement of the mean radius of the cross section during a cardiac cycle: comparison between MRI data and
simulation results.
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with E = 1 MPa (c,g,k). Maps of the stochastic standard deviation of the velocity component normal to the cross-section at peak
systole for the deformable simulations in the ascending aorta (d), aortic arch (h) and descending aorta (I).

near the wall, while in the aortic arch and in the
descending aorta is slightly larger. The simulation re-
sults are in good qualitative agreement with the
experiments, even if quantitative differences are pre-
sent especially in the shape and extension of the high-
velocity region. Since, as previously said, the results do
not change significantly with E, the same agreement is
found for rigid and deformable simulations.

The time instants of maximum deceleration is the
object of Fig. 11. In this case, the computed velocity is
underestimated in the aortic arch and in the descending
aorta, which is consistent with the flow rate waveforms
(and, in particular, the smaller time delay of the sim-
ulations) presented in Figs. 8b and 8c. The other main
difference is that the simulations predict flow reversal,
whereas in the experimental data these regions are
generally characterized by low velocity, but not by
reverse flow. The lack of reverse flow in experimental
data may be explained by the coarser resolutions in

MRI, both in space and time, which tend to smooth
the velocity gradients (see e.g. the discussion in Ref.
34). Similar discrepancies between numerical results
and MRI data can also be found in the literature
concerning flow reversal occurring in both ascending
and descending regions during the deceleration phase
(see, e.g., Ref. 25). The stochastic variability with the
elastic properties in this case is larger than in the pre-
vious one, and this explains also why a larger differ-
ence can be found between rigid and deformable
simulations. For all the three sections, the region of
largest variability is in correspondence of the region of
predicted reverse flow, whose extent tends to decrease
as the wall elasticity increases, improving thus the
agreement with MRI data.

At early diastole (Fig. 12), the velocities are signif-
icantly lower than in the previous instants and small
reverse flow regions are present also in MRI data. As
previously, both rigid and deformable simulations
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FIGURE 12. Maps of the velocity component normal to the cross-section at early diastole (point C in Fig. 3) in the ascending aorta
(a—c), aortic arch (e—g) and descending aorta (i—k). Data from: MRI (a, e, i), rigid simulation (b, f, j) and deformable simulation with
E = 1 MPa (c,9,k). Maps of the stochastic standard deviation of the velocity component normal to the cross-section at peak systole
for the deformable simulations in the ascending aorta (d), aortic arch (h) and descending aorta (l).

overestimate the regions of reverse flow compared to
MRI. The variability of the numerical results with E is
significant especially in the zones of negative velocity,
whose extent, as previously observed, is reduced as E
decreases, leading to a slightly better agreement with
the experiments.

Finally, the time instant of mid diastole is charac-
terized by low velocities and by an increasing vari-
ability of deformable results by moving from the
ascending to the descending aorta. This is also
responsible of the differences between the rigid and the
deformable simulations, which is significant in the
aortic arch (compare Figs. 13f and 13g) and in the
descending aorta (compare Figs. 13j and 13k). The
qualitative agreement with the experimental results is
quite good in the ascending aorta, whereas in the aortic
arch more significant differences can be found, even if
the wall compliance seems once again to improve the

E BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org

comparison with experiments (compare Figs. 13f
and 13g with Fig. 13e).

WALL SHEAR STRESSES

Let us now consider the TAWSS distributions,
again in terms of results of the rigid simulation (Fig-
s. 14a and 14b), results of the deformable simulation
with £ =1MPa (Figs. 14c and 14d) and stochastic
standard deviation (Figs. 14e and 14f). The differences
between the deterministic rigid and deformable simu-
lations is practically negligible; consistently, the
stochastic variability of TAWSS is very low, as can be
appreciated in Figs. 14e and 14f.

The situation is instead slightly different when
considering the instantancous WSS distributions,
shown in Fig. 15 for the first three relevant time in-
stants presented in Fig. 3; only the results of the
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FIGURE 13. Maps of the velocity component normal to the cross-section at mid diastole (point D in Fig. 3) in the ascending aorta
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deterministic simulation with £ =1MPa are shown
together with the stochastic standard deviation.

At peak systole, the deterministic values of WSS are
characterized, in both ascending and descending
regions, by large spatial variations from internal and
external parts of the vessel: in the ascending aorta, the
internal region is subjected to larger wall shear stresses,
whereas the opposite occurs in the descending aorta.
The stochastic variability of WSS with E takes lower
values in the ascending region and in the aortic arch,
except for the posterior-lateral part of the ascending
aorta, in which variability is the largest of all the do-
main (Fig. 15d). This behavior can be related to the
large velocity variability with E observed in that region
in Fig. 10d. On the other hand, the descending aorta is
characterized by a stochastic standard deviation larger
than average, also consistently with previous observa-
tions on the velocity maps.

At maximum deceleration time, the deterministic
values of WSS are smaller than those at the systolic
peak, as expected, but the variability with E in the

descending aorta seems to reach even larger values
(Fig. 15h). This is in accordance to the high velocity
variability detected near the internal wall (blue region
in Fig. 111).

At early diastole, the deterministic values are further
reduced. The maximum values of the deterministic
simulation and of the standard deviation are in the
internal part of the descending aorta, which is consis-
tent with the large nucleus of reverse flow, and the
large variability with E of velocity in that region, found
in Fig. 121. Significant values of standard deviation are
also found in the posterior part of the aortic arch
(Fig. 151).

DISCUSSION AND CONCLUDING REMARKS

The present study is an example of integration
between 4D MRI flow data, hemodynamic numerical
simulations and stochastic sensitivity analysis. Inte-
gration of in vivo measurements with CFD tools is

% BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org



702 Boccabiruoco et al.

o

X

TAWSS [N/m?] TAWSS [N/m?]

2.00
1.80

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

TAWSS [N/m’]

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Stochastic std
TAWSS [N/m?]

Stochastic std
TAWSS [N/m?]
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

FIGURE 14. TAWSS distributions: deterministic results in
the rigid simulation with tuned RCR parameters (a-b),
deterministic results in the deformable simulation with E =
1 MPa (c—d), and stochastic standard deviation (e—f).

clearly important to obtain patient-specific informa-
tion at a level of detail which is hardly reachable in
experiments only. On the other hand in vivo measure-
ments may provide information to be used in the
computational set-up in order to be able to obtain
accurate patient-specific results. Different examples
can be found in the literature pointing out the impor-
tance of using patient-specific data for boundary con-
ditions**'*?%; however these studies usually focus on
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one particular boundary condition. Clearly, experi-
mental data can also be used to validate simulation
results (see e.g. Refs. 30 and 36). In our study we tried
to reach a higher level of integration by exploiting the
information available from patient-specific experi-
ments for different aspects of the computational set up
as well as for validation. In particular, the 4D MRI
flow data were used to: (i) provide inlet conditions, (ii)
calibrate outflow conditions within the RCR Wind-
kessel model, (iii) estimate the Young’s modulus of the
aorta and (iv) validate the simulations results. Another
question at issue was whether a model of wall com-
pliance assuming a linear elastic behavior together with
homogeneous and isotropic properties, which is a ra-
ther rough simplification of the real wall behavior, is
able to give reliable results for suitable values of the
Young’s modulus, and, more in general, to investigate
the effects of E on the simulation results. To this aim a
stochastic approach was used, based on gPC, which
allows a systematic exploration of the parameter space
starting from a few deterministic simulations, limiting
in this way the computational costs.

The results of the stochastic analysis indicate that
the experimental behavior of the flow rate waveform
can be accurately reproduced in the ascending aorta;
on the other hand, in the aortic arch and in the
descending aorta, the experimental time delay can be
matched with low values of the Young elastic modulus,
close to the average value estimated from MRI data.
However, by decreasing E, the peak flow rate tends to
become underestimated. As for the velocity maps, we
found a generally good qualitative agreement of sim-
ulations with MRI data. The main difference is that
the simulations overestimate the extent of reverse flow
regions or predict reverse flow when it is absent in the
experimental data, as e.g. at the maximum deceleration
phase of the cardiac cycle. On the other hand, the
stochastic sensitivity analysis showed that the region of
reversal flows is significantly affected by the elastic
properties of the vessel walls; moreover, the extent of
these zones decreases with E, leading to a better
agreement with the experimental data for the lowest
values of the Young’s modulus. Note also that, the
lower extent or the absence of regions of reverse flow
may be, at least partly, due to the low resolution of
MRI which tends to smooth the velocity fields. A
comparison of wall displacements during the cardiac
cycle has also been provided. As previously described,
PC-MRI suffers from a low spatial resolution, conse-
quently this technique is not able to accurately measure
the variation during the cardiac cycle such as the
radius and area of the aorta cross sections. As far as
the wall motion is concerned, therefore comparison
has been performed on one specific section (¥) where a
BTFE sequence was performed, which is able to pro-
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(e-h) and early diastole (i-I).

duce images with increased signal from fluid allowing
an increase of accuracy in the area and motion evalu-
ation. The qualitative behavior of the cross-section
mean radius displacement during the cardiac cycle is
well captured but all the simulations underestimate it;
the best agreement is found for the lowest value of the

considered Young’s modulus, which is, as previously
said, the closest one to the patient-specific value esti-
mated from the experimental dataset. Finally, the sen-
sitivity of the wall shear stress to wall compliance has
been quantified. The wall shear stress maps indicate a
significant sensitivity to wall compliance during large
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part of the cardiac cycle period but, interestingly, a very
low variability of the time-averaged wall shear stresses.

In summary, a successful integration of hemody-
namic simulations and of MRI data for a patient-
specific simulation has been shown. The wall compli-
ance seems to have a significant impact on the accuracy
of numerical predictions; a larger wall elasticity gen-
erally improves the agreement with experimental data.
However, the simple model adopted here of a constant-
thickness elastic vessel wall does not seem to be able to
quantitatively reproduce the MRI data.

In order to obtain a better quantitative agreement,
different aspects of both numerical model and
experimental set up could be improved. As previously
described, the first limitation of the work is the
assumption of a uniform material behavior along the
aorta. The E values estimated in in vivo experiments
have shown significant variations along the aorta with
a more compliant behavior in the ascending portion.
These results are in agreement with previous studies
and stress out the importance to implement in the
numerical simulations a model with varying material
properties. The implementation and application of
more sophisticated and accurate models of the vessel
wall mechanical properties could thus be the object of
future work. Another possible source of inaccuracy in
numerical simulations is the assumption of a plug
flow at the inlet. The use of a velocity distribution
obtained from MRI would certainly be interesting.
However, as previously discussed, it is not trivial to
obtain accurate patient-specific velocity distributions
from MRI due to the difficulty in characterizing in
experiments rotation movements of the inlet sec-
tion. Moreover, possible interpolation errors both in
space and time may be introduced when passing from
the MRI resolution to the one needed for numerical
simulations. Further work is thus definitely needed to
reach this higher level of integration between in vivo
experiments and numerical simulations. Finally, it
would be interesting to investigate the possible effects
of the introduction of an explicit turbulence model in
the simulations.

As for the experiments, besides the limited resolu-
tion of MRI, the second main limitation of the
methodology described herein, comes from the use of a
single VENC value during MRI acquisition. When the
VENC value is set too high, the velocity-to-noise ratio,
itself inversely proportional to the VENC setting, is
affected by errors. The increased noise will lead to
erroneous velocity readings, particularly in regions of
slow flow. Finally, the error on MRI data could be
better quantified by investigating, for instance, the
data repeatability.

E BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org

ACKNOWLEDGMENTS

The authors are grateful to Pau Simarro for his
precious contribution in carrying out the numerical
simulations.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ETHICAL APPROVAL

All procedures performed in studies involving
human participants were in accordance with the ethical
standards of the Institutional and/or National Re-
search Committee and with the 1964 Helsinki Decla-
ration and its later amendments or comparable ethical
standards. No animal studies were carried out for this
study.

INFORMED CONSENT

Informed consent was obtained from all individual
participants included in the study.

REFERENCES

'"Anderson, A. E., B. J. Ellis, and J. A. Weiss. Verification,
validation and sensitivity studies in computational biome-
chanics. Comput. Methods Biomech. Biomed. Eng.
10(3):171, 2007.

’Arbia, G., I. E. Vignon-Clementel, T. Y. Hsia, and J. F.
Gerbeau. Modified Navier-Stokes equations for the out-
flow boundary conditions in hemodynamics. Eur. J. Mech.
B 60:175, 2016.

3Boccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M.
V. Salvetti. Uncertainty quantification in numerical simu-
lations of the flow in thoracic aortic aneurysms. ECCO-
MAS Congr. 2016 Proc. 7th Eur. Congr. Comput. Methods
Appl. Sci. Eng. 3:6226, 2016.

*Boccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M.
V. Salvetti. Effects of inlet conditions in the simulation of
hemodynamics in a thoracic aortic aneurysm. AIMETA
2017 Proc. 23rd Conf. Ital. Assoc. Theor. Appl. Mech.
2:1706, 2017.

SBoccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M.
V. Salvetti. Impact of uncertainties in outflow boundary
conditions on the predictions of hemodynamic simulations
of ascending thoracic aortic aneurysms. Comput. Fluids
165: 96, 2018.

%Bozzi, S., U. Morbiducci, D. Gallo, R. Ponzini, G. Rizzo,
C. Bignardi, and G. Passoni. Uncertainty propagation of
phase contrast-MRI derived inlet boundary conditions in
computational hemodynamics models of thoracic aorta.
Comput. Methods Biomech. Biomed. Eng. 20(10):1104,
2017.



Validation of Numerical Simulations 705

"Caballero, A. D., and S. Lain. A review on computational

fluid dynamics modelling in human thoracic aorta. Car-
diovasc. Eng. Technol. 4(2):103, 2013.

SCampo-Deano, L., M. S. N. Oliveira, and F. T. Pinho. A
review of computational hemodynamics in middle cerebral
aneurysms and rheological models for blood flow. Appl.
Mech. Rev. 67(3):030801, 2015.

9Capellini, K., E. Vignali, E. Costa, E. Gasparotti, M. E.
Biancolini, L. Landini, V. Positano, and S. Celi. Computa-
tional fluid dynamic study for aTAA hemodynamics: an
integrated image-based and radial basis functions mesh
morphing approach. J. Biomech. Eng. 140(11):111007, 2018.

9Celi, S., and S. Berti. Chap. 1. In: Aneurysm. Rijeka: In-

Tech, 2012, p. 326.

"Celi, S., and S. Berti. Three-dimensional sensitivity assess-
ment of thoracic aortic aneurysm wall stress: a probabilistic
finite-element study. Eur. J. Cardiothorac. Surg. 45(3):467,
2014.

12Celi, S., F. Di Puccio, and P. Forte. Advances in finite
element simulations of elastosonography for breast lesion
detection. J. Biomech. Eng. 133(8):081006, 2011.

3Chiastra, C., S. Migliori, F. Burzotta, G. Dubini, and F.
Migliavacca. Patient-specific modeling of stented coronary
arteries reconstructed from optical coherence tomography:
towards a widespread clinical use of fluid dynamics anal-
yses. J. Cardiovasc. Transl. Res. 11:1-17, 2017.

"“Condemi, F., S. Campisi, M. Viallon, T. Troalen, G.
Xuexin, A. J. Barker, M. Markl, P. Croisille, O. Trabelsi,
C. Cavinato, A. Duprey, and S. Avril. Fluid- and biome-
chanical analysis of ascending thoracic aorta aneurysm
with concomitant aortic insufficiency. Ann. Biomed. Eng.
45(12):2921, 2017.

“Dumoulin, C. L., S. P. Souza, M. F. Walker, and W.
Wagle. Three dimensional phase contrast angiography.
Magn. Reson. Med. 9(1):139, 1989.

"°Eck, V. G., W. P. Donders, J. Sturdy, J. Feinberg, T.
Delhaas, L. R. Hellevik, and W. Huberts. A guide to
uncertainty quantification and sensitivity analysis for car-
diovascular applications. Int. J. Numer. Methods Biomed.
Eng. 32(8):¢02755, 2015.

""Eck, V. G., J. Sturdy, and L. R. Hellevik. Effects of arterial
wall models and measurement uncertainties on cardiovas-
cular model predictions. J. Biomech. 50:188, 2017.

18Esmaily Moghadam, M., Y. Bazilevs, T. Y. Hsia, . Vig-
non-Clementel, and A. Marsden. A comparison of outlet
boundary treatments for prevention of backflow divergence
with relevance to blood flow simulations. Comput. Mech.

48(3):277, 2011.

19Figueroa, C. A., L. E. Vignon-Clementel, K. E. Jansen, T. J.
R. Hughes, and C. A. Taylor. A coupled momentum
method for modeling blood flow in three-dimensional de-
formable arteries. Comput. Methods Appl. Mech. Eng.
195(41-43):5685, 2006.

2Gallo, v, G. De Santis, F. Negri, D. Tresoldi, R. Ponzini,
D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo,
and U. Morbiducci. On the use of in vivo measured flow
rates as boundary conditions for image-based hemody-
namic models of the human aorta: implications for indi-
cators of abnormal flow. Ann. Biomed. Eng. 40(3):729,
2012.

2lGasser, T. C., R. W. Ogden, and G. A. Holzapfel.
Hyperelastic modelling of arterial layers with distributed
collagen fibre orientations. J. R. Soc. Interface 3(6):15,
2006.

2Huberts, W., K. Van Canneyt, P. Segers, J. H. M. Tordoir,
P. Verdonck, and E. M. H. Bosboom. Experimental vali-
dation of a pulse wave propagation model for predicting
hemodynamics after vascular access surgery. J. Biomech.
45(9):1684, 2012.

BJansen, K. E., C. H. Whiting, and G. M. Hulbert. A gen-
eralized-o method for integrating the filtered Navier—Stokes
equations with a stabilized finite element method. Comput.
Methods Appl. Mech. Eng. 190(3-4):305, 2000.

**Korteweg, D. Uber die fortpflanzungsgeschwindigkeit des
schalles in elastiischen rohren. Ann. Phys. Chem. 5:52537,
1878.

2Lantz, J., J. Renner, and M. Karlsson. Wall shear stress in
a subject specific human aorta—influence of fluid—structure
interaction. Int. J. Appl. Mech. 3(4):759, 2011.

2Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and
O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging 36(5):
1015, 2012.

2"Morbiducci, U., D. Gallo, S. Cristofanelli, R. Ponzini, M. A.
Deriu, G. Rizzo, and D. A. Steinman. A rational approach to
defining principal axes of multidirectional wall shear stress in
realistic vascular geometries, with application to the study of
the influence of helical flow on wall shear stress directionality
in aorta. J. Biomech. 48(6):899, 2015.

2Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G.
Rizzo. Inflow boundary conditions for image-based com-
putational hemodynamics: impact of idealized versus
measured velocity profiles in the human aorta. J. Biomech.
46(1):102, 2013.

PPasta, S., A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T.
G. Gleason, and D. A. Vorp. Difference in hemodynamic
and wall stress of ascending thoracic aortic aneurysms with
bicuspid and tricuspid aortic valve. J. Biomech.
46(10):1729, 2013.

3pirola, S., Z. Cheng, O. A. Jarral, D. P. O’Regan, J. R.
Pepper, T. Athanasiou, and X. Y. Xu. On the choice of
outlet boundary conditions for patient-specific analysis of
aortic flow using computational fluid dynamics. J. Bio-
mech. 60:15, 2017.

3lQuicken, S., W. P. Donders, E. M. J. van Disseldorp, K.
Gashi, B. M. E. Mees, F. N. van de Vosse, R. G. P. Lopata,
T. Delhaas, and W. Huberts. Application of an adaptive
polynomial chaos expansion on computationally expensive
three-dimensional cardiovascular models for uncertainty
quantification and sensitivity analysis. J. Biomech. Eng.
138(12):121010, 2016.

3SQankaran, S., H. J. Kim, G. Choi, and C. A. Taylor.
Uncertainty quantification in coronary blood flow simula-
tions: impact of geometry, boundary conditions and blood
viscosity. J. Biomech. 49:2540, 2016.

3Sankaran, S., and A. L. Marsden. A stochastic collocation
method for uncertainty quantification and propagation in
cardiovascular simulations. J. Biomech. Eng.
133(3):031001, 2011.

3Sarrami-Foroushani, A., M. N. Esfahany, A. Nasiraei
Moghaddam, H. Saligheh Rad, K. Firouznia, M. Shakiba,
H. Ghanaati, I. D. Wilkinson, and A. F. Frangi. Velocity
measurement in carotid artery: quantitative comparison of
time-resolved 3D phase-contrast MRI and image-based
computational  fluid dynamics. [Iran. J.  Radiol.
12(4):¢18286, 2015.

3Schiavazzi, D. E., G. Arbia, C. Baker, A. M. Hlavacek, T.
Y. Hsia, A. L. Marsden, and I. E. Vignon-Clementel.
Uncertainty quantification in virtual surgery hemodynam-

% BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org



706 Boccabiruoco et al.

ics predictions for single ventricle palliation. /nt. J. Numer.
Methods Biomed. Eng. 32(3):1, 2016.

36$zajer, J., and K. Ho-Shon. A comparison of 4D flow
MRI-derived wall shear stress with computational fluid
dynamics methods for intracranial aneurysms and carotid
bifurcations—a review. Magn. Reson. Imaging 48:62, 2018.

3Taddei, F., S. Martelli, B. Reggiani, L. Cristofolini, and M.
Viceconti. Finite-element modeling of bones from CT data:
sensitivity to geometry and material uncertainties. /EEFE
Trans. Biomed. Eng. 53(11):2194, 2006.

3Tran, J. S., D. E. Schiavazzi, A. B. Ramachandra, A. M.
Kahn, and A. L. Marsden. Automated tuning for param-
eter identification and uncertainty quantification in multi-
scale coronary simulations. Comput. Fluids 142:128, 2017.

39Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L.
Marsden, and S. C. Shadden. SimVascular: an open source
pipeline for cardiovascular simulation. Ann. Biomed. Eng.
45:1-17, 2016.

4OVgnon-Clementel, I. E.,, C. A. Figueroa, K. E. Jansen,
and C. A. Taylor. Outflow boundary conditions for
3D simulations of non-periodic blood flow and pressure

E BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org

fields in deformable arteries. Comput. Methods Biomech.
Biomed. Eng. 13(5):625, 2010.

41Wang, Y., D. Joannic, P. Juillion, A. Monnet, P. Delassus,
A. Lalande, and J. F. Fontaine. Validation of the strain
assessment of a phantom of abdominal aortic aneurysm:
comparison of results obtained from magnetic resonance
imaging and stereovision measurements. J. Biomech. Eng.
(2018). https://doi.org/10.1115/1.4038743.

“Westerhof, N., J. W. Lankhaar, and B. E. Westerhof. The
arterial Windkessel. Med. Biol. Eng. Comput. 47(2):131, 2009.

43Whiting, C. H., and K. E. Jansen. A stabilized finite ele-
ment method for the incompressible Navier—Stokes equa-
tions using a hierarchical basis. Int. J. Numer. Methods
Fluids 35(1):93, 2001.

44Wuyts, F. L., V. J. Vanhuyse, G. J. Langewouters, W. F.
Decraemer, E. R. Raman, and S. Buyle. Elastic properties
of human aortas in relation to age and atherosclerosis: a
structural model. Phys. Med. Biol. 40(10):1577, 1995.

Xiu, D., and G. Karniadakis. The Wiener—Askey polyno-
mial chaos for stochastic differential equations. SIAM J.
Sci. Comput. 24(2):619, 2003.


https://doi.org/10.1115/1.4038743

	Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis
	Abstract
	Abstract
	Abstract
	ASec4
	Introduction
	MRI Data Acquisition and Processing
	Modeling and Numerical Methods
	Computational Set-Up
	Methodology for Stochastic Sensitivity Analysis
	Flow Rate Waveforms and Wall Motions
	Velocity Maps
	Wall Shear Stresses
	Discussion and Concluding Remarks
	Acknowledgments
	References




