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Abstract

Purpose—The performance of heart valves, either native or
artificial, can be evaluated by means of finite element
analyses, either from a structural or a fluid–structure
interaction (FSI) point of view. The latter captures the
coupling between the valve leaflets and the blood in a more
realistic way. The selection of the appropriate finite elements
approach for the model is the first and fundamental step to
achieve accurate simulations. The aim of this work is to
investigate the influence of the type, formulation, size, and
shape of the elements in heart valves simulations.
Methods—The effects related to the choice of the finite
elements-shell or solid- in structural and FSI simulations
were analyzed. In particular, the analysis of grid convergence
on both the structure and fluid domains, the influence of the
element typology, formulation and damping factor in an
idealized three-leaflets valve model loaded with physiological
pressure conditions were investigated.
Results—Stress values and valve kinematics results confirmed
the importance of performing a proper verification process
for selecting the most appropriate elements with the optimal
accuracy to computational cost ratio.
Conclusion—In this regard, our results indicate the quadran-
gular shell with reduced integration and viscous hourglass
control to be the best choice to model heart valves. If a solid
discretization is required, quadratic hexahedral elements with
full integration are also acceptable. Finally, our results show
that the damping coefficient needs to be carefully selected in
order to smooth out the high frequency modes of the
structure without introducing excessive numerical artificial
viscosity.

Keywords—Fluid–structure interaction (FSI), Verification,

Finite element analysis, Heart valve, Cardiovascular

mechanics.

INTRODUCTION

Computational analysis has become one of the most
widely used tools to investigate the human physiologi-
cal and pathological conditions, to help in clinical
decisions and interventional planning, and for the
development and optimization of new devices.16

Computer modeling can also be used for in silico clin-
ical trials, where ‘‘virtual’’ treatments and clinical
procedures are applied to ‘‘virtual’’ patients.49 This
recent line of research can potentially reduce the need
for clinical trials by replacing them with reliable
numerical models. Numerical models, if used as clinical
predictors, need to be reliable and this entails the con-
cept of verification and validation (V&V).48 Therefore,
the first step in defining and building a mathematical
model is the verification process summarized by the
following questions: ‘‘Does the computational model
accurately solve the underlying mathematical
model?’’49 and ‘‘Does the software do what it is
designed to do?.48 The confidence assessment of a
simulation is nothing new in the field of computational
models.30 In this regard, the American Society of
Mechanical Engineering provides guidelines for verifi-
cation and validation in computational solid mechan-
ics2,4 and fluid-dynamics.3 Verification and validation
are two different concepts normally used in conjunction
to demonstrate the reliability and accuracy of an in
silico model; the former aims to prove that the imple-
mented model is correct, the latter that the problem is
correctly modeled. As Roache53 suggested, ‘‘Verifica-
tion deals with mathematics; validation deals with
physics’’. A number of reviews on this topic with rec-
ommendations and suggestions for the implementation
of V&V analyses can be found in the literature.6,45,46,53

In the field of cardiovascular applications, the fas-
cination for numerical models to investigate heart
valves is well known.16,29,55 The recent literature
involves a number of examples of numerical models of
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heart valves39,65 and involving transcatheter valve
technology.60 In this context, the importance of veri-
fying the ability of the numerical models to represent
the reality is evident.29 Without investigating whether
the software solves the equations correctly, as most of
the commercial solvers are already validated, issues
related to the minimization of errors associated with
mesh resolution, and differences in the quantities of
interest obtained with different modeling strategies are
important for investigation. Mesh resolutions, type,
order and distribution of the elements are key factors
determining the integrity and accuracy of the solution.
In the past, models of heart valves have been dis-
cretized with triangular12,13,35 or quadrangular
shell,1,7,14,15,25,27,42,43,47,58,62–64 tetrahedral23 or hexa-
hedral9,37,38,41,56 elements with both linear and quad-
ratic order, along with, both reduced and full
integration formulation. Most of these studies corre-
spond to finite element (FE) structural analysis in
which the pressure exerted by the fluid is uniformly
applied on the leaflets. However, the best numerical
approach capable of reproducing the loading on the
valve leaflets due to the fluid coupling is the fluid–
structure interaction (FSI) approach.36 The main is-
sue related to the solution of an FSI algorithm is how
to manage the interface between the solid structure
and the fluid domain, which involves the solution of a
non-linear problem. Different interface tracking
techniques exist, which can be grouped in two
typologies: the non-boundary fitted methods and the
boundary-fitted methods.9 In the non-boundary fitted
methods, the interface movement is calculated
through an interpolation technique without deform-
ing the fluid mesh: the solid mesh results superim-
posed to the fluid mesh. The most widely used
methods belonging to this group are the immersed
boundary51,52 and the fictitious domain.24 They are
well suited for problems where the structural domain
undergoes large displacements, as is the case with
biological or natural heart valves. On the contrary, in
the boundary-fitted methods, the interface movement
is obtained through the deformation of the fluid
mesh, which continuously fits the solid domain. The
Arbitrary Lagrangian–Eulerian (ALE) method19,26,28

is the most common method in this group. Although,
ALE guarantees very accurate results near the inter-
face between the solid structures and the fluid, there
are limitations associated with this methodology when
used for heart valve simulations.61 Apart from being
computationally expensive due to the necessary
remeshing step after each iteration, the deformation
of the mesh may lead to excessive distortion of the
fluid elements and the appearance of negative element
volumes, which may cause convergence problems. In
addition, ALE methods do not allow the fluid domain

to be partitioned in two independent regions as
happens during the closure of the valve.

In this context, the aim of this work is to verify and
compare different technical details of heart valve
simulations that are often neglected, namely, the
convergence of the mesh, the finite element typology
and formulations, and the damping factor. To the
best of the authors’ knowledge, this is the first study
on the accuracy of heart valve simulations that
simultaneously investigates all of these parameters. In
this study, the verification process was performed
with structural and FSI simulations on an idealized
three-leaflets valve model, loaded with physiological
pressure conditions. The aims are 3-fold: (i) To con-
duct a convergence grid analysis separately on both
the structure solid domain (the valve) and the coupled
fluid domain (the blood); (ii) To investigate the
influence of the element typology and formulation,
and of the damping factor on the kinematics and the
stress field of the heart valve; and, (iii) To compare
the corresponding structural and FSI simulations,
highlighting their differences in terms of the load
acting on the leaflets of the valve.

METHODS

Governing Equations

The multi-physics FSI approach considers the
interaction between structure and fluid domains. For
the solid domain, based on the solution of the con-
tinuum mechanics equations, the finite element method
discretizes in space the conservation of linear
momentum equation:

qs
@vsi
@t

¼
@rsij
@xj

þ qsfsi ; ð1Þ

where qs is the density of the body, vsi the velocity of
the material points, rsij the Cauchy stress tensor, and fsi
the body forces per unit volume.

For the fluid domain, the computational fluid dy-
namic software solves the conservation of mass and the
Navier–Stokes equations:

@qf

@t
þ @qfvfi

@xi
¼ 0; ð2Þ

qf
@vfi
@t

þ qvfi
@vfj
@xj

¼
@rfij
@xj

þ qfffi ; ð3Þ

where qf is the density of the fluid, vfi the velocity of the

fluid particles at position xi, rfij the Cauchy stress

tensor, and ffi the fluid forces per unit volume.
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The FSI algorithm entails that the fluid and the
structures continuously couple forces and displace-
ments through the wet surface. The partitioned
approach solves the solid Eq. (1) and the fluid Eqs. (2–
3) with two separate solvers, different from the
monolithic approach characterized by a unique solver
for both domains. Hence, a coupling algorithm to
track the interface (the wet surface) is required. In
addition, two additional boundary conditions are ad-
ded at the interface: (i) continuity of the velocity field
at the interface (no-slip condition), and (ii) the balance
of the traction forces exchanged between the fluid and
the structure domains:

vf ¼ vs; ð4Þ

tf ¼ �ts; ð5Þ

where tf ¼ rfnf and ts ¼ rsns are the traction forces at
the interface in the fluid and solid domains, respec-

tively, with ns ¼ �nf the normal to the wet surface.

Idealized Model

An idealized standard tri-leaflets aortic valve was
adopted as a model. It was composed of three identical
deformable leaflets and a rigid supporting corona

(Fig. 1a). The internal and external diameters of the
valve were 23 and 28 mm respectively, with a
homogenous leaflets thickness of 0.4 mm; the total
height of the device was 17 mm. The valve was con-
sidered to be made of pericardium which was assumed
as linear elastic since, for the working strain range, the
material behavior is well represented with the initial
tangent modulus of the hyperelastic characteristic
curve.34 The material properties of the valve were
3 MPa for the elastic modulus, 0.49 for the Poisson’s
ratio and 1100 kg/m3 for the density.40

The fluid domain consisted of a rigid tube with a
diameter of 27 mm, and a total length of 135 mm,
(Fig. 1b). The blood was modeled as a Newtonian
fluid, with a density of 1060 kg/m3 and a dynamic
viscosity of 3.5 cP.37

A physiologic pressure difference was applied to the
valve to reproduce two complete cardiac cycles each
lasting 0.8 s (Fig. 1c). The ventricular pressure tracing
registred 113.58 and 7.39 mmHg as maximum and
minimum values, whereas the aortic pressure tracing
registered 111.88 and 66.72 mmHg, respectively. The
difference between upstream and downstream valve
pressures presented a maximum value of 1.95 mmHg,
during systole, and � 81.07 mmHg during diastole.18

In the structural analyses, the pressure difference
(discontinuous green line in Fig. 1c) was applied di-
rectly on the leaflets (aortic side). On the contrary, in
the FSI analyses the pressure difference was applied to
the inlet (ventricular side) whereas a zero-pressure
condition was set to the aortic outlet section. A no-slip
condition was applied to the external fluid nodes since
the rigid ‘‘container’’ was simulated via nodal con-
straints. A self-contact with penalty algorithm among
the three leaflets was defined. All of the numerical
models were solved with an explicit algorithm.

All of the discretized models were created with
Hypermesh 2017 (Altair Engineering, Inc.,USA) and the
simulationswere performedon 16CPUsof an Intel-MPI
Xeon64 using the commercial finite element solver LS-
Dyna 971 Release 10.1 (LSTC, Livermore CA, USA).

Mesh Sensitivity-Structural Analysis

Structural analyses were carried out to perform
convergence studies for both of the considered element
technologies: shells and bricks (specified in the model
acronyms with the letters S and B, respectively).

Three different shell meshes, from coarse (S1) to fine
(S3), were generated to perform a sensitivity analyses
on the discretization density (Fig. 2a). For this pre-
liminary analysis, a quadrangular shell element with
reduced integration and viscous hourglass control was

FIGURE 1. Model of the valve with the three deformable
leaflets (red) and the rigid corona (grey) (a); model for the FSI
simulations, in which the valve is immersed in the fluid
domain; the ventricular inlet and aortic outlets are shown (b);
ventricular, aortic and pressure difference curves, imposed as
boundary conditions for the numerical models (c).
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used. A mass proportional damping was assigned to
the structure, with different values during the opening
and closing phases. For the continuum solid models,
three brick meshes (B1, B2, and B3) were generated,
based on the previous surface meshes S1, S2, and S3,
with 4 elements across the leaflets thickness. A sensi-
tivity analysis on the number of elements across the
thickness was also performed, by considering the mesh
B2 with two (B2-T2) or eight (B2-T8) elements across
the thickness. For the bricks, a fully integrated quad-
ratic element with different values of mass damping in

the cardiac cycle was used. The details of the element
size and the total number of elements for each case are
summarized in Table 1.

Geometric opening area (GOA) during the systolic
opening phase and the average value of the maximum
principal stresses in the central part of the leaflets were
used to monitor the convergence of the mesh. The re-
gion where the first principal stresses were averaged
was chosen to be far from the applied boundary con-
ditions (commissure edges near the corona) and the
contact area (free edges) (Fig. 2a-white circle).

FIGURE 2. Different surface meshes considered in the convergence study, from coarse (S1) to fine (S3) refinement with the region
where the first principal stresses were averaged (white circle) (a); GOA during systolic phase for the shell (b) and the brick (d)
models; first principal stress for the shell (c) and the brick models (e) in the entire cardiac cycle.
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Element Formulation-Structural Analysis

Five shell element formulations were tested as
reported in Table 2. The reference formulation (model
S2) from the grid sensitivity analysis was a Belytschko–
Lin–Tsay (BLT) element with one-point integration10

and viscosity hourglass control.31 The BLT element
with stiffness hourglass control, S2-HgS, was also tes-
ted for completeness. The computational efficiency of
the BLT formulation is due to the mathematical sim-
plification of the co-rotational and velocity-strain. The
third element tested was based on the Belytschko–Le-
viathan formulation, S2-BL, which adds hourglass
viscosity stresses to the physical stresses at element
level.22 The fourth element type was a fully integrated
shell-type formulation, S2-FI, with an assumed strain
interpolants used to alleviate the locking problem and
enhance in-plane bending.20 All the previous formu-
lations are based on the Reissner–Mindlin kinematic
assumption, in which mid-surface displacement with
rotations are used to describe the shell deformation (5-
parameter shell model).8 The last element formulation
tested was a thickness enhanced one point integration
formulation, S2-T, also called thick-thin 6- or 7-
parameter shell model.8 In all these cases, only the
element and hourglass control was changed, while
keeping fixed all the other parameters of the simula-
tion. For the shell models, mass proportional damping
coefficients of 1.0 and 5.0 were set for the systolic and
diastolic phases respectively. When weighted system
damping is used, a force vector due to system damping,
Fn
damp, is added to the external and internal loads

Fn
damp ¼ Dsmv; ð6Þ

where m and v are the mass and the velocity field of the
body, and Ds a damping constant. As Ds affects the
results, especially for the kinematics of the valve, two
models based on the reference model S2 were consid-
ered, a low damped model (S2-D0.1) and a high
damped model (S2-D5) with values of Ds, equal to 0.1
and 5, respectively.

For the solid models meshed with brick elements,
three different element formulations were investigated
as reported in Table 2. The reference formulation
(model B2), adopted also in the mesh sensitivity anal-
ysis, was a quadratic fully integrated element with
nodal rotation.50 This quadratic formulation is free of
any locking problem. The second formulation was a
tri-linear fully integrated solid element, B2-FI, in which
the pressure is constant within the element to avoid
pressure locking.44 However, shear locking remains a
problem since this formulation is not able to capture
the pure bending mode of deformation. As a third
formulation, an advanced version of the B2-FI ele-
ment, the B2-FIAdv, was considered. In this improved
formulation, the transverse shear locking is reduced at
expense of a higher computationally cost. For solid
elements, we also investigated the use of reduced
integration with a viscous, B2-RI-HgV, or stiffness
hourglass control with exact volume integration, B2-
RI-HgS,.22 For the solid models, mass proportional
damping coefficients of 0.1 and 1.0 were set for the
systolic and diastolic phases, respectively. In addition,
for the B2 reference model, the influence of the mass
proportional damping was tested by setting the
damping coefficient to a constant value of 0.05 (B2-
D0.05).

The average GOA during the systolic phase and the
average maximum principal stress value of the central
part of the leaflets along the cardiac cycle were evalu-
ated as primary and integrated variables. The total
computation time was also reported.

FSI Analysis

The ‘‘operator split’’ Lagrangian–Eulerian
approach, a non-boundary fitted method implemented
in the solver LS-Dyna, was adopted to define the
interaction between the solid structure (valve) and the
fluid (blood). In this approach, the Eulerian fluid
Eqs. (2–3) are ‘‘split’’ into Lagrangian and advection
steps.11 In the Lagrangian step, the solid mesh deforms

TABLE 1. Shell (S) and brick (B) models for the mesh sensitivity study.

Model Element size (mm) Total number of elements Element formulation Damping factor

S1 1 1500 Reduced int-Hg viscous form 1 systole–5 diastole

S2 0.5 5736 Reduced int-Hg viscous form 1 systole–5 diastole

S3 0.2 37,569 Reduced int–Hg viscous form 1 systole–5 diastole

B1 1 6000 Full int quadratic 0.1 systole–1 diastole

B2 0.5 22,944 Full int quadratic 0.1 systole–1 diastole

B3 0.2 150,276 Full int quadratic 0.1 systole–1 diastole

B2-T2 0.5 11,472 Full int quadratic 0.1 systole–1 diastole

B2-T8 0.5 45,888 Full int quadratic 0.1 systole–1 diastole

T thickness, Hg hourglass, int integration.
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due to forces transmitted from the fluid, whereas
during the advection step the velocity is remapped and
interpolated in the fixed reference grid. This coupling
algorithm prevents flow through the structure by
applying penalty forces to the fluid and the structures.

After the convergence analysis of the solid part, the
mesh for the valve is fixed and a convergent study on
the fluid domain is performed. With the non-boundary
fitted method, the nodes of the fluid and solid mesh do
not necessarily coincide. However, a necessary condi-
tion is that the structural domain remains immersed in
the fluid domain during the whole simulation. In
addition, in order to avoid leakage through the valve
leaflets, an appropriate number of coupling nodes is
required. This condition is achieved if the element size
of the fluid domain is nearly the same as, or smaller
than, the solid elements where the coupling (wet sur-
face) takes place. Three different fluid meshes were
generated to perform a sensitivity analysis, from coarse
(S2-FSI1) to fine (S2-FSI3) refinement (Table 3). The
mesh of the fluid domain was generated considering
the symmetry of the three valve leaflets. In addition,
the fluid grid of the S2-FSI2 model, which has the same
element size for the valve and the fluid grids, was
generated with the classical quadratic o-grid outline
(model S2-FSI2Q), to investigate its influence on the
results, especially on the pressure load transmitted to
the structure from the fluid. Details about the element
size and the total number of fluid elements for each
model are listed in Table 3. Concerning the valve, the
reference shell-type model S2 (first row in Table 2) was
used for the convergence analysis of the FSI simula-
tions. As for the fluid domain, the fluid element for-
mulation was set as Eulerian one-point ALE multi-
material elements. The coupling between the fluid and
the structure was defined within a penalty-based

algorithm. It consisted of the imposition of a resistance
force on the slave nodes, typically the Lagrangian
structure, which was proportional to their penetration
on the master surface, the fluid. The GOA during the
systolic opening phase and the average first principal
stress value of the central part of the leaflets at the end
of diastole were used to monitor the convergence of the
mesh. To reduce the computational time, the bulk
modulus of the blood was reduced to 1% of its real
value. This modification, however, does not signifi-
cantly affect the pressure and velocity fields.5,32,33

The structural analysis performed with model S2
and the corresponding FSI analysis with the converged
fluid grid were compared. According to the results
from a previous study,36 the pressure difference during
the systolic phase was scaled by a factor of two (S2-
FSI2-Sf2) or three (S2-FSI2-Sf3) in order to emphasize
the difference in terms of pressure distribution on the
leaflets between the structural and the FSI simulation.
The diastolic pressure difference was, on the contrary,
kept identical. The FSI analysis was also carried out
with brick solid elements for the valve with both the
physiological and scaled pressure boundary conditions
(models B2-FSI2, B2-FSI2-Sf2 and B2-FSI2-Sf3). Ta-
ble 4 summarizes the FSI models investigated. The
comparison was performed in terms of average GOA
during the systolic phase, blood flow rate, stroke vol-
ume, and total computing time.

RESULTS

Mesh Sensitivity-Structural Analysis

Table 5 summarizes the results obtained for all
simulations in terms of maximum GOA at peak sys-
tole, average max principal stress at the central part of

TABLE 2. Shell (S) and brick (B) models for the verification structural study.

Model Element formulation Hourglass formulation Damping factor

S2 Belytschko–Lin–Tsay one-point int Viscous form 1 systole–5 diastole

S2-BL Belytschko–Leviathan one-point int Physical viscous form 1 systole–5 diastole

S2-HgS Belytschko–Lin–Tsay one-point int Stiffness form 1 systole–5 diastole

S2-FI Full int – 1 systole–5 diastole

S2-T Thickness enhanced one-point int Viscous form 1 systole–5 diastole

S2-D0.1 Belytschko–Lin–Tsay one-point int Viscous form 0.1 systole–0.1 diastole

S2-D5 Belytschko–Lin–Tsay one-point int Viscous form 5 systole–5 diastole

B2 Quadratic full int – 0.1 systole–1 diastole

B2-FI Linear full int – 0.1 systole–1 diastole

B2-FIAdv Linear advanced full int – 0.1 systole–1 diastole

B2-RI-HgV Linear one-point int Viscous form 0.1 systole–1 diastole

B2-RI-HgS Linear one-point int Stiffness form 0.1 systole–1 diastole

B2-D0.05 Quadratic full int – 0.05 systole–0.05 diastole

BL Belytschko–Leviathan, Hg hourglass, S stiffness, FI fully integrated, T thickness, D damping, Adv advanced version, RI reduced

integration, V viscous, int integration.
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the leaflets at the end of diastole, and total computa-
tional time for one cardiac cycle. The three shell grids
(S1, S2 and S3) showed an acceptable performance in
terms of the monitored variables (see Figs. 2a, 2b, 2c).
The main variable for evaluating the convergence was
the kinematics of the leaflets, in terms of the averaged
GOA of the valve during the systolic phase. The dif-
ference in percentage of the GOA between the medium
(S2) refinement and the coarse (S1) was of 0.39%, while
between the medium (S2) and the fine (S3) was of
3.45% (Fig. 2b). In terms of the cycle-averaged dif-
ference of the average maximum principal stress in the
central part of the leaflets (white circle in Fig. 2a),
between the medium (S2) refinement and the coarse
(S1) was of 0.49%, whereas between the medium (S2)
and the fine (S3) was of 10.77% (Fig. 2c). The fine
mesh model (S3) showed leaflet co-penetration during
the closing phase, due to the excessive number of
points in the penalty contact defined for the self-con-
tact of the leaflets. This behavior leads to a larger
difference in the results in terms of the stresses devel-
oped in the leaflets during the closing phase of the
valve. For this reason, the medium mesh (S2) was
chosen for the remaining simulations.

For the brick element meshes, the percentage dif-
ference in the GOA between the medium (B2) and the
coarse (B1) meshes was of 10.70%; between the med-
ium (B2) and the fine (B3) meshes, it was 0.54%;
between the medium (B2) and the medium B2 with 2-
elements through thickness (B2-T2), it was 60.94% and
between the medium (B2) and the medium B2 with 8-
elements through thickness (B2-T8), it was of 4.40%
(Fig. 2c). Regarding the cycle-averaged maximum
principal stress in the center of the leaflet, between the
medium (B2) and the coarse (B1) meshes the percentage
difference was of 2.01%; between the medium (B2) and
the fine (B3) meshes, it was 15.63%; between the
medium (B2) and the medium B2 with 2-element
through thickness (B2-T2), it was 16.96%; the simula-
tion with the medium B2 with 8-elements through
thickness (B2-T8) did not finish because of excessive
leaflet co-penetration during the diastolic phase
(Fig. 2d). This problem was also observed in the finer
model B3. On the other hand, in the model with 2-
elements, through the thickness (B2-T2) the valve did

not fully open during the systolic phase. This was be-
cause the number of elements in the thickness was not
enough to properly catch the bending behavior of the
leaflet resulting in an overly stiff response. The mesh B2

with 4-elements in the thickness was found to be a
good compromise between the proper modeling of the
bending behavior of the leaflet in systole and the pre-
vention of contact problems during diastole. There-
fore, it was chosen to perform the remaining
simulations.

Element Formulation-Structural Analysis

The element formulation investigation showed how
the different technical choices affect the kinematics of
the valve and the stress field on the leaflets. The ref-
erence model (S2) for the shell-based models was a
reduced integration quadrilateral element with viscos-
ity hourglass control. As regards the hourglass control
formulation, the comparison between models S2, S2-
BL and S2-HgS showed similar kinematic results
(Fig. 3a), with model S2-BL resulting slightly stiffer
(difference in systole-averaged GOA of less than 2%).
The main difference was found in the cycle-averaged
maximum principal stress in the center of the leaflet,
with the S2-HgS reaching a value 23% larger with re-
spect to the S2 and S2-BL. This difference corre-
sponded to much greater hourglass energy dissipation
with respect to the S2 and S2-BL models (Fig. 5a). The
computing time was not influenced by the hourglass
formulation (Table 5). The fully integrated shell model
(S2-FI) and the thickness enhanced one-point integra-
tion model (S2-T) gave the same results as the reference

TABLE 3. FSI models for the convergence study.

Model Structure element size (mm) Fluid element size (mm) Total number of fluid elements

S2-FSI1 0.5 1 37,440

S2-FSI2 0.5 0.5 211,200

S2-FSI3 0.5 0.2 1,544,400

S2-FSI2Q 0.5 0.5 126,720

Q quadratic o-grid outline.

TABLE 4. FSI models for the comparison with the structural
models.

Model Scale factor systolic pressure

S2-FSI2 1

S2-FSI2-Sf2 2

S2-FSI2-Sf3 3

B2- FSI2 1

B2-FSI2-Sf2 2

B2-FSI2-Sf3 3

Sf scale factor.
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model (S2), but with a significant increase in computing
time (Table 5). As regards the influence of the damping
factor, Fig. 3a demonstrates the substantial influence
of this factor on the kinematics of the valve. In fact, in
model S2-D0.1 the valve opening time (VOT) reduces
from 0.085 s, for the reference model, to 0.075 s, with a
2.4% larger maximum GOA. On the contrary, the
damping effect in model S2-D5 was found excessive
since it prevented the valve from fully opening, with a
maximum GOA of less than 60%, with respect to the
reference model. This result is consistent with the
increment in damping energy dissipation with the scale
factor (Fig. 5d).

For the solid cases, the reference model (B2) was a
quadratic fully integrated hexahedral element with
four elements through the thickness. The tri-linear
fully integrated model (B2-FI) gave a very stiff
response, due to the shear locking problem that char-
acterizes this type of formulation in bending domi-
nated problems (Fig. 4a). The maximum GOA was of
47.69 mm2, with respect to 326.91 mm2 of the B2

model (see Table 5). The advanced tri-linear fully
integrated formulation (model B2-FIAdv) overcome this
problem: the VOT was identical to the reference
model, with a difference in the maximum value of

TABLE 5. Principal results for all the structural and FSI models.

Model Max GOA (mm2) Max 1st principal stress (MPa) Computational time (1 cycle)

S1 327.443 0.305 00:00:27

S2 334.608 0.301 00:02:09

S3 336.270 0.296 00:28:14

B1 295.972 0.295 00:49:34

B2 326.906 0.308 02:03:28

B3 309.370 0.295 23:01:48

B2-T2 73.296 0.300 00:50:32

B2-T8 345.495 – Not ended

S2-BL 330.037 0.310 00:03:03

S2-HgS 334.987 0.380 00:02:09

S2-FI 326.465 0.296 00:05:28

S2-T 333.9693 0.313 00:05:02

S2-D0.1 346.115 0.303 00:02:09

S2-D5 147.077 0.302 00:02:09

B2-FI 47.692 0.297 00:36:02

B2-FIAdv 296.139 0.304 03:13:08

B2-RI-HgV 335.031 0.305 00:21:09

B2-RI-HgS 43.602 0.301 00:14:21

B2-D0.05 316.790 – not ended

S2-FSI1 70.743 0.340 06:03:05

S2-FSI2 71.090 0.398 16:11:42

S2-FSI3 71.101 0.352 86:11:48

S2-FSI2Q 72.404 0.356 10:09:13

S2-FSI2-Sf2 162.33 0.398 16:11:42

S2-FSI2-Sf3 289.735 0.398 16:11:42

B2-FSI2 11.423 0.360 65:23:10

B2-FSI2-Sf2 140.018 0.360 65:23:10

B2-FSI2-Sf3 285.692 0.360 65:23:10

FIGURE 3. GOA during the systolic phase (a) and first
principal stress during the entire cardiac cycle (b) for the
shell element formulation.
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GOA of less than 9.50% (Fig. 4a). However, the
computational cost increased five-fold with respect to
the B2-FI model. Regarding the reduced integration
models, B2-RI-HgV and B2-RI-HgS behaved very
differently. Model B2-RI-HgV with the viscous hour-
glass control opened faster with a VOT of 0.07 s
against the 0.085 s of the reference model but the same
value of maximum GOA (see Table 5). On the con-
trary, the model with the stiffness hourglass control
(B2-RI-HgS) behaved almost identically to the B2-FI
model. The hourglass energy dissipation for the solid-
type models resulted to be one order of magnitude
larger than for the shell-type models (Fig. 5c). As re-
gards the damping factor, it did not strongly influence
the kinematic of the valve during systole (model B2-
D0.05 in Fig. 4a, damping energy dissipation curves in
Fig. 5e). However, it caused instabilities in the contacts
during the diastolic phase preventing the completion of
the simulation. The comparison of the stress fields
(Fig. 4b) demonstrated that the closing behavior of the
valve was not strongly influenced by the element for-
mulation; on the contrary, the computational time was
affected. The tri-linear fully integrated model (B2-FI)
was four times less expensive than the reference
quadratic model (B2), while the advanced linear fully
integrated element resulted 50% more computationally
expensive than the B2 model. The reduced integration
models (B2-RI-HgV and B2-RI-HgS) reduced the
computational time with respect to the reference model
(B2) by 82 and 88%, respectively.

Finally, it was verified that a quasi-static condition
in all the simulations was achieved as the ratio between
the kinetic and the internal energy was less than 5%
during all the simulated cardiac cycles (Fig. 5a).

FSI Analysis

The convergence analysis on the fluid meshes con-
firmed the general recommendation that the element
size of the fluid and solid domains has to be nearly the
same where coupling is to take place. In fact, the dif-
ference in the systole-averaged GOA between the ref-
erence FSI2 model and the coarse FSI model (FSI1)
was 3.26%, whereas, between the FSI2 model and the
fine FSI model (FSI3), the difference was only 0.04%
(Fig. 6a). In addition, between model FSI2 and the
model meshed with the classic o-grid structures (FSI2Q)
the difference in systole-averaged GOA was 2.99%. As
regards the cycle-averaged maximum principal stress,
results showed the same trend as the GOA, with per-
centage differences of 11.66% between the FSI2 and
the FSI1 models, 9.97% between the FSI2 and the FSI3
models, and 9.60% between FSI2 and FSI2Q models
(Fig. 6b). In particular, the comparison between
models FSI2 and FSI2Q showed a non-negligible
influence of the mesh topology on the results. Con-
sidering that models FSI2 and FSI2Q have the same
element size, these results indicate that the mesh should
respect the symmetry of the structure domain when
possible in order to maximize computational efficiency
and accuracy. Based on these results, the FSI2 model
with the same element size as the underlying structure
grid was selected as the most appropriate.

The shell-type and brick-type models with the
applied physiological and scaled pressure curves
(Fig. 1c) were compared. In terms of the kinematics of
the valve, the maximum opening area of the valve was
globally lower in the FSI models than their equivalent
structural models. In fact, the maximum value of GOA
in the model S2-FSI2 was 71.10 mm2, with respect to
the 334.60 mm2 of the reference structural model S2
(Table 5). On the contrary, the scaled S2-FSI2-Sf2 and
S2-FSI2-Sf3 models reached a value of 162.33 and
289.74 mm2, respectively. Accordingly, the resulting
stress field in the leaflet (Fig. 7c), the blood flow rates
(Fig. 7b), the velocity field, and the stroke volumes
changed. In particular, the stroke volume varied from
4.95 mL for the S2-FSI2 model, to 24.95 mL for the S2-
FSI2-Sf2 model, to 54.29 mL for the S2-FSI2-Sf3
model. A similar result was found for the FSI models
with the valve meshed using hexahedral elements. The
maximum value of GOA in the model B2-FSI2 was
11.42 mm2, with respect to the 326.91 mm2 of the
reference structural model B2 (Fig. 7d). The scaled B2-
FSI2-Sf2 and B2-FSI2-Sf3 models reached a value of

FIGURE 4. GOA during the systolic phase (a) and first
principal stress during the entire cardiac cycle (b) for the
solid element formulation.
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140.02 mm2 and 285.69 mm2, respectively; the result-
ing stress field in the leaflet (Fig. 7f), blood flow rates
(Fig. 7d), velocity field (Fig. 7g), and stroke volumes
changed consistently, with the stroke volume varying
from a value of 1.26 mL for the B2-FSI2 model, to
14.92 mL for B2-FSI2-Sf2 model and 46.37 mL for B2-
FSI2-Sf3 model. By considering the B2 and B2-FSI2-Sf3
models, the VOT increased from 0.085 s to 0.15 s, an
increment of twofold. In general, with regard to the

kinematics and the stress distribution, FSI models with
a shell-based and brick-base structural meshes per-
formed similarly (see Fig. 7). However, they greatly
differ in terms of the computational time. For brick-
based models, the increment in computational times
with respect to shell-based modes was fourfold as
shown in Table 5. This is, in great part due to the
larger number of degrees of freedom associated with
the brick type models.

FIGURE 5. Internal and kinematic energy during one cycle of the simulation (a); hourglass dissipative energy for S2, S2-BL and
S2-HgS models (b) and for B2-RI-HgV and B2-RI-HgS models (note the different scale for the energy axis between panels b and c)
(c); damping dissipative energy for S2, S2-D0.1 and S2-D5 (d) and for B2 and B2-D0.05 models (e). The internal energy is displayed in
panels (d) and (e) for clarity.
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DISCUSSION

When performing numerical simulations, the impor-
tance to assess the reliability and truthfulness of numer-
ical models is of capital importance.54 In this regard, the
verification and validation (V&V) process is crucial. This
is particularly true for heart valve simulations where
different formulation and numerical techniques are
used.1,7,9,12–16,23,25,27,29,35–39,41–43,47,51,56,58,60,62–65

The choice of the discretization technique is a fun-
damental step in the set-up phase of a numerical
investigation; this includes the definition of the element
topology, order of interpolation and type of integra-
tion, and the adequate number of nodes. Two main
families of elements are commonly used to model heart
valve: quadrilateral shell and hexahedral solid ele-

ments. Quadrilateral shell elements and quadratic
hexahedral solid elements are to be preferred, geome-
try permitting, since they can properly represent the
bending mode of deformation which characterizes the
valve mechanics.17 Indeed, triangular and tetrahedral
elements, which are constant-strain elements, do not
properly model the bending behavior of the structure,
in particular, tetrahedral elements which lead to an
over stiff mechanical response. The same conclusion
can be extended to tri-linear hexahedral elements
which are prone to suffering shear-locking in bending
dominated problems. These deficiencies associated
with the tetrahedral and tri-linear hexahedral elements
necessitate using discretization with a large number of
elements across the thickness, which leads to a signif-
icant loss of computational efficiency against quadratic

FIGURE 6. Different fluid meshes considered in the FSI convergence study, from coarse (FSI1) to fine (FSI3) refinements; GOA
during the systolic phase (a) and the mean first principal stress for the valve in the central region of the leaflets for the entire
cardiac cycle (see white circle in Fig. 2a) (b).
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elements. Numerical techniques are also required to
integrate various quantities over the volume of the
element, e.g., to calculate the element stiffness matrix.
In this regard, volume integration is carried out with
Gaussian quadrature and can be full or reduced.
Numerical issues affect both formulations. Full-inte-
gration with quadratic elements is computationally
costly but results are adequate for bending dominated
problems. On the contrary, reduced integration can

eliminate the problem of shear-locking in tri-linear
hexahedral elements but introduces zero energy modes,
called hourglass modes, that need to be eliminated in
the numerical formulation.

In the present study, the verification process was
carried out in the cardiovascular numerical field, more
precisely on biological heart valves numerical models.
In literature, heart valves have been generally studied
from a structural view point i.e., neglecting the inter-

FIGURE 7. GOA during the systolic phase for the shell-type (a) and brick-type (d) FSI element formulation models; flow rate for
the shell-type (b) and brick-type (e) FSI element formulation models; First principal stress field on the valve discretized with shell
(c) and brick (f) elements at the moment of maximum valve opening; velocity field during the systolic phase in the brick-type
element models (g).
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action with the blood. However, since their dynamic
behavior is directly linked to hemodynamics, FSI
analysis is gaining attention.21,25,38,39,57,62 The aim of
this study was to investigate how different technical
details in the simulation of heart valves affected the
numerical solution of the problem. We considered
different scenarios of the heart valve modeling and
verified which technical choices were suitable to accu-
rately describe the problem. Our aim was not to
compare the numerical model of the valve against
in vitro tests since this was not a validation study.
Structural and FSI simulations were performed, con-
sidering: different mesh typology, discretization, ele-
ment formulation, damping factor, and applied
boundary conditions. An idealized tri-leaflets linear
elastic valve loaded with physiological pressure was
considered.

Even though heart valve models discretized with
triangular shell12,13,35 and tetrahedral solid23 elements
are found in the literature, these element typologies
were not investigated here because they are highly
inefficient in bending dominated problems due to their
constant strain characteristics. Hence, only quadrilat-
eral shell and hexahedral elements were considered.
The preliminary sensitivity analysis on the discretiza-
tion refinement demonstrated that increasingly refining
the mesh is not always the most efficient way to reach
convergence when dealing with valve mechanics. While
this could generally be true for the systolic phase, for
the diastolic phase of the simulated cardiac cycle
(closure of the valve), the finer meshes may exhibit
problems of leaflets co-penetration during contact.
This implies that excessively fine meshes may be
counterproductive. In fact, in the penalty contact
algorithm, for every slave node the solver searches the
closest master node/segments, computes the orthogo-
nal distance, and if penetration exists, then a force
proportional to penetration depth is applied to both
slave and master nodes. If the number of slave nodes is
too large, the algorithm is unable to prevent the pen-
etration between the slave and the master structure.
Therefore, when dealing with valve mechanics, the
optimal mesh size requires not only monitoring the
variables of interest i.e., the GOA and the maximum
principal stress but also verifying that the discretiza-
tion adequately describes the contact between the
leaflets during the diastolic phase.

For models based on shell elements with reduced
integration, the viscous hourglass control resulted in
the most appropriate model, since the stiffness hour-
glass control led to higher values of stress during the
closure phase. The full integration and the thickness-
enhanced models showed similar results, but with a
significant increment in computational time. In fact,

the greatest benefit of the reduced integration formu-
lation is the significant saving in computational time.
The cost of the fully integrated element may be justi-
fied by its higher reliability, and if used sparingly may
actually increase the overall speed. Regarding the mass
proportional damping, our results indicate that the
damping coefficient has a strong impact on the kine-
matics of the valve. A little change in the damping
coefficient value resulted in a significant change in the
opening and closure time of the valve. For this reason,
in shell-type heart valve simulations, a sensitivity
analysis of this coefficient should be always conducted.

As regards the brick-based models, the trilinear
hexahedral with full integration formulation showed
shear locking since the opening and closing of the valve
is dominated by bending. The advanced formulation of
the trilinear fully integrated element overcomes this
problem, but at additional computational cost. In this
regard, the quadratic hexahedral element with full
integration resulted in a good compromise between
accuracy and computational cost because it was free of
shear locking and allowed working with meshes with a
contained number of nodes. The quadratic hexahedral
element with reduced integration results were inade-
quate for simulating valve mechanics. The model based
on quadratic hexahedral element with reduced inte-
gration resulted unstable during the closure of the
valve when viscous hourglass control was used. On the
contrary, when stiffness hourglass control was used,
the model resulted as stiff as the model with trilinear
hexahedral elements with full integration. Finally,
unlike the shell-based models, the mass proportional
damping did not influence the kinematics of the valve,
due to the innate greater stability of the solid elements.

The chosen shell and brick element formulations
were also analyzed for the FSI simulations with a non-
boundary fitting method. The main advantage of this
kind of method is that only the structure grid deforms,
and the calculation of the variables is less expensive.61

Thanks to the fixed fluid grid, this approach’s results
are well suited for problems where the structural do-
main undergoes large displacement as in the case of the
heart valve dynamics. One of the weak points of this
approach is that the results at the interfaces are less
accurate.9 This can be partially solved by refining the
fluid mesh, but with a significant increase in compu-
tational time. In this regard, the results confirmed that
at least the two grids (structural and fluid) should be of
the same element size in order to adequately describe
the valve mechanics. In addition, our results indicate
that the mesh of the fluid domain should respect the
symmetry of the structure domain when possible in
order to maximize computational efficiency and accu-
racy of the load transfer between fluid and structure.
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The direct comparison between structural and FSI
analyses showed a great difference in terms of the
GOA of the valve. This difference was already noticed
in previous works.33,36,59 The reason behind this dif-
ference is due to the pressure boundary conditions used
for the structural simulations. On the contrary, in an
FSI simulation, this pressure difference was applied
between the inlet and outlet of the fluid domain in
correspondence with actual boundary conditions.
Therefore, the forces transmitted to the leaflets resulted
not only lower for the FSI simulation than for the
structural simulation but were also non-uniformly
distributed on the leaflet. In other words, in the
structural analysis, the pressure boundary conditions
applied on the leaflets were overestimated. This ex-
plains not only the larger values of GOA obtained for
the structural analysis, but also the faster valve open-
ing with respect to FSI simulations conducted with the
same element formulations for the solid domain.
During the closure phase, all these differences were less
evident due in part to the larger pressure gradient
acting on the leaflets, but also to the fact that the
leaflets enter in contact during this phase. A previous
validation study from our group demonstrated that the
structural analysis cannot fully reproduce a realistic
loading on the valve.36 Due to the presence of the fluid,
which transmits the pressure to the structure, the FSI
simulations are more appropriate than structural
analyses to describe the real dynamic behavior of heart
valves. In addition, the inertia of the fluid, not present
in a structural analysis, delays the opening and the
closure of the valve, as is the case in physiological
conditions.

The study is not exempt from limitations, including
the idealized, perfectly symmetric, linear elastic valve
model to the rigid container of the fluid. However,
these simplifications are reasonable for the study aim
which was to show the influence of each investigated
numerical aspects of a heart valve model. The obtained
results can be generalized and applied to realistic and
patient-specific heart valves; the selection of the best
element type and size can also be adopted or more
complex problems. The simplicity of the model was
adopted for computational reasons since we wanted to
carry out numerous simulations.

Moreover, during the simulations, the assumption
that the material behavior is well reproduced with the
first elastic modulus of the hyperelastic characteristic
curve34 was confirmed by the resulting strain field.

In conclusion, the goal of this studywas to investigate
the consequence of different numerical parameter choi-
ces. In this regard, modeling the valves with shells
produced the best compromise between model com-
plexity and computational efficiency. In particular, the

quadrilateral shell with reduced integration and viscous
hourglass control was the best adoption. If the geometry
necessarily required a solid discretization technique, a
quadratic hexahedral element with full integration can
be used. Finally, the damping coefficient sensitivity
analysis should be always performed in order to smooth
the high frequency vibration of the structure without
introducing numerical artificial viscosity.
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