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ABSTRACT

Age-associated changes in immune cells have been
linked to an increased risk for infection. However, a
global and detailed characterization of the changes that
human circulating immune cells undergo with age is
lacking. Here, we combined scRNA-seq, mass cytometry
and scATAC-seq to compare immune cell types in
peripheral blood collected from young and old subjects
and patients with COVID-19. We found that the immune
cell landscape was reprogrammed with age and was
characterized by T cell polarization from naive and

memory cells to effector, cytotoxic, exhausted and reg-
ulatory cells, along with increased late natural killer
cells, age-associated B cells, inflammatory monocytes
and age-associated dendritic cells. In addition, the
expression of genes, which were implicated in coron-
avirus susceptibility, was upregulated in a cell subtype-
specific manner with age. Notably, COVID-19 promoted
age-induced immune cell polarization and gene
expression related to inflammation and cellular senes-
cence. Therefore, these findings suggest that a dysreg-
ulated immune system and increased gene expression
associated with SARS-CoV-2 susceptibility may at least
partially account for COVID-19 vulnerability in the
elderly.
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INTRODUCTION

The world population is undergoing a rapid expansion of older
adults, and thus, exploring how to stay healthy with age has
become an urgent global focus. Aging leads to numerous
physiological changes, including the deterioration of the
immune system, rendering the elderly more susceptible to
infections, such as the COVID-19 pandemic, and poor
responses to vaccines (Ciabattini et al., 2018; Alpert et al.,
2019; Onder et al., 2020; Verity et al., 2020). Changes
observed during aging are often reflected as alterations in the
composition and functional declines of diverse immune cells.
For T cells (TCs), the high frequency of naive cells in young
humans progressively decreases alongwith the accumulation
of highly differentiatedmemory cells (HakimandGress, 2007),
whereas nonclassical monocytes (MCs) with high levels of
plasma tumor necrosis factor (TNF)-α and interleukin (IL)-8
accumulate with age (Ong et al., 2018). In addition, senes-
cence of the immune system in the elderly has been termed
“inflammaging”, which refers to increased levels of tissue and
circulating proinflammatory cytokines in the absence of an
immunological threat (Panda et al., 2009; Franceschi et al.,
2018). Overall, aging is associated with changes in the
structure of diverse immune compartments, where accumu-
lating dysfunctional subsets contribute to immune failure.

Seminal studies have provided insights into the composi-
tions and functional alterations occurring during aging, pri-
marily based on previously described markers detected in
pooled heterogeneous cell populations. The recent develop-
ment of unbiased high-throughput single-cell technologies
with high accuracy and specificity has begun to change
immunological studies, as researchers worldwide are usher-
ing in the new field of systems immunology. By using single-
cell sequencing, recent studies have reported that cell-to-cell
transcriptional variability increases with age in CD4+ TCs
(Bahar et al., 2006; Martinez-Jimenez et al., 2017) and in
leukocytes from old mouse lungs (Angelidis et al., 2019).
Aging also increases the variations in chromatinmodifications
of human immune cells (Cheung et al., 2018). Very recently,
many immunological phenotypes, such as intratissue accu-
mulation of proinflammatory cells, havebeen reported in aging
rodent and primate models (Messaoudi et al., 2006; Watson
et al., 2017; Hammond et al., 2019; Ma et al., 2020). However,
a comprehensive aging cell atlas of human peripheral blood
that systematically connects all the blood lineages and cell
subtypes has not yet been constructed.

Here, we applied single-cell RNA sequencing (scRNA-
seq), mass cytometry (CyTOF), and single-cell assay for
transposase-accessible chromatin sequencing (scATAC-
seq) to comprehensively characterize the properties of
peripheral blood mononuclear cells (PBMCs) in young and
old adults. We also enrolled young and aged COVID-19

patients in the incipient stage and recovery stage to explore
how age influenced the capacity for recovery and prognosis
of COVID-19 infection and to better understand the influ-
ence of immune dysregulation in aging and infection. Our
data revealed that aging promotes the polarization of TCs
from naive and memory to effector, exhausted and regu-
latory subtypes and increases the numbers of late natural
killer cells (NKs), age-associated B cells (BCs), inflamma-
tory MCs, and dysfunctional dendritic cells (DCs). With
single-cell paired T/B cell receptor sequencing (scTCR/
BCR-seq), we uncovered decreased diversity and
increased clonality of effector, cytotoxic and exhausted
CD8+ TC subsets in TCs and age-associated B subsets in
BCs with age. Notably, aging increased the expression of
inflammation-related genes, senescence-related genes,
and coronavirus susceptibility genes in specific cell sub-
types. Most impressively, COVID-19 caused similar
immune cell landscape changes to that of aging and further
increased aging-induced immune cell polarization and
upregulation of inflammatory genes. Increased SARS-CoV-
2 susceptibility gene expression and inflammatory MCs and
decreased TCs aggravate inflammatory storms and lym-
phopenia (Mehta et al., 2020; Merad and Martin, 2020;
Zhou et al., 2020) and likely underlie the high susceptibility
and mortality of old patients. Overall, this work expands our
knowledge of aging via single-cell transcriptomic, proteomic
and chromatin accessibility immune cell profiling and
highlights critical nodes between the dysregulated immune
system and infections that may serve to modulate the
process of inflammaging.

Figure 1. Schematic illustration of the collection and

data processing of PBMC from young and aged group.

(A) Flowchart overview of PBMC collection in young and

aged adults followed by scRNA-seq, mass cytometry,

scATAC-seq and scTCR/BCR-seq experiments.

(B) Schematic illustration of experimental cohorts; cohort-

1: young and aged adults, cohort-2: young and aged

healthy individuals, young and aged adults with COVID-19

onset, cohort-3: young and aged healthy individuals, young

and aged adults recovered from COVID-19, matched with

analysis as indicated: single-cell proteomic data from

CyTOF studies, gene expression data from scRNA-seq

studies, chromosomal accessibility data from scATAC-seq,

and TCR and BCR repertoire data from scTCR/BCR-

seq. (C) t-SNE projections of PBMCs derived from scRNA-

seq data in cohort-1. (D) Heatmaps showing scaled

expression of discriminative gene sets for each cell type

and cell subset. Color scheme is based on z-score

distribution from −3 (purple) to 3 (yellow).

c

© The Author(s) 2020 741

P
ro
te
in

&
C
e
ll

Single-cell Atlas for immune cells in aging and COVID-19 RESEARCH ARTICLE



RESEARCH ARTICLE Yingfeng Zheng et al.

742 © The Author(s) 2020

P
ro
te
in

&
C
e
ll



F
ig
u
re

1
.
c
o
n
ti
n
u
ed

.

Single-cell Atlas for immune cells in aging and COVID-19 RESEARCH ARTICLE

© The Author(s) 2020 743

P
ro
te
in

&
C
e
ll



RESULTS

Cohort characteristics and single-cell analysis
of PBMCs in young and aged adults

To generate a comprehensive immune cell atlas reflecting
cellular and systemic adaptations resulting from age and/or
COVID-19 infection, we integrated scRNA-seq, CyTOF, scA-
TAC-seq and scTCR/BCR-seq of single-cell PBMC suspen-
sions collected from 3 separate cohorts (Fig. 1A, 1B, and
Table S1A–G). In cohort-1, comprising young healthy adults
(YA) (20–45 years old) and aged healthy adults (AA) (≥60
years old), we combined CyTOF (n = 10) and scATAC-seq (n =
10) with scRNA-seq (n = 16) and scTCR/BCR-seq (n = 16); in
cohort-2, comprising young healthy (YH) individuals (30–45
years old), aged healthy (AH) individuals (≥60 years old),
young COVID-19 onset patients (YCO) (30–50 years old) and
aged COVID-19 onset patients (ACO) (≥70 years old), we
performed CyTOF analysis (n = 8); and in cohort-3, comprising
YH individuals, AH individuals, young recovered COVID-19
patients (YCR) (30–50 years old) and aged recovered COVID-
19 patients (ACR) (≥70 years old), we performed scRNA-seq
(n = 22) (Fig. 1B). By combining scRNA-seq, CyTOF, scATAC-
seq and scTCR/BCR-seq analysis, we created a comparative
framework detailing the impact of aging on cell type distribution
and immune cell functions at the transcriptional, proteomic,
and chromatin accessibility levels in cohort-1. In cohort-2, we
measured single-cell protein expression using a 26-marker
CyTOF panel to discover early cellular changes in incipient
COVID-19 patients and how those changes were affected by
age. Finally, in cohort-3, we compared cellular differences
between young and aged recovered COVID-19 patients by
scRNA-seq analysis (Fig. 1B).

We analyzed PBMC single-cell suspensions by CyTOF for
the protein expression of several lineage-, activation- and
trafficking-associated markers and converted them to bar-
coded scRNA-seq libraries using 10x Genomics for down-
stream scRNA-seq, scATAC-seq and scTCR/BCR-seq
analysis. CellRanger software and the Seurat package were
used for initial processing of the sequencing data. Quality
metrics included numbers of unique molecular identifiers
(UMIs), genes detected per cell, and reads aligned that were
comparable across different research subjects. We identified
red blood cells (RBCs), megakaryocytes (MEGAs) and five
major immune cell lineages (TCs, NKs, BCs, MCs and DCs)
based on the expression of canonical lineage markers and
other genes specifically upregulated in each cluster (Figs. 1C,
1D and S1A–C). In accordance with the scRNA-seq results,
we identified five immune cell lineages (TCs, NKs, BCs, MCs
and DCs) in CyTOF using t-distributed stochastic neighbor
embedding (t-SNE), an unbiased dimensionality reduction
algorithm (See Table S2 for a list of antibodies) (Fig. S2A–D).
Cell-type-specific marker genes were determined by differ-
ential gene expression values between clusters positioned
and visualized in a t-SNE plot (Figs. S1 and S2). The defini-
tion of cell types in clusters in the t-SNE maps was

comparable between old and young individuals (Figs. S1B
and 2B) both by scRNA-seq and CyTOF, indicating that the
cell type identity was not altered with age.

Dissection of immune cell subtypes in the cellular aging
ecosystem

To classify each cell subpopulation in an unbiased manner,
we separately reclustered the cells of each lineage. By
analyzing the most significantly upregulated genes in each
cluster in scRNA-seq analysis, we identified five distinct
subsets of CD3+ TCs (Fig. S3A), five distinct subsets of
CD4+ TCs (Fig. S3B), four distinct subsets of CD8+ TCs
(Fig. S3C), three distinct subsets of NKs (Fig. S3D), four
distinct subsets of BCs (Fig. S3E), three distinct subsets of
MCs (Fig. S3F) and four distinct subsets of DCs (Fig. S3G,
see Table S3A for the details).

Aging affects the development and function of TCs and
NKs (Pinti et al., 2016). We identified known T cell subsets,
including CD4+, CD8+, CD4+CD8+, CD4−CD8− and prolifer-
ative Tcells (mitotic T cells, T-mito), based on the expression
of canonical lineage markers (Fig. S3H). The CD4+ T cells
were subdivided into five classes: CCR7high CD69low naive
CD4+ T cells (CD4 Naive); CCR7med CD69high CCR6−

Figure 2. Changes in cell proportions during aging.

(A) Bar chart of the relative percentage of immune cell

types derived from scRNA-seq data in PBMCs. (B) Bar

chart of the relative percentage of immune cell subsets

derived from scRNA-seq data in PBMCs. The focused cell-

subsets have been marked red. (C) Pie charts showing

relative cluster abundances derived from mass cytometry

data in the YA and AA groups. (D) Percentage of CD4

Naive cells in PBMCs from YA (n = 8) and AA (n = 8)

groups. (E) Percentage of CD8 Naive cells in PBMCs from

YA (n = 8) and AA (n = 8) groups. (F) Percentage of CD4

Naive cells in CD45+ cells from YA (n = 5) and AA (n = 5)

groups. (G) Percentage of CD8 Naive cells in CD45+ cells

from YA (n = 5) and AA (n = 5) groups. (H) Bar chart of the

relative percentage of CD4+ T cell subsets derived from

scRNA-seq data in PBMCs. (I) Bar chart of the relative

percentage of CD8+ Tcell subsets derived from scRNA-seq

data in PBMCs. (J) Bar chart of the relative percentage of

CD4+ T cell subsets derived from mass cytometry data in

CD45+ cells. (K) Bar chart of the relative percentage of

CD8+ T cell subsets derived from mass cytometry data in

CD45+ cells. (L) Percentage of CD14 monocytes in PBMCs

from YA (n = 8) and AA (n = 8) groups. (M) Percentage of

CD14 monocytes in CD45+ cells from YA (n = 5) and AA

(n = 5) groups. (N) Bar chart of the relative percentage of

DC subsets derived from scRNA-seq data in PBMCs.

(O) Bar chart of the relative percentage of DC subsets

derived from mass cytometry data in CD45+ cells. P values

are based on two-tailed Mann-Whitney-Wilcoxon tests

between groups.
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central memory CD4+ T cells (CD4 Tcm); CCR6+ effector
memory CD4+ T cells (CD4 Tem); FOXP3+ regulatory T cells
(CD4 Treg) and PDCD1+ exhausted CD4+ T cells (CD4 Tex)
(Fig. S3I). The CD8+ T cells were subdivided into four clas-
ses: CCR7+ naive CD8+ Tcells (CD8 Naive); GZMK+ effector
memory CD8+ T cells (CD8 Tem); GZMB+ GNLY+ cytotoxic
CD8+ TCs (CD8 CTL) and PDCD1+ exhausted CD8+ T cells
(CD8 Tex) (Fig. S3J).

Analysis of NK cell-status identified circulating NKs with
three separate immune states (Fig. S 3D): the CD16
(FCGR3A)low CD56 (NCAM1)bright NK population (NK1), the
CD16high CD56dim CD57 (B3GAT1)− low-cytotoxic NK com-
partment (NK2) and the CD16high CD56dim CD57+ late NK
population (NK3) (Fig. S3K). In addition, we identified four
major peripheral B cell subsets: IL4R+ IGHD+ naive B cells
(Naive BCs); CD27+ IGHG1+ memory B cells (Memory BCs);
plasma cells or so-called antibody-secreting cells (ASCs),
expressing high level of immunoglobulin genes MZB1; and a
subset of ITGAX+ B cells defined as age-associated B cells
(ABCs) (Fig. S3L).

In human peripheral blood myeloid cells (including MCs
and DCs), known to promote antigen presentation and
inflammatory activities, we identified seven transcriptionally
distinct subsets: CD14high CD16− classical monocytes
(CD14 MCs), CD14+/− CD16high nonclassical monocytes
(CD16 MCs), CD14+ CD16+/− intermediate monocytes (In-
termed MCs) (Fig. S3M), CLEC9A+ conventional DC1
(cDC1), CD1c+ cDC2 conventional DC2 (cDC2), CD123
(IL3RA)+ CLEC4C+ plasmacytoid DCs (pDCs) (Fig. S3N),
and dendritic cell precursors (pre-DCs) expressing AXL and
CD123 (Grabiec and Hussell, 2016; Ruffin et al., 2019)
(Fig. S3N). Therefore, we targeted the immune cell changes
based on more precise classification of each subgroup.

To further verify the aging-associated change in the cell
ratio, we performed single-cell analysis at the protein level.
Similar to the cell clusters and subsets in scRNA-seq results,
in CyTOF analysis, we identified 21 sub-clusters with nine
subsets of TCs (CD4 Naive, CD4 Tcm, CD4 Tem, CD4 Treg,
CD8 Naive, CD8 Tem, CD8 CTL, CD4+ CD8+, CD4− CD8−),
three subsets of NKs (CD56bright NK1, CD16+CD57− NK2
and CD16+CD57+ NK3), four subsets of BCs (Naive BC,
Memory BC, ASCs, and ABCs), three subsets of MCs
(CD14high MCs, CD16high MCs and intermediate MCs), and
two subsets of DCs (pDCs and cDCs) (Fig. S4A–K, see
Table S3B for the details).

Aging shifts the cellular composition toward extreme
effector phenotypes

To delineate how cell-type composition changed with aging,
we separately compared the proportions of each cell type
across major cell types between the YA and AA groups. We
observed changes at the single-cell transcriptional level,
which were further confirmed at the protein level by CyTOF.
Globally, we found that TCs and BCs, especially the former,

decreased by approximately 10% in all PBMCs with scRNA-
seq analysis (Fig. 2A, 2B, and S5A) and by 15% with CyTOF
(Figs. 2C and S5B). In contrast, MCs increased by approx-
imately 7% in scRNA-seq analysis (Figs. 2A, 2B, and S5A)
and by 10% in CyTOF (Figs. 2C and S5B).

The composition of cell subsets across all cell lineages
differed between the YA and AA groups. Among TCs, CD4+

TCs were increased, CD8+ TCs were decreased, and
CD4+CD8+ and proliferating Tcells were increased in the AA
group (Fig. 2B and 2C). Moreover, naive TCs, especially
CD4 Naive and CD8 Naive, showed a common distribution
in the YA group but were reduced in the aged group (P =
0.0175, Fig. 2D–G). Conversely, effector, memory and
exhausted cell subsets were dominant in the aged group
(Fig. 2H–K). The AA group also had a diminished proportion
of the CD56bright NK1 population and an expansion of the
NK2 and late NK3 populations (Fig. S5C and S5D). Analysis
of BC clusters revealed that Naive BCs were decreased

Figure 3. Changes in transcriptional profiles during

aging. (A) UpSet Plot showing the integrated comparative

analysis of upregulated DEGs in major immune cell

lineages between YA and AA groups. Upregulated DEGs:

upregulated in AA, downregulated in YA group. (B) Rep-

resentative GO terms and pathways enriched in upregu-

lated DEGs based on functional enrichment analysis in

major immune cell populations. P value was derived by a

hypergeometric test. (C) Distribution and comparison of

the aging score in immune cell populations. (D) Distribution

and comparison of the aging score in all cells of each

sample. (E) UpSet plot showing the integrated comparative

analysis of upregulated DEGs in CD4+ T cells between YA

and AA groups. Upregulated DEGs: upregulated in AA,

downregulated in YA. The count showing the number of

DEGs. (F) Representative GO terms and pathways

enriched in upregulated DEGs based on functional enrich-

ment analysis in CD4+ T cells. P value was derived by a

hypergeometric test. (G) Venn diagram showing integrated

comparative analysis of upregulated DEGs in monocytes

between YA and AA groups. Upregulated DEGs: upregu-

lated in AA, downregulated in YA. The count showing the

number of DEGs. (H) Representative GO terms and

pathways enriched in upregulated DEGs based on func-

tional enrichment analysis in monocytes. P value was

derived by a hypergeometric test. (I) Violin plots showing

the distribution of normalized expression levels of selected

aging-associated genes in all DC cluster between YA and

AA groups. (J) t-SNE plots segregated on the basis of DC

subsets. (K) Representative GO terms and pathways

enriched in biased DEGs of cDC2-A and cDC2-B clusters.

P value was derived by a hypergeometric test.

(L) CLEC12A expression in cDC2 is shown as flow

cytometry histogram. (M) Percentage of CLEC12A+ cells

in cDC2. Pvalue are based on two-tailed Mann-Whitney-

Wilcoxon tests between YA and AA groups (n = 3/group).
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while ABCs were mildly increased in the AA group compared
to the YA group (Fig. S5E and S5F).

Our data also showed that elderly research subjects had
increased MC subsets, particularly classical CD14 MCs and,
to some extent, nonclassical CD16 MCs and intermediate
MCs (Figs. 2L, 2M, S5G, and S5H). Overall MC growth
mainly resulted from CD14 MC enrichment (P = 0.0012,
Fig. 2M). However, given that CD14 MCs made up 70%–

80% of the MCs population, the increase we observed in
CD16 MCs was more remarkable as a change in the overall
population proportion between the AA and YA groups, which
was not observed for intermediate MCs between these
groups (Fig. S5G–J). A similar analysis of the DC subset
composition showed that the percentage of cDC2 cells
increased, whereas cDC1, pDC, and pre-DC decreased with
age (Figs. 2N, 2O, and S5I).

In summary, these results demonstrate that aging induces
an immune dysfunction shift into effector and inflammatory
cell populations.

Identification of aging-related cell-type-specific
transcriptional expression changes

To identify cell-subtype-specific gene signatures associated
with aging, we performed an integrated comparative analysis
of differentially expressed genes (DEGs) from blood immune
cells in the YA and AA groups. We found that blood immune
cells showed heterogeneous transcriptional changes affec-
ted by aging based on the number of DEGs. Strikingly, BC
was the cell type most affected by aging, followed by TC and
MC (Figs. 3A, S6A; Table S4A–E). Specifically, we found a
set of 60 genes whose expression was increased in all kinds
of immune cells, indicative of general oxidative stress (e.g.,
DDIT4, CASP4, TSPO) and an inflammatory state (e.g.,
DUSP2, S100A10, COX5A, PSMB6) across cell populations
(Fig. 3A). Conversely, genes with decreased expression
shared across all cell populations included DDX17, RBM39,
and SCAF11, which are involved in RNA splicing (Fig. S6A
and S6B). Consistent with our understanding of the main
immune cell lineages, we found that the myeloid and lym-
phocyte cell lineages were characterized by unique gene
expression spectra, whereas TCs showed the highest
heterogeneity in DEGs. To explore the biological implications
of our data in the context of aging, we used Gene Ontology
(GO) and pathway analysis for each immune cell population.
Common aging-upregulated biological pathways included
TNF signaling, IL-1 signaling, the apoptotic signaling pathway,
and the adaptive immune response (Fig. 3B). We found that
these pathways were especially enhanced in TCs. In addition,
aging-upregulated biological pathways in MCs were enriched
for interferon-gamma (IFN-γ) signaling and cell aging
(Fig. 3B). To assess the impact of aging on circulating immune
cells, we selected the top 20 genes of the 60 total genes that
were upregulated in all immune cells (Fig. 3A) and calculated
aging scores across all immune cell types. We found that

MCs and DCs had the highest scores, suggesting that
senescent cells are most likely present in these cell popula-
tions (Fig. 3C). Moreover, when calculating the scores of
individual samples, we found that individuals in the AA group
had consistently higher scores than individuals in the YA
group (Fig. 3D), suggesting that aging-score assessments are
suitable for studying aging-related immune dysfunction.

By analyzing age-associated DEGs in CD4+ TCs, we
found enrichment in inflammatory and effector genes
(Tables S5A and 6A–E). To determine cell-subtype-specific
gene signatures within different CD4+ TC subpopulations,
we generated UpSet plots of upregulated DEGs in different
CD4+ TC subsets. We found a range of subtype-specific
patterns, including the IL2 receptor (IL2RA) in Naive cells,
CCR10 in Tem, and GZMB and TRBV11-2 in Tex (Fig. 3E).
GO and pathway analysis of the DEGs demonstrated that
effector and memory subsets were most affected by aging
based on the number of DEGs. For example, in CD4 Tem,
TNF, interleukin signaling and apoptotic pathways were
enhanced, whereas mRNA processing was impaired
(Figs. 3F and S6C). Analysis of CD8+ TC status indicated
that the AA group had increased expression of chemokines
and granzyme family members (Fig. S6D; Tables S5B and
7A–D). Moreover, aging was associated with a decreased
proportion of CD8 Naive with increased apoptotic signaling
pathway and lymphocyte activation and an expanded CD8
Tem compartment with increased cytokine production as well
as reduced chromatin remodeling and antiviral function
(Fig. S6E and S6F). In addition, T-mito in aged group was
associated with the upregulated inflammatory signaling
molecules HLA-DRB5, PDCD5 and PSMA2 (Fig. S6G;
Table S5C) and inflammatory pathways (Fig. S6H).

Analysis of NKs status revealed that the AA group had a
smaller fraction of the CD56bright NK1 population and
expanded late low-cytotoxic NK subsets than the YA group.
Notably, NKs in the AA group had increased expression of
DDIT4, ISG20, and CASP4 and decreased expression of
DDX17, PCBP1 and TRIM56 (Figs. 3A, S6A; Table S8A–C).
These genes were mostly enriched in apoptotic signaling
pathways and cellular responses to lipopolysaccharide,
along with decreased virus defense responses (Fig. S6I and
S6J). As for BCs, we found increased expression of JUNB,
IGHA1, SSR4 and CXCR4, indicative of increased memory
BC signature and activity during aging (Figs. 3A, S7A;
Table S9A–D). Moreover, the comparative functional analy-
sis of aging-associated DEGs revealed that Naive BC in the
AA group had increased cytokine-mediated signaling path-
ways (Fig. S7B). Additionally, analysis of downregulated
DEGs and pathways in the AA group demonstrated that BCs
were associated with reduced viral defense responses
(Fig. S7C). These results indicate that NKs and BCs lose
their capacity for antiviral activity with upregulated inflam-
matory states in aging.

We next studied aging-associated DEGs in MCs and
found enrichment in inflammatory genes, such as IL1B, TNF
and CXCL8, in the AA group (Fig. 3A). All MC subsets had
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increased expression of the chemokines, TNF, IL1B and
CDKN1A and decreased expression of SIGLEC14 and
CLEC12A (Figs. 3G, S6A; Table S10A–C). Analysis of
aging-related DEGs demonstrated that the CD14 MC subset
was most affected by aging, as reflected by the increased
NOD-like receptor signaling pathway, NF-κB signaling
pathway, Toll-like receptor signaling pathway, inflammasome
pathway, and MAPK pathway (Fig. 3H) and the obvious
decrease in RNA splicing, autophagy, and vesicle-mediated
transport (Fig. S7D).

To complete our DEG and GO survey of immune lineage
cells and their subtypes, we next analyzed aging-associated
DEGs in DCs in the YA and AA groups (Figs. 3I, S7E and S7I;
Table S11A–D). Among the upregulated DEGs, IFN-stimu-
lated genes (IFITM2, ISG20), TNF and IL1B indicated an

overactive inflammatory response in DC clusters in the AA
group (Figs. 3A, 3I, S7E, and S7I). We observed that over-
represented pathways in DCs from the AA group included
apoptotic, MAPK, IL-1, and IFN-γ signaling pathways
(Fig. S7F). Notably, CLEC12A and TXNIP, which are critical
for the antigen-presentation function of DCs; and MALAT1
and AHR, which are critical to inducing tolerogenic DCs (Son
et al., 2008; Hutten et al., 2016; Wu et al., 2018), were
decreased in AA DCs (Figs. 3I, S7G, and S7I), reflecting the
decreased antigen-presenting ability of aged DCs (Fig. S7H).
These results indicate that DCs acquire an inflammatory state
with age but lose the antigen-presenting ability.

Within DC clusters, we found distinct aging manifesta-
tions in the cDC2 subsets by comparing DC clusters in the
t-SNE map (Fig. 3J). Cells from the YA group grouped
together in clusters 0 and 1 (named cDC2-A), whereas cells
in AA group grouped distinctively in clusters 3, 4, 10 and 11
(named cDC2-B). The expression signature of cDC2-A cells
included antigen presentation-related genes such as AHR,
CLEC4E, and CLEC12A, whereas the expression signature
of cDC2-B cells included inflammatory and aging-associated
genes such as IFN-stimulated genes, IL1B, CDKN2D,
DDIT4, CXCL8, and DUSP2 (Fig. S7J and S7K). Moreover,
the comparative functional analysis of DEGs between the
two clusters indicated that cDC2-A had intact immune reg-
ulation and antigen presentation function, while aging-re-
lated cDC2-B with high HLA-DQA2 expression exhibited
increased inflammatory signaling pathways, such as the
response to hypoxia and IL-1 signaling (Fig. 3K). We further
confirmed that CLEC12A+ cDC2s were decreased in aging
by FACS (Fig. 3L and 3M). Taken together, these findings
indicate that aging curtails DC antigen presentation ability
and upregulates inflammatory and aging-associated gene
expression in DCs.

Identification of aging-related cell-type-specific
chromosomal accessibility changes

After quality control, a total of 74,102 cells (33,004 YA,
41,098 AA) were used to generate a PBMC chromatin-ac-
cessibility map. MEGAs, TCs, NKs, BCs and myeloid cells
were identified based on the promoter sum of genes
specifically upregulated in each cluster. After separately
reclustering each lineage population, we identified 3 distinct
subsets in CD4+ TCs, 3 distinct subsets in CD8+ TCs, 3
distinct subsets in NKs, 3 distinct subsets in BCs, 3 distinct
subsets in DCs and 2 distinct subsets in MCs according to
gene peaks and transcription factor (TF) activity using
chromVAR (Satpathy et al., 2019) (Fig. 4A, 4B, and S8A–D,
see Table S 3C for the details). Consistent with the scRNA-
seq and CyTOF data, we observed a decrease in naive TCs
and an increase in MCs in the elderly (Fig. 4C).

Next, we focused on the differentially expressed tran-
scription factors (DETs) in immune cells in the AA group
compared to the YA group. At the TF level, MCs were the

Figure 4. Changes in chromosomal accessibility during

aging. (A) Heatmaps showing scaled expression of discrimi-

native gene sets for each cell type and cell subset. Color

scheme is based on z-score distribution from −1.5 (purple) to

1.5 (yellow). (B) t-SNE projections of PBMCs derived from

scATAC-seq data. (C) t-SNE plots segregated by YA and AA

groups. (D) UpSet plot showing the integrated comparative

analysis of upregulated differentially expressed transcription

factors (DETs) in major immune cell populations between YA

and AA groups. Upregulated DETs: upregulated in AA, down-

regulated in YA. The count showing the number of DETs.

(E) UpSet plot showing the integrative comparative analysis of

downregulated DETs in major immune cell populations between

YA and AA groups. Downregulated DETs: upregulated in YA,

downregulated in AA. The count showing the number of DETs.

(F) Venn diagram showing integrated comparative analysis of

upregulated DETs in CD4+ T cells between YA and AA groups.

Upregulated DETs: upregulated in AA, downregulated in YA.

The count showing the number of DETs. (G) Venn diagram

showing integrated comparative analysis of upregulated DETs

in CD8+ T cells between YA and AA groups. Upregulated DETs:

upregulated in AA, downregulated in YA. The count showing the

number of DETs. (H) Venn diagram showing integrated com-

parative analysis of upregulated DETs in NK cells between YA

and AA groups. Upregulated DETs: upregulated in AA, down-

regulated in YA. The count showing the number of DETs.

(I) Venn diagram showing integrated comparative analysis of

upregulated DETs in B cells (top) and monocytes (bottom)

between YA and AA groups. Upregulated DETs: upregulated in

AA, downregulated in YA. The count showing the number of

DETs. (J) Mean scATAC-seq coverage at FOSL2 loci in CD8+ T

cells. (K) Mean scATAC-seq coverage at NFATC2 loci in CD8+

T cells. (L) Mean scATAC-seq coverage at CDKN2B loci in B

cells. (M) Mean scATAC-seq coverage at SIRT7 loci in NK1

cells. (N) Mean scATAC-seq coverage at GLI2 loci in CD4

Naive cells. (O) Mean scATAC-seq coverage at IFNG loci in

CD8 Naive cells. (P) Mean scATAC-seq coverage at DUSP5

loci in CD8 Memory cells. (Q) Mean scATAC-seq coverage at

PDCD1 loci in NK3 cells.
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most affected by aging based on the numbers of upregulated
and downregulated DETs (Fig. 4D and 4E). To identify aging-
associated TF events, we performed an integrated compar-
ative analysis of these DETs and found that AP-1 family TFs,
including FOSL2 and JUNB, were increased in all immune
cells during aging (Fig. 4D and 4E). Upregulation of AP-1
family TFs, including FOS, FOSB, FOSL1, FOSL2, JUN,
JUNB, and JUND, was also observed in almost all cell
subsets during aging (Fig. 4F and 4I). The AP-1 family reg-
ulates a wide range of cellular processes, including cell
proliferation, death, survival, and differentiation. The effects
of the activated AP-1 TFs, associated with the active
inflammatory state, are primarily mediated through combi-
natorial regulation with the NFAT family, both of which are
key regulators of TC activation and are enriched in TCs
(Fig. 4D) (Shaulian and Karin, 2002). In addition, we visu-
alized the chromosomal accessibility of FOSL2 loci and
NFATC2 loci and found that the chromosomal accessibility of
the FOSL2 and NFATC2 gene regions was also increased in
aged TCs (Fig. 4J and 4K). CDKN2B, an aging hallmark
gene, also showed an increase in accessibility with age
(Fig. 4L). In parallel, we found 25 common decreased TFs,
including nuclear respiratory factor 1 (NRF1) and ELK4,
which are involved in antioxidant stress and negatively reg-
ulate cell differentiation and proliferation (Figs. 4E and S8E–
I). Consistently, we found that chromatin accessibility also
decreased at the loci of SIRT7 (Fig. 4M), which coordinates
with NRF1 to maintain cellular energy metabolism and pro-
liferation (Mohrin et al., 2015).

In TCs, a series of subset-specific TF changes were
observed, such as GLI2 in naive cells, which has been
associated with decreased TC function and impaired
immune defenses (Fig. 4F and 4G). Consistently, increased
chromatin accessibility was detected in GLI2 loci (Fig. 4N).
Analysis of differentially accessible regions (DARs) demon-
strated that the IFNG, DUSP5, and GZMB loci were highly
accessible, which indicated activated CD8+ TC states
(Figs. 4O, 4P and S8J). In our analysis of NK status, we
identified the key TF changes in NK subsets during aging
(Fig. 4H), and found that the chromatin accessibility of the
inhibitory receptor gene increased, while that of the activat-
ing receptor decreased. These changes may weaken the
ability to clear virus-infected cells. For example, the PDCD1
exhibited higher chromatin accessibility in the gene region of
the elderly group, which might be part of the reason why
older individuals were prone to infection (Fig. 4Q). In our
analysis of BCs, we identified aging-related TF changes,
such as TBX21, IRF4, which are consistent with our scRNA-
seq results (Fig. 4I). Aging-associated TFs and DARs in MCs
demonstrated enrichment in inflammatory-related TFs and
gene loci in the AA group, such as NF-κB family (REL,
RELA), IL1B, TNF and CXCL8 (Figs. 4I and S8K–M). In
summary, aging-related chromosomal accessibility changes
are associated with an increase in the inflammatory pathway
and an impaired immune response.

Aging-associated heterogeneous changes in clonality
and diversity of TCRs and BCRs

Although the antigen repertoire sensed by immunoglobulin
receptors on both TCs (TCRs) and BCs (BCRs) is known to
continuously evolve with age (Yuseff et al., 2013), the phe-
nomenon of aging-associated TCR and BCR repertoire
constriction has not yet been studied at the single-cell level.
Here, we employed scTCR/BCR-seq to assess immune cell
clonal expansion in the YA and AA groups. We found that
relative to the YA group, the AA group was associated with a
substantial decrease in unique clonotypes both in TCRs and
BCRs (Fig. 5A and 5B), suggesting that both TCR and BCR
clonality increased with age. Moreover, quantification of the
most highly expanded (maximum) clone for each research
subject showed that the ratios of the maximum clones were
higher in the AA group than in the YA group (Fig. 5C).
Although an aging-related clonal lymphocyte population may
reflect an existing adaptive immunity of the elderly, the
overall diversity was decreased in the AA group compared to
the YA group (Fig. 5D). Analysis of TCR and BCR distribu-
tions across different TC and BC subtypes revealed that loss
of repertoire diversity was pronounced in CD8+, T-mito and
memory BCs of the AA group (Fig. 5E and 5F). To under-
stand how clonally expanded TCs could be affected by
aging, we performed DEG analysis of clonal cells between
YA and AA groups and revealed increased expression of
effector and memory TC signatures, including GZMB,
GZMK, CXCR4, CCL3 and various TCR genes in the aged
group (Fig. 5G; Table S12A). In addition, clonal BCs showed
aging-associated changes, including increased expression
of S100A family genes and decreased levels of naive sig-
nature genes such as IGHM and TCL1A in the aged BCs
compared to their young counterparts (Fig. 5H; Table S 12B).

To further explore the aging-associated changes on V(D)J
rearrangements in TC and BC, we next examined the fre-
quency of genes (variable region) in the YA and AA groups
and found that the frequency of several TRAVs, TRBVs,
IGHVs, IGKVs and IGLVs changed with age (Fig. S9A–E),
indicating that TCs and BCs had experienced unique clonal
V(D)J rearrangements under the adaptive immune environ-
ment of the elderly. When analyzing isotype use in BCR
repertoires in the YA and AA groups (Fig. S9F), we found
that IGHA and IGHG were overrepresented in the AA group
compared to the YA group, suggesting that aging might
induce more frequent isotype switching (Fig. S9G). In addi-
tion, the chord diagrams of the V-J arrangement for each
group showed that aging resulted in multiple cloning sites,
suggesting increased antigen exposure with age (Figs. 5I,
5J, S9H and S9I). The enriched arrangements associated
with aging were mainly TRBV6-5, TRBV20-1, and TRBV28
in the TRB subset and IGHV3-33 and IGHV5-51 in the IGH
subset. Taken together, these data show that increased
clonality and decreased diversity in aging immune cells,
combined with a skewed use of variable region genes,
underlie aging-associated abnormalities of TCR and BCR
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repertoires, elucidating the abnormal immune states and
disease spectra during aging.

Age-related imbalance in cellular composition is
associated with poor outcomes in patients with
COVID-19

To depict how the immune landscape changes with aging
and SARS-CoV-2 infection, we enrolled young (YCO, n = 2)
and aged (ACO, n = 2) patients with incipient COVID-19 (to
assess the acute inflammatory state) in cohort-2 and young
(YCR, n = 2) and aged (ACR, n = 2) patients who had
recovered from COVID-19 (to assess the recovered state) in
cohort-3. In addition, we performed CyTOF analysis of
PBMCs from YH, AH, YCO and ACO individuals in cohort-
2 (n = 2 for each group) (Figs. 6A, S10 and S11). Similar to
our CyTOF analysis in cohort-1, we identified 21 clusters: 9
subsets of TCs, 3 subsets of NKs, 4 subsets of BCs, 3
subsets of MCs, and 2 subsets of DCs (Figs. 6B and S11).
We first compared the peripheral immune cell composition
between COVID-19 patients (at the onset stage, CO) and
their age-matched healthy controls (HC). Between the CO
and HC groups, we found a similar trend of variation to
aging, reflected in a decreased percentage of TCs and
increased MC and NK populations (Fig. 6C–E). This trend
was also observed at the cell subtype levels, as evidenced
by decreased pDC, naive and memory TCs and BCs and
increased populations of effector TCs, CD16 MCs, interme-
diate MCs, ASCs and ABCs (Figs. 6F, 6H, and S12A–L).
Importantly, the aging-associated increase in MCs and
decrease in TCs were amplified by COVID-19 in aged

patients compared with healthy aged controls (Fig. 6I). This
trend was also observed at the cell subtype level, as
reflected by decreased naive TCs and BCs and increased
populations of effector TCs, CD16 MCs, ASCs and ABCs in
each immune cell composition and total circulating immune
cells (Figs. 6J–N and S12M).

Notably, we found a higher ratio of MCs, especially
inflammatory MCs, and a lower percentage of TCs in aged
COVID-19 patients than young COVID-19 patients (Figs. 6O
and S12N). Notably, comparative subgroup analysis
demonstrated that naive BCs and pDCs were decreased in
aged patients (Fig. S12O–S). The patients in cohort-2 were
diagnosed with severe COVID-19 and presented with similar
clinical symptoms and CT findings. Despite these similari-
ties, the recovery and outcomes in the young and aged
patients differed substantially. As was evident in high-reso-
lution CT scans, ground-glass opacity in the lungs of young
patients gradually dissipated after a period of treatment, but
this parameter remained associated with extensive fluid
buildup (exudation) and pleural effusion in aged patients
(Fig. 6P). Infiltrating MCs can enter the lung and other
organs and release abundant levels of inflammatory cytoki-
nes and chemokines, exacerbating the infection and leading
to fatal outcomes. Aged COVID-19 patients had more MCs
and fewer TCs than young patients, thus lowering the
threshold of developing hyperinflammatory states that may
trigger cytokine storms and lymphopenia.

Aging increases the expression of susceptibility genes
for COVID-19, and COVID-19 enhances upregulation
of aging-induced inflammatory genes

To determine how an increased MCs population and
decreased TCs population at the onset of SARS-CoV-2
infection contribute to faster disease progression in the
elderly at the cellular and molecular levels, we used scRNA-
seq to investigate the association between aging and
COVID-19. Specifically, we analyzed DEGs to explore
whether differentially expressed SARS-CoV-2-related genes
in aged patients could explain the impact that aging had on
the susceptibility and recovery of COVID-19 patients in
cohort-3 (Figs. S13A–C and S14A). ACE2 is not expressed
by any blood immune cells, and recent studies have reported
that CD147 (encoded by BSG), CD26 and ANPEP might be
alternative cellular entry receptors for SARS-CoV-2, espe-
cially CD147, in TCs (Han et al., 2020; Qi et al., 2020; Ulrich
and Pillat, 2020). Anti-CD147 antibody has been tested to
treat COVID-19 patients with promising effects (Bian et al.,
2020). We found that BSG expression in the AH group was
increased in TCs, BCs and DCs, while ANPEP was only
upregulated in MCs (Fig. 7A). Moreover, we found that aging
increased the frequency of immune cells that expressed
BSG and ANPEP (Fig. 7B). This result was validated using
flow cytometry analysis, which showed increased CD147
expression in CD3+ TCs in the aged people compared with

Figure 5. Abnormal TCR and BCR repertoire during aging.

(A) Pie plots showing TCR clone differences across YA and AA

groups. (B) Pie plots showing BCR clone differences across YA

and AA groups. (C) Percentage of maximum clones between

YA (n = 8) and AA groups (n = 8). (D) Diversity of TCR and BCR

between YA (n = 8) and AA groups (n = 8). (E) Diversity of TCR

in T cell subsets between YA (n = 8) and AA groups (n = 8).

(F) Diversity of BCR in B cell subsets between YA (n = 8) and

AA groups (n = 8). (G) Volcano plot showing DEGs of clonal T

cells between the YA and AA groups. P values were calculated

using a paired, two-sided Wilcoxon test and FDR was corrected

using the Benjamini-Hochberg procedure. (H) Volcano plot

showing DEGs of clonal B cells between the YA and AA groups.

P values were calculated using a paired, two-sided Wilcoxon

test and FDR was corrected using the Benjamini-Hochberg

procedure. (I) Chord diagram showing pairing of V and J

segments within the TRB subset from the AA group. Chord

widths represent the proportion of sequences with a given V

(colored) and J (gray) segment pairing. (J) Chord diagram

showing pairing of V and J segments within the IGH subset from

the AA group. Chord widths represent the proportion of

sequences with a given V (colored) and J (gray) segment

pairing.
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the young group (P = 0.0010, Fig. 7C). We further observed
higher expression of the CD147-related genes NFATC1,
ITGB1, and PPIB in CD4 Naive of the AH group (Fig. S14B–
D). In addition, CD26 (encoded by DPP4), another potential
SARS-CoV-2 receptor (Radzikowska et al., 2020), was only
upregulated in CD4 Naive of the AH group (Fig. S14E).
Altered expression of these molecules in circulating immune
cells, especially in CD4 Naive, with age might contribute to
increased susceptibility and severity of COVID-19 in the
elderly.

Upregulation of SARS-CoV-2-related genes in aged indi-
viduals indicates that aging increases susceptibility to this
infection. Our data demonstrated that the inflammatory
response was sustained in the blood environment of COVID-
19 patients recovering from SARS-CoV-2 infection (Wen
et al., 2020). In the recovery stage, the aging-associated
increase in MCs and decrease in TCs were amplified by
COVID-19 in aged covered patients compared with healthy
aged controls. Importantly, the ACR group still had more
MCs and fewer TCs than the YCR group (Figs. 7D and
S14F). To compare the effects of age on disease recovery,
we next analyzed the upregulated DEGs between the YCR
and YH groups and between the ACR and AH groups, along
with combined analysis of the upregulated aging-related
DEGs (Table S 13-14). We identified aging-induced and
disease-associated genes in TCs, including CD69, JUNB,
CDKN2A, and IFN-related genes, including IRF1 and ISG15
(Fig. 7E). In MCs, we identified several aging-induced genes
involved in disease development, such as TNF, IL1B, JUNB,
DUSP2, OSM, the CDKN family, IFN-related genes, and
chemokine family members (Fig. 7F). Analysis of the DEGs
between TCs of the YCR and ACR groups demonstrated
that several granzyme genes and inflammatory genes were
increased in aged recovered patients (Fig. 7G). Moreover,
we found that MCs in the ACR group had increased
expression of inflammatory genes such as FOS, DUSP1,
IL1B, and JUN and chemokines including CXCL8 and CCL3
compared to those of the YCR group (Fig. 7H). We finally
compared the expression of the top 20 specific aging-in-
duced and disease-associated genes among the 4 groups in
MCs and TCs, respectively (Fig. 7I and 7J). The results
showed that COVID-19 amplifies aging-induced upregula-
tion of inflammatory genes and senescence hallmark genes
(CDKN family) (López-Otín et al., 2013). As expected,
although the initial clinical manifestations and diagnosis
were similar, lung ground-glass opacity in young patients
had been dissipated and absorbed completely, but in aged
patients, it was not absorbed completely at one week after a
negative nucleic acid test (Fig. 7K). These findings indicate
that aged people have a slower recovery from COVID-19
than young people.

We next predicted cell-to-cell interactions that might
contribute to the distinct functional status of circulating TCs
and BCs of the YCR and ACR patients (Fig. S15). In ACR
patients, we discovered that TCs expressed high levels of
IFNG, the ligands for IFNGR1, which was expressed on MCs

(Fig. S15A). Other TC-MC interactions involved the inflam-
matory response, cell-cell signaling and cell adhesion.
Notably, TCs might activate MCs through the expression of
CCL5 ligands that bind to CCR1 and contribute to inflam-
matory activation. Interestingly, TCs in the ACR patients
expressed high levels of IL-4, which was predicted to bind IL-
4R and IL-2R in TC-MC interactions and was reported to
enhance viral infection (Rogers et al., 2019). In the ACR
group, BCs expressed increased levels of genes encoding
ligands of IL1R and TNFRSF1B (Fig. S15B). The expression
of these molecules in MCs suggests that BCs may contribute
to the activation of IL1B and TNF signaling in circulating
MCs. Compared with the ACR group, the YCR group was
characterized by the presence of signals that negatively
regulate the inflammatory response molecules IL10-IL10RA
in TC or BC interactions with MCs. Downregulation of neg-
ative regulatory signals may also contribute to the slow
dissipation of inflammation in the elderly. Overall, enhanced
inflammatory signals and impaired regulatory signals
between TCs and MCs, or, BCs and MCs, slow recovery in
elderly patients.

DISCUSSION

Here, we present a comprehensive and integrated single-cell
landscape of human circulating immune cell aging and sin-
gle-cell analysis of immune cells in young and aged COVID-
19 patients at the transcriptomic and protein level. The pri-
mary discoveries in the current study are as follows: 1) aging
reprograms the human immune cell landscape toward
polarized and inflammatory states; 2) aging increases the
expression of SARS-CoV-2 susceptibility genes, especially
in TCs; 3) an increase in immune cell polarization and cir-
culatory inflammation during aging can be amplified by virus
infection in COVID-19; 4) age-associated dendritic cells
have increased IFN-stimulated gene expression and a
decreased antigen-presenting ability; 5) single-cell TCR and
BCR analysis shows that aging is associated with decreased
diversity and increased clonality of effector, cytotoxic and
exhausted CD8+ TC subsets and ABC subset; 6) single-cell
chromosomal accessibility profiles of immune cells shows
that the AP-1 family TFs are the most affected by ageing
across all cell types and subtypes and are further upregu-
lated in COVID-19.

Numerous studies have reported important observations
about the composition and functional alterations of immune
cells in animal aging models. However, animal models fail to
recapitulate the human immune environment adequately.
What we know about human immune cells is primarily based
on flow cytometric analysis, relying on previously described
markers for pooled cell populations. These analytical meth-
ods are too biased to reveal information on selected and not
all cells or cell populations. Single-cell technologies open
new avenues in many research fields but are particularly
important for analyzing human cells in aging and diseases in
an unbiased and global fashion (He et al., 2020; Wang et al.,
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2020; Zhang et al., 2020). Using scRNA-seq, recent studies
have reported transcriptomic and functional changes in
immune cells during aging in mouse cells and tissues such
as the central nervous system (Mrdjen et al., 2018), mac-
rophages in brain (Martinez-Jimenez et al., 2017; Van Hove
et al., 2019), TCs in spleen (Dulken et al., 2019), and
hematopoietic stem cells in bone marrow (Leins et al., 2018).
Recently, our group revealed how aging affects the immune
system in rats (Ma et al., 2020). For humans, mass cytom-
etry analysis showed that aging increased epigenetic varia-
tions in circulatory immune cells (Cheung et al., 2018).
However, a comprehensive atlas of immune cell aging has
not yet been constructed. Here, we depicted such an atlas
from PBMCs harvested from healthy young and old research
subjects and young and old patients with COVID-19. First,
scRNA-seq and CyTOF reveal that aging causes cell com-
positional changes at the cell type and subtype levels.
Second, our study provides the first high-quality analysis of
TCR and BCR repertoires in young and aged adults at a
single-cell resolution. Third, our study provides the first
chromosomal accessibility profiles of major immune cells in
young and aged healthy research subjects at the single-cell
level. Combined with several novel single-cell

methodologies, this study represents a state-of-the-art
unbiased and systematic analysis of human immune cell
aging.

Mechanistically, we observed age-associated alterations
in immune cell type and subtype composition, gene
expression, transcriptional regulation, chromosomal acces-
sibility, TCR and BCR repertoires, and cell-cell communica-
tion across multiple cell types and subtypes. Our data
suggest that increased numbers of MCs may contribute to
cytokine storms in coronavirus infection, as indicated by
increased numbers of MCs during aging and further increa-
ses in COVID-19, whereas TCs that are critical for virus
clearance (Hickman et al., 2015; Herzig et al., 2019) were
decreased during aging and further reduced in COVID-19.
Through the analysis of cell subtype composition, we found
that naive subsets were profoundly decreased with age,
likely weakening the responsive capacity of TCs during viral
infection. In addition, the polarization from naive to effector
cells was further enhanced by SARS-CoV-2 infection in
COVID-19. Inflammatory genes such as IL1B, TNF, and
CXCL8 were also increased during aging and were further
upregulated in COVID-19. Notably, aging promoted the
expression of coronavirus receptor-related genes, such as
BSG (encoding CD147), DPP4 (encoding CD26), ITGB1,
NFATC1, PPIB and ANPEP, in immune cells. Collectively,
these findings reveal that aging reprograms the landscape of
human immune cells toward polarized and inflammatory
states and thus increases the susceptibility of COVID-19 in
the elderly. In turn, COVID-19 causes more “aging” of
polarization and inflammatory states in immune cells. This
reinforcing feedback loop may underlie the immune system
collapse in aged people.

Due to technical limitations, high-dimensional molecular
profiles in aging for rare cells such as DCs are lacking. Here,
we overcame this challenge with a novel single-cell method.
Aging increased the percentage of cDC2 cells and
decreased the percentage of pDCs that engage antiviral
activities by priming CD8+ TCs. By comparison, aging
decreased the expression of CLEC12A, TXNIP, AHR and
MALAT1 and increased the expression of HLA-DQA2 and
IFN-stimulated genes. CLEC12A (Hutten et al., 2016) and
TXNIP (Son et al., 2008) are critical for the antigen-presen-
tation function of DCs, whereas MALAT1 and AHR are crit-
ical for tolerogenic DC differentiation (Takenaka and
Quintana, 2017; Wu et al., 2018), and their dysregulation
hampers DC function. Interestingly, HLA-DQA2 and IFN-
stimulated genes were distinctly expressed in the cDC2
subset during aging. Moreover, our functional analysis of
DEGs indicates that the aging of DCs was associated with a
decrease in the antigen-presenting ability and an increase in
activation of inflammatory signaling pathways, such as the
response to hypoxia and IFN signaling. These findings
highlight how aging affects DCs composition and function.

In this study, we provide a comprehensive atlas of human
circulating immune cell aging. Furthermore, we reveal novel
aging-related genes and adaptive immune dysregulation,

Figure 6. Poor outcomes upon COVID-19 infection is

associated with imbalanced cellular aging. (A) t-SNE pro-

jections of PBMCs derived from mass cytometry data in cohort-

2. (B) Heatmap showing mean population expression levels of

all markers. (C) t-SNE plots segregated by HC and CO groups.

HC includes YH (n = 2) and AH (n = 2); CO includes YCO (n = 2)

and ACO (n = 2). (D) Percentage of immune cell populations in

PBMC between HC (n = 4) and CO (n = 4) groups. (E) Bar

chart of the relative percentage of major immune cell popula-

tions derived from mass cytometry data between HC and CO

groups. (F) Percentage of CD4 Naive cells in CD45+ cells

between HC (n = 4) and CO (n = 4) groups. (G) Percentage of

NK2 cells in CD45+ cells between HC (n = 4) and CO (n = 4)

groups. (H) Percentage of CD16 monocytes in CD45+ cells

between HC (n = 4) and CO (n = 4) groups. (I) Bar chart of the

relative percentage of major immune cells derived from mass

cytometry data from YH, AH and ACO groups. (J) Bar chart of

the relative percentage of T cell subsets derived from mass

cytometry data from YH, AH and ACO groups. (K) Bar chart of

the relative percentage of NK cell subsets derived from mass

cytometry data from YH, AH and ACO groups. (L) Bar chart of

the relative percentage of B cell subsets derived from mass

cytometry data from YH, AH and ACO groups. (M) Bar chart of

the relative percentage of DC subsets derived from mass

cytometry data from YH, AH and ACO groups. (N) Bar chart of

the relative percentage of monocyte subsets derived from mass

cytometry data from YH, AH and ACO groups. (O) Bar chart of

the relative percentage of major immune cell populations

derived from mass cytometry data between YCO and ACO

groups. (P) CT photography showing the different evolution of

Lung Ground-Glass Opacity in young and aged patients with

COVID-19. CT, computed tomography. Pvalues are based on

two-tailed Mann-Whitney-Wilcoxon tests between groups.
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thus defining the potential contributions of aging-related
immune cell disorganization to the high severity rate of aged
COVID-19 patients (Fig. 8). We believe that these findings
will serve as a foundation from which to explore unknown
facets of aging etiology and a reference for the broad sci-
entific community interested in immunology and aging.

MATERIALS AND METHODS

Human subjects

The study was approved by the Ethics Committee of Zhongshan

Ophthalmic Center, China and the Ethics Committee of Wuhan

Hankou Hospital, China. A written informed consent was routinely

obtained from all individuals participating in the study and all relevant

ethical regulations regarding human research participants were fol-

lowed. Healthy non-frail individuals were recruited in the Zhongshan

Ophthalmic Center, and divided by age into two groups in cohort-1:

young adults (YA) and aged adults (AA). The YA group ranged from

ages 20 to 45 years old and the AA group ranged from ages 60 to 80

years old. COVID-19 patients diagnosed by real-time fluorescent

quantitative reverse transcription polymerase chain reaction (RT-

qPCR) and CT images were enrolled in the Wuhan Hankou Hospital,

China. Based on their clinical history, patients were divided into

incipient and recovered groups in cohort-2 and cohort-3 respectively,

and the incipient hospitalized patients were further divided by age

into young COVID-19 patient onset (YCO) and aged COVID-19

patient onset (ACO). Enrolled patients that tested negative with

nucleic acid transfer in 7–14 days were further divided into young

COVID-19 patient recovered (YCR) and aged COVID-19 patient

recovered (ACR). Individuals with comorbid conditions including

cancer, immunocompromising disorders, hypertension, diabetes and

steroid usage were excluded. No significant gender differences were

detected between YA group and AA group in cohort-1 (Table S1C–

E), between YH, AH, YCO and ACO group in cohort-2 (Table S1F),

between YH, AH, YCR and ACR group in cohort-3 (Table S1G).

Antibodies and reagents

Antibodies against the following markers in flow cytometric analysis

were purchased from Biolegend, BD biosciences and Abcam: CD3

(clone SK7) BV785 (Cat. 344842), CD19 (clone HB19) APC (Cat.

302212), CD88 (clone S5/1) PE/Cy7 (Cat. 344307), CD89 (clone

A59) PE/Cy7 (Cat. 354107), HLA-DR (clone L243) FITC (Cat.

307604), CD11c (clone 3.9) BV421 (Cat. 301627), FcεRIa (clone

AER-37) PercP/Cy5.5 (Cat. 334622), CD1c (clone L161) BV650

(Cat. 331541), CD371 (CLEC12A) (clone 50C1) PE (Cat. 353603)

were purchased from Biolegend, CD147 (clone HIM6) PE (Cat.

562552) was purchased from BD biosciences. Fetal bovine serum

(FBS) (Cat. 10270-106), penicillin/streptomycin (Cat. 15140-122),

and Trypsin-EDTA (0.25%) (Cat. 25200-072) were purchased from

GIBCO. RT-qPCR kit (Cat. 25200-072) was purchased from

TaKaRa.

Detection of SARS-Cov-2 with RT-qPCR

Samples used for RT-qPCR were blood, upper respiratory tract

sputum and throat swab obtained from patients at specified time-

points during hospitalization. The patient samples were collected,

processed and analyzed following the guideline stipulated by the

WHO. To extract viral RNA, the specimens were treated with the

QIAamp RNA Viral Kit (Qiagen, Heiden, Germany) following the

manufacturer’s guidelines. The presence of SARS-CoV-2 infection

was confirmed with a China CDC recommended RT-qPCR kit

(TaKaRa, Dalian, China). qPCR was performed as previously

described (Zhang et al., 2019; Bi et al., 2020; Li et al., 2020).

Isolation of PBMCs for mass cytometry, scRNA-seq and scATAC-

seq

For pipeline analysis, venous blood samples were derived from each

healthy donor or patient using Ficoll-Hypaque density solution,

heparinized and then processed by standard density gradient cen-

trifugation methods to isolate PBMCs. The viability and quantity of

PBMCs in single-cell suspensions were determined using Trypan

Blue. For each sample, the cell viability exceeded 90%. For each

sample with more than 1 × 107 viable cells, a fraction of PBMCs was

extracted for scRNA-seq analysis, a fraction of PBMCs was allo-

cated for scATAC-seq and mass cytometry.

Figure 7. Aging and SARS-CoV-2 infection are char-

acterized by similar hyper-inflammatory states. (A) Dot

plot showing increased BSG and ANPEP expression in

major immune cell populations in the AH group compared

to YH group. Pvalues are based on two-tailed Mann-

Whitney-Wilcoxon tests between groups. (B) Expression

levels of BSG and ANPEP in specific cell types in YH and

AH groups. (C) Recapitulative graph of the MFI of CD147

expression in CD3+ T cells. MFI, mean fluorescence

intensity. (D) Bar charts of the relative percentage of major

immune cell populations derived from scRNA-seq data in

YH, AH and ACR group (left), YCR and ACR group (right).

(E) Venn diagram showing the integrated comparative

analysis of upregulated DEGs in T cells between YH and

AH group, YCR and YH group, ACR and AH group. The

count shows the number of DEGs. (F) Venn diagram

showing the integrated comparative analysis of upregu-

lated DEGs in monocytes between AH and YH groups,

YCR and YH groups, ACR and AH groups. The count

shows the number of DEGs. (G) Volcano plot showing

DEGs in T cells between YCR and ACR groups. P values

were calculated using a paired, two-sided Wilcoxon test

and FDR was corrected using the Benjamini-Hochberg

procedure. (H) Volcano plot showing DEGs in monocytes

between YCR and ACR groups. P values were calculated

using a paired, two-sided Wilcoxon test and FDR was

corrected using the Benjamini-Hochberg procedure. (I) Dot

plot showing expression levels of the top 20 aging-induced

and disease-associated genes in T cells per group in

cohort-3. (J) Dot plot showing expression levels of the top

20 aging-induced and disease-associated genes in mono-

cytes per group in cohort-3. (K) CT photography showing

the different manifestation of evolution of Lung Ground-

Glass Opacity in young and aged patients with COVID-19.
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Flow cytometric analysis

PBMCs suspended in phosphate buffered saline (PBS) were cul-

tured with Live/Dead yellow dye (Invitrogen) at 4 °C for 30 min and

then washed once with 1 mL of PBS containing 1% FBS (GIBCO,

Grand Island, NY, USA). Subsequently, cells were treated with

antibodies for 30 min at 4 °C. These antibodies included: CD3-

BV785 (clone SK7, Biolegend), CD19-APC (clone HB19, Biole-

gend), CD88-PE/Cy7 (clone S5/1, Biolegend), CD89-PE/Cy7 (clone

A59, Biolegend), HLA-DR-FITC (clone L243, Biolegend), CD11c-

BV421 (clone 3.9, Biolegend), FcεRIa- PercP/Cy5.5 (clone AER-37,

Biolegend), CD1c-BV650 (clone L161, Biolegend), CD147-PE

(clone HIM6, BD biosciences), CD371 (CLEC12A)-PE (clone 50C1,

Biolegend). Analysis of PBMCs with flow cytometry was conducted

with BD Fortessa (BD Biosciences) and the results were evaluated

with FlowJo (version 10.0.7, Tree Star, Ashland, OR, USA).

Figure 8. Aging reprograms human immune cell landscape, and increases the susceptibility and vulnerability of COVID-19.

Schematic illustrating the key innate and adaptive immune functional alterations identified in PBMCs influenced by aging and COVID-

19. Young healthy individuals maintain homeostasis in immune system which could timely eliminate pathogen. Aging leads to the

increase of monocytes (MCs) and the decrease of T cells (TCs) in the immune system. Aging promotes the polarization of TCs from

naive and memory to effector, exhausted and regulatory subtypes and increases the numbers of late natural killer (NK) cells, age-

associated B cells, inflammatory MCs, and dysfunctional dendritic cells (DCs). Moreover, aging induces increased expression of

genes related to SARS-CoV-2 susceptibility, suggesting increased susceptibility in the elderly. Importantly, aging induces DCs to lose

the antigen-presenting ability, and turn to an inflammatory state. Together, a dysregulated immune system and increased expression

of genes associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
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Mass cytometry live cell barcoding and surface staining

We made use of a live cell barcoding approach to minimize inter-

sample staining variability, sample handling time and antibody con-

sumption. After incubating with anti-human CD45 loaded with dif-

ferent isotopes (89Y, 162Dy, 165Ho, 169Tm, 175Lu), all the samples

were then pooled for surface staining. The Maxpar Direct Immune

Profiling Assay (Fluidigm) was used for cell surface staining and the

monoclonal anti-human antibodies in the assay kit are listed as

Table S2.

Barcoded and combined samples were washed and stained with

viability dyes cisplatin-195pt (0.5 μmolL) (Fluidigm, 201064) and

vortexed to mix thoroughly for 2 min at room temperature for cell

viability, terminated with Maxpar Cell Staining buffer at room tem-

perature (400 rcf.), washed, fixed with 1.6% paraformaldehyde (PFA;

Electron Microscopy Sciences) in PBS for 10min at room tempera-

ture on a rotary shaker (500rpm). The fixed cells were resuspended

in pre-cooling Maxpar Cell Staining to slow fix reaction. Fixed

samples were washed twice with PBS/bovine serum albumin and

once with double-distilled water before resuspended in 400μL of

surface-antibody mixture. Surface staining was performed for 30min

at 37 °C on a rotating shaker (500rpm). The samples then stored in

freshly diluted 2% formaldehyde (Electron Microscopy Sciences) in

PBS containing 0.125 nmol/L iridium 191/193 intercalator (Fluidigm,

201192) at 4 °C overnight.

scRNA-seq data alignment, processing and sample aggregation

The Chromium Single Cell 5′ Library (the 10x Genomics chromium

platform Illumina NovaSeq6000), Gel Bead and Multiplex Kit, and

Chip Kit (10x Genomics) were used to convert single-cell suspen-

sion samples to barcoded scRNA-seq libraries. Single-cell RNA

libraries were prepared using the Chromium Single Cell 5′ v2

Reagent (10x Genomics, 120237) kit as per the manufacturer’s

protocols. The quality of the libraries was checked using the FastQC

software. Initial processing of the sequenced data was performed

using CellRanger software (https://support.10xgenomics.com, ver-

sion 3.1.0).

The command Cell Ranger count in CellRanger Software Suite

(10x Genomics) was used to demultiplex and barcode the sequen-

ces derived from the 10x Genomics single-cell RNA-seq platform.

The data was filtered, normalized, dimensionality was reduced,

clustered, and differential gene expression analysis were performed

after calculation of the single-cell expression matrix by CellRanger

using Python (version 3.7.7) Scanpy (https://scanpy.readthedocs.io/

en/stable/index.html, version 1.4.6). Data collection and the subse-

quent analyses were performed in an unsupervised manner, but not

blinded to the conditions of the experiments. For quality control, the

filtered cell population was mainly those cells that express HBB,

HBA1, and several light and heavy chain transcripts, which identi-

fied as the RBC-contaminated cell population. Likewise, several

clusters expressing genes has no significance (P ≥ 0.1, calculate by

10x genomics Loupe Cell Browser with it default algorithm. P values

are adjusted using the Benjamini-Hochberg correction for multiple

tests) were removed. A total of 16 libraries were sequenced, and

166,609 cells (YA 77,652 cells, AA 88,957 cells) were analyzed after

quality control in cohort-1. For cohort-3, 22 libraries and 205,434

cells (YH 79,039 cells, AH 88,750 cells, YCR 19,533 cells, ACR

18,112 cells) were remained for the subsequent analysis. The genes

used in principal component analysis (PCA) analysis have elimi-

nated mitochondria (MT), and ribosomes (RPL and RPS) genes with

50 principal components, and then aligned together, followed by t-

distributed stochastic neighbor embedding (t-SNE) are both used

after the results of the aligned. And using the run_harmony function

(in pyharmony package, version 1.0.7) and combat function (in

Scanpy) methods to deal with batch effect issues if batch effect

existing in dataset. Genes not detected in any cell were removed

from subsequent analysis.

Dimensionality reduction and clustering analysis of scRNA-seq

datasets

To analyze the scRNA-seq data, we log normalized data (1 + counts

per 10,000) with the ‘‘sc.pp.normalize_total’’ function before clus-

tering, reduction and performing 2-dimensional t-SNE algorithm

clustering with the first 50 principal components. This was done

following PCA on top 5,000 most variable genes by using “sc.pp.

highly_variable_genes” function in Scanpy with the default param-

eters. Dimensionality method and identification of significant clusters

and was performed using Leiden clustering algorithm which uses a

shared nearest neighbour modularity optimization-based clustering

algorithm. Marker genes for each significant cluster were found

using the function sc.tl.rank_genes_groups with default parameters.

Differential expression analysis

Differential expression analysis for each cell type between different

groups (YA and AA in cohort-1 and YH, AH, YCR and ACR in cohort-

3) was performed using the t-test as implemented in the ‘‘sc.tl.

rank_genes_groups’’ function of the Scanpy package. For each

cluster, differentially-expressed genes (DEGs) were performed using

the t-test and generated relative to all of the other cells. Before

executing the differential expression analysis, we filtered out the cell

types that were missing or had fewer than three cells in the com-

parison groups. An aging-associated and disease-related DEG

dataset was established (adjusted P value < 0.05, |Log2FC| > 0.25)

after identification of DEGs between AA and YA groups in cohort-1,

AH and YH groups in cohort-3, ACR and AH groups in cohort-3,

YCR and YH groups in cohort-3. The ‘‘upregulated DEGs during

aging’’ were defined as the DEGs that increased in AA group and

decreased in YA group. The ‘‘downregulated DEGs in aging’’ were

defined as the DEGs that decreased in AA group and increased in

YA group.

Gene functional annotation

The Metascape webtool (www.metascape.org) (Zhou et al., 2019)

that allow visualization of functional patterns of gene clusters and

statistical analysis was used to conduct DEGs gene ontology,

pathway enrichment analyses. Among the top 30 enriched GO terms

or pathways across various types of cells and tissues, 10 GO terms

or pathways which were associated with aging were visualized.

Gene expression profile cluster plots and heatmaps were estab-

lished using the pheatmap R package (https://cran.r-project.org/

web/packages/pheatmap/index.html, version 1.0.12).
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Aging score analysis

To assess the impact of aging in circulating immune cells, we

selected the top 20 genes out of 60 common upregulated genes in

all immune cells. Aging scores were estimated for all cells as the

average of the scaled (Z-normalized) expression of the genes in the

list. The score of aging for all immune cell types can be used to

predict the effect of aging on single cells and cell subtype levels.

Calculation of the scores was done as follows: the score of the aging

gene set in the given cell-subset (named as X) was computed as the

sum of all UMI for all the aging genes expressed in X cell, divided by

the sum of all UMI expressed by X cell (Pont et al., 2019).

Sequencing and analysis of TCR and BCR V(D)J

PCR amplification was done to enrich the full-length TCR/BCR V(D)

J segments for the amplified cDNA from 5′ libraries with a Chromium

Single-Cell V(D)J Enrichment kit (10 Genomics). The TCR/BCR

sequences of each T/B cell were clustered using the CellRanger vdj

pipeline (version 3.1.0, allowing identification of CDR3 sequence

and the rearranged TCR/BCR gene. Analysis was performed using

Loupe V(D)J Browser version 2.0.1 (https://support.10xgenomics.

com, 10x Genomics). In summary, barcode information a containing

clonotype frequency and TCR/BCR diversity metric were obtained.

We projected T /B cells with dominant TCR/BCR clonotypes on a t-

SNE plot using barcode information (Wen et al., 2020).

Determination of cell-cell interaction

We employed the expression of immune-related ligands and

receptors to assess the cell-cell interactions (Ma et al., 2020). The

possible ligand-receptor interactions between one set of receptor-

expressing cells and then next ligand-expressing cells were deter-

mined as the average of the product of receptor and ligand

expression (respectively from set one and two) across all single-cell

pairs:

I = ∑
n

i
Ii × ∑

m

j
rj(

1
m � n)

where I refers to the interaction score between receptor expressing

cells in set one and ligand-expressing cells in set two, Ii stands for

the ligand expression of cell i in cell set one, rj represents the

receptor expression of cell j in cell set two, n stands for the number

of cells in set one and m denotes the number of cells in set two.

In the gene list, there were 168 pairs of well-annotated ligands

and receptors, among which were co-stimulators, chemokines and

cytokines. The possible interactions between two cell types were

orchestrated by receptor-ligand pairs by the product of the average

expression levels of the ligand in one cell type and the respective

receptor in the other cell type.

Mass cytometry processing and quality control

CyTOF data were acquired with a CyTOF2 system using a

SuperSampler fluidics system (Victorian Airships) at an event rate of

< 400 events per second and normalized with Helios normalizer

software (Fluidigm version 6.7.1016). Acquisitions from different

days (three independent acquisitions were performed) were

normalized using five-element beads (Fluidigm). Barcoded samples

were deconvoluted and cross-sample doublets were filtered using

cytobank application. CyTOF data was pre-processed with Cyto-

bank (https://mtsinai.cytobank.org; Cytobank, 7.0) to sequentially

remove calibration beads, dead cells, debris and barcodes for

CD45+ PBMCs based on event length, DNA (191Ir and 193Ir) and

live cell (195Pt) channels and then export the FCS files. We ana-

lyzed 200,000 PBMCs in cohort-1 and 160,000 PBMC in cohort-2,

with an average of 20,000 cells per sample.

Mass cytometry visualizing and clustering

We created mass cytometry datasets for analysis by concatenating

cells from all individuals for each cell type. In this way, we created

downsampled datasets of 95,316 TCs, 35,254 NKs, 22,042 BCs,

39,144 MCs and 8,244 DCs in cohort-1 and 57,910 TCs, 34,857

NKs, 13,812 BCs, 45,431 MCs and 7,990 DCs in cohort-2 for

analysis. We used FlowCore (65 flowCore: Basic structures for flow

cytometry data.) to read and process FCS files for further analysis.

For sample with more than 20,000 cells, we randomly selected

20,000 cells to ensure that samples were equally represented. At

last, we run the t-SNE dimensionality reduction algorithm on a

combined data sample using the Seurat package based on harmony

embedding (https://github.com/immunogenomics/harmony, version

1.0.0).

Batch correction of mass cytometry data

PBMC mass cytometry data from 10 subjects of cohort-1 or 8 sub-

jects of cohort-2 was combined and batch normalized using har-

mony respectively. First, mass cytometry data from each cohort all

subjects was combined into a single dataset. Second, harmony

batch correction was performed using one of the samples. Third,

mass cytometry data were lognormalized in the Seurat’s Normal-

izeData function across the aggregated dataset.

Single-cell assay for transposase-accessible chromatin sequencing

(scATAC-seq)

scATAC-seq targeting 4,000 cells per sample was performed using

Chromium Single Cell ATAC Library and Gel Bead kit (10x Geno-

mics, 1000110). Each sample library was uniquely barcoded and

quantified by RT-qPCR. Libraries were then pooled and loaded on

an Illumina Novaseq 6000 sequencer (3.5 pmol/L loading concen-

tration, 50 + 8 + 16 + 49 bp read configuration) and sequenced to

either 90% saturation or 30,000 unique reads per cell on average. All

protocols to generate scATAC-seq data on the 10x Chromium plat-

form, including sample preparation, library preparation and instru-

ment and sequencing settings, are available here: https://support.

10xgenomics.com/single-cell-atac.

scATAC-seq data processing

scATAC-seq processing

scATAC-seq reads were aligned to the GRCh38 (hg38) reference

genome and quantified using CellRanger-ATAC count (10x Geno-

mics, v.1.0.0).
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scATAC-seq quality control

To ensure that each cell was both adequately sequenced and had a

high signal-to-background ratio, we filtered cells with less than 1,000

unique fragments and enrichment at TSSs < 8. To calculate TSS

enrichment > 2, genome-wide Tn5-corrected insertions were

aggregated ± 2,000 bp relative (TSS-strand-corrected) to each

unique TSS. This profile was normalized to the mean accessibility ±

1,900–2,000 bp from the TSS, smoothed every 51 bp and the

maximum smoothed value was reported as TSS enrichment in R. To

construct a counts matrix for each cell by each feature (peaks), we

read each fragment.tsv.gz fill into a GenomicRanges object. For

each Tn5 insertion, which can be thought of as the “start” and “end”

of the ATAC fragments, we used findOverlaps to find all overlaps

with the feature by insertions. Then we added a column with the

unique id (integer) cell barcode to the overlaps object and fed this

into a sparseMatrix in R. To calculate the fraction of reads/insertions

in peaks, we used the colSums of the sparseMatrix and divided it by

the number of insertions for each cell id barcode using table in R.

scATAC-seq visualization in genomic regions

To visualize scATAC-seq data, we read the fragments into a Geno-

micRanges object in R. We then computed sliding windows across

each region we wanted to visualize for every 100 bp “slidingWindows

(region, 100, 100)”. We computed a counts matrix for Tn5-corrected

insertions as described above and then binarized this matrix. We then

returned all non-zero indices (binarization) from the matrix (cell ×

100-bp intervals) and plotted them in ggplot2 in R with “geom_tile”.

For visualizing aggregate scATAC-seq data, the binarized matrix

above was summed and normalized. Scale factors were computed by

taking the binarized sum in the global peak set and normalizing to

10,000,000. Tracks were then plotted in Loupe Cell Browser, an

interactive visualization software that shows scATAC-seq peak pro-

files for scATAC-seq cell clusters, similar to the analysis done in this

manuscript and described at https://support.10xgenomics.com/single-

cellatac/software/visualization/latest/what-is-loupe-cell-browser.

chromVAR

We measured global TF activity using chromVAR15. We used the

cell-by-peaks and the Catalog of Inferred Sequence Binding Pref-

erences (CIS-BP) motif (from chromVAR motifs “human_pwms_v1”)

matches within these peaks from motifmatchr. We then computed

the GC-bias-corrected deviation scores using the chromVAR “devi-

ationScores” function.

Statistical analysis

The GraphPad Prism Software (version 8.0.2) was employed for

data analysis and presentation. All results are presented as means ±

SEM. Groups were compared with two-tailed Mann-Whitney-Wil-

coxon tests and FDR was corrected using the Benjamini-Hochberg

procedure. P value was derived by a hypergeometric test in repre-

sentative GO terms and pathways.
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ABBREVIATIONS

AA, aged healthy adults; ABC, age-associated B cell; ACO, aged

COVID-19 onset patients; ACR, aged recovered COVID-19 patients;
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