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ABSTRACT

Recently, phage display technology has been
announced as the recipient of Nobel Prize in Chemistry
2018. Phage display technique allows high affinity tar-
get-binding peptides to be selected from a complex
mixture pool of billions of displayed peptides on phage
in a combinatorial library and could be further enriched
through the biopanning process; proving to be a pow-
erful technique in the screening of peptide with high
affinity and selectivity. In this review, we will first dis-
cuss the modifications in phage display techniques
used to isolate various cancer-specific ligands by
in situ, in vitro, in vivo, and ex vivo screening methods.
We will then discuss prominent examples of solid tumor
targeting-peptides; namely peptide targeting tumor
vasculature, tumor microenvironment (TME) and over-
expressed receptors on cancer cells identified through
phage display screening. We will also discuss the cur-
rent challenges and future outlook for targeting peptide-
based therapeutics in the clinics.

KEYWORDS phage display, tumor targeting peptide,
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INTRODUCTION

Peptides are 2-dimensional, linear chains of amino acids,
which are usually short (less than 50 AA) in length (Hayashi
et al., 2012). They are either designed by rational computing
methods or phage display screening to obtain peptides that
binds with high specificity to the target of interest, with a
possibility of modulating the target (Marqus et al., 2017).
Compared to antibodies (∼150 kDa), peptides are relatively

small (∼3–5 kDa) and therefore easy to synthesize and
modified (Boohaker et al., 2012), have higher cell membrane
penetration, and possess less immunogenicity. In cancer
therapy, these peptides can be used as a targeting ligand
assisting specific delivery of cytotoxic drug specifically into
the tumor vasculature, tumor microenvironment or into the
cancer cells. On the other hand, peptides could also be
delivered intracellularly to target cancer specific upregulated
transcription factors, oncogenes or enzymes (Jyothi, 2012;
Marqus et al., 2017). The general comparison between
antibody and peptide are summarized in Table 1.

Herein, we will review the utilization of phage display
biopanning with modifications gearing towards in situ,
in vitro, in vivo, ex vivo and in human application for high
affinity peptide screening. We will also provide a compre-
hensive discussion on the latest discovery of tumor target-
ing-peptides; namely the peptides targeting (1) tumor
vasculature, (2) tumor microenvironment (TME) and (3)
over-expressed receptors on cancer cells.

Phage display technology and biopanning strategies

In 1985, George Smith first described phage display by
demonstrating the ability of a filamentous phage to display
peptide by fusing the library of peptide sequence into the
virus’s capsid protein (Smith, 1985). Since the peptide was
displayed on the viral surface, selection could be done to
isolate those with the highest binding affinity towards a tar-
get. In the same year, Geroge Pieczenik filed a patent also
describing the generation of phage display libraries in detail
(US patent, 5866363). However, the application of this
technology was pioneered by Greg Winter and his col-
leagues at the Scripps Research Institute for display of
proteins (specifically antibodies) for therapeutic protein
engineering. Due to their contribution in phage display
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technique development and the enormous implication of
phage display technology, Smith and Winter were both
awarded a quarter share of the 2018 Nobel Prize in chem-
istry, while the other half was awarded to Frances Arnold.

Phage-display is a powerful technology for screening and
isolating target specific peptides. This method utilizes bac-
teriophage to display foreign peptides or antibodies on their
surface through insertion of the gene encoding the corre-
sponding polypeptides into the phage genome. For display
of foreign polypeptides on the bacteriophage, the desired
DNA sequence is inserted into the M13 phage pIII or pVIII
gene (Fig. 1). The methodology using the major coat protein
pVIII provides a multivalent display, however only short
peptides (6–7 AA) could be displayed on pVIII gene.
Therefore, most combinatorial libraries such as antibodies or
proteins have been displayed using minor coat pIII. Since
there could be only 3–5 copies of pIII protein per phage, this
method limits the copy number but the length of foreign or
synthetic polypeptides that can be expressed (Fig. 1).

The phage selection method, referred to as biopanning, is
an affinity selection process that isolates target-binding
molecules. As explained in Fig. 2, generally phage display
based biopanning consists of five screening steps for
selection of peptides. The first step is “library construction &
amplification” where polypeptide-displayed phage libraries

were constructed via cloning of combinatorial DNA
sequence (Fig. 2A). This library will be amplified prior to
biopanning (Fig. 2B). The second step is the “target cap-
turing step”, in which the phage library is incubated with
target molecule for a specific time to allow binding (Fig. 2C).
The third step is to “remove unbound & nonspecific phages”
by using repetitive washing to remove any unbound and
non-target specific phages (Fig. 2D). The fourth step is the
“elution step”, in which target-bound phages are separated
after a short incubation with low pH buffer or by competitive
elution (Fig. 2E). Finally, in the fifth step “infection stage”, the
eluted phages are infected in bacteria to amplify selected
phages, making a new and more selective phage library that
should be applied in a next round of biopanning (Fig. 2F and
2G).

In general, three to five rounds of biopanning are neces-
sary to isolate specific and high affinity peptide binders.
Nonspecific phages are removed and phages with high
affinity for the target are isolated by increasing the stringency
in each round of biopanning by increasing the number of
washing and decreasing the amount of target molecule. At
the end of biopanning, phage ELISA and DNA sequencing
are used for identification of individually specific phage with
high affinity to target.

Ample research to isolate high affinity peptide by phage
display screening

Although in situ phage display screening using immobilized
antigen is capable of generating high affinity and specificity
peptide (Kim et al., 2012b), to better mimic cellular and body
condition, ample researches are being done on in vitro,
in vivo (Liu et al., 2018), ex vivo (Sorensen and Kristensen,
2011) and even in cancer patient (Krag et al., 2006)
screening for high affinity peptide in a heterogenous envi-
ronment as this is a closer representation to their original
condition.

Homogenous in situ screening

Homogenous in situ screening requires only the specific
target to be coated on a 96-well (Fig. 3A). A single target
exposure guarantees the isolation of target-specific peptide,
without external interference from non-specific binding. This
method is also the easiest, as all experiments could be
carried out without living system (i.e., cell culture, animal
model, patient samples). The disadvantages of in situ
screening includes the risk of non-specific binding of the
isolated peptide when exposed to in vitro or in vivo system.
In addition, the target is artificially coated onto the plate,
which could be misrepresent the actual secondary structure
of the target in a living system, therefore increases the risk of
isolating a peptide that only binds to the receptor in this
particular setting (Kim et al., 2012b).

5 nm

1,000 nm

pIII pVIII pVII + pIX

M13 bacteriophage 

Figure 1. A typical representation of M13 phage with about

1,000 nm in length and 5 nmwide. The major coat proteins are

pIII (green), pVIII (purple) and pVII + pIX complex (yellow + red).

Table 1. The advantages of peptide as compared to antibody

Antibody Peptide

Size 150 kDa 3–5 kDa

Affinity (KD) pmol/L–nmol/L pmol/L–nmol/L

Immune response Little Little

Tissue penetration Low High

Intracellular target No Yes

Research cost High Low

Production cost High Low

Developing speed Months–years Months

Patent barriers High Minimal
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In vitro cell screening

In vitro cell screening offers high-throughput approach for
identifying multiple peptides that bind specifically to a single
cell (i.e., cell lines or primary cells) and can be performed on
adherent cells (live or fixed) (Fig. 3B). Advantages of using
whole cell approach includes retaining their biological func-
tions and activities, proper folding, 3-dimensional structure,
receptor expression level and their association with neigh-
boring proteins. Modified selection protocols could be used
to isolate internalized peptides. Importantly, in vitro cell
biopanning could identify novel cell surface receptors with
unknown biological functions, which could be used to pro-
vide information on specific molecular changes (i.e.,
expression level of certain protein and their localization in
normal vs. cancer cells) (Arap et al., 2002b; Zhao et al.,
2007; Sun et al., 2012; Wu et al., 2016).

In vivo screening

By performing biopanning and selection in a living animal,
organ-specific peptides could be isolated (Fig. 3C). Roush-
lati and co-workers first described in vivo phage display
technology in 1996 (Pasqualini and Ruoslahti, 1996). For
in vivo biopanning protocol, the biopanning selection is
similar to that of the in vitro screening, the difference being
the peptide phage library was introduced into the animal via
systemic intravenous injection and allowed binding to occur
within 1–2 h (as peptide-displayed phage is estimated to
bound to target within 5–15 min (Laakkonen et al., 2002; Lee
et al., 2007; Lo et al., 2008)), after which the animals will be
perfused to remove unbound phages, sacrificed, and the
desired organs will be collected and homogenized. Tissue-
specific phage should increase after 3–5 rounds of biopan-
ning (Rajotte et al., 1998; Lee et al., 2007; Chang et al.,

2009). Through this approach, various types of tumor and
malignant tissue vasculature have been identified (i.e., RGD-
4C, NGR and GSL peptide (Koivunen et al., 1995; Pas-
qualini et al., 1997; Ruoslahti, 2000); detailed explanation
below). One of the major pitfalls in using in vivo phage dis-
play technology is that the peptides may not be translated
into human due to the differences of peptide binding
between species (Wu et al., 2016).

Ex vivo screening

This method, first published in Nature in 2001, should only
be applied to the selections of a specific rare cells in a
heterogenous population (i.e., PBMCs in blood tumors)
(Fig. 3D). Without sorting the cells, biopanning was per-
formed on a glass slide containing the whole cell population.
This method is advantageous for targeting a lower frequency
of cells (<0.1% of the total population), as phages that binds
non-selectively towards the other cells will be screened out.
Once the phage was bound, UV irradiation was used so that
the DNA of the phage particles on non-target cells is
crosslinked by UV, while the phage on target cells were
protected by a minute aluminum disc. Therefore, this method
ensures that only non-crosslinked phage (target phage)
were capable of replicating. The disadvantage of this method
is that it is only optimized for antibody-based ligand selec-
tion, and thus not suitable for peptide selection. The yield of
this method averages three antibodies per selection, which
is very low compared to the other biopanning method (Sor-
ensen and Kristensen, 2011).

In human screening

To diminish the compatibility of species difference between
mice and human, phage display had been reported to be

Library construction and amplification Target capturing

Co-incubation of 
phage and target

Remove unbound 
& nonspecific phages

Elution of target-
specific phages

Infect into bacteria and 
grow colonies on plate

Pick colonies and grow 
large quantity of phages

A B

C

DEF

G

Figure 2. The general scheme of phage display technique and biopanning selection of high affinity peptide. Peptide-based

library is first obtained either commercially or specifically designed to cater for specific needs of each experiment.
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screened against human patients (Fig. 3E). The first in-hu-
man phage display screening was reported by Arap and
colleagues in 2002. They reported a heptapeptide SMSIARL
which could specifically home to prostate vasculature and
exhibited 10–15 times more specificity to prostate compared
to other organs (Arap et al., 2002b). Due to their success in
proving safe usage of phage display in human, FDA
approved similar techniques to be used by Krag and col-
leagues to screen tumor-specific peptide via phage display
screening in terminal stage cancer patients (Krag et al.,
2006).

TUMOR TARGETING PEPTIDE

Tumor targeting peptide is a powerful tool that could be used
in cancer diagnosis and treatment (Heppeler et al., 2000) as

they have lower production cost and scale-up, easy to syn-
thesize and yet they possess most if not all the merits of a
targeting ligand: high affinity and specificity towards the
target, with the advantage of high tumor penetration as
compared to the large-sized antibody-based ligand (AlDe-
ghaither et al., 2015). In the complexity of solid tumor, a
peptide could be used to target the malfunctioned tumor
vasculature, the dense extra-cellular matrix, tumor stromal
cells, or overexpressed receptor on tumors. Herein, we will
discuss some prominent examples of peptides identified
through phage display biopanning techniques and their
application in the biomedical field.

Peptide targeting tumor-microenvironment (TME)

Tumor microenvironment (TME) is a complex plethora of
multiple components including tumor-associated vasculature,

A B C D E

In situ target
immobilization

In vitro whole cell
target capture

In vivo target
capture in tumor

Ex vivo target capture
in excised tumor

In–human in vivo
Target capture

Amplified phage display library 

Infect into bacteria and 
grow colonies on plate

Elution of target-specific phages

Figure 3. Various approaches in capturing high affinity peptide through phage display screening.
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extra-cellular matrix, cancer associated fibroblast, tumor
associated macrophages, immune cells (neutrophils, NK
cells, T cells, B cells) and tumor cells (Binnewies et al., 2018)
(Fig. 4). Often, these cells transformed into tumor-like phe-
notype as tumor progresses. For example, most tumor resi-
dent macrophages are M2-like (pro-tumoral) which means
they are programmed to assist in tumor growth rather than
having an M1-like (anti-tumoral) phenotype (Mantovani et al.,
2017). These changes could be brought forth by constant
communicationwith the other components in the TME through
autocrine or paracrine manner. Therefore, by identifying
peptide specific to these TME targets could generate drugs
homing to TME that could efficiently normalize, modulate or
disrupt the TME components. There are three points of inter-
vention, namely (i) targeting tumor vasculature, (ii) targeting
extra-cellular matrix, (iii) targeting tumor stromal cells (mac-
rophages, cancer associated fibroblasts etc.).

Peptide targeting tumor vasculature

Angiogenesis is an event of the formation of new blood
vessels and is vital in the event of tumor growth and pro-
gression. Due to the continuous formation of new blood
vessels to feed the tumor, a hyper-vascular tumor could grow
beyond the size of millimeter in diameter (Bergers et al.,
1999). Therefore, stopping a tumor’s blood supply can dra-
matically reduce the tumor growth, and in some cases, even
resulted in total tumor eradication (Ferrara and Alitalo, 1999;
O’Reilly et al., 1999). The morphology of tumor vasculature
is very different from normal tissue vasculature. Due to the
on-going angiogenesis, tumor vasculatures consistently
express angiogenic marker at high concentration (i.e., inte-
grins, VEGFR) and are usually tortuous (Bergers et al.,

1999), with pronounced hypoxic region. Tumor vasculatures
are also “leaky” in nature and this might be related to pericyte
deficiency (Ruoslahti, 2000), therefore Folkman hypothe-
sized that angiogenesis inhibition could be used to treat solid
tumors (Folkman, 1971).

Peptide targeting tumor endothelial cells (EC)

The peptides that home to tumor vasculature may also be
useful in targeting therapies specifically to tumors. Tumors
are critically dependent on blood supply; therefore, blocking
or eliminating that supply can profoundly suppress tumor
growth (Denekamp, 1993; Hanahan and Folkman, 1996;
Bergers et al., 1999; Jain, 2001). Since blood vessels are
easily accessible through IV administration, and they do not
readily acquire mutations as cancer cells that leads to drug
resistance (Kerbel, 1991; Boehm et al., 1997), targeting
tumor ECs could be a promising approach for targeted drug
delivery.

A classic example of vasculature targeting peptide is
none other than the “RGD” peptide. Rouslahti and col-
leagues first isolated this peptide by phage display in vivo in
the form of cyclic peptide CDCRGDCFC (RGD-4C). This
peptide has been validated to selectively binds αvβ3 and
αvβ5 integrins (Koivunen et al., 1995); and have shown to
home to the vasculature of tumors (Pasqualini et al., 1997).
Interestingly, RGD domain is also vital for the binding of
vitronectin and fibronectin and to integrins, although it is now
known that these molecules bind to different subset of inte-
grin (Ruoslahti, 2003).

Arap et al. also developed a set of cyclic peptide CNGRC
sharing “NGR” motifs (Arap et al., 1998). These peptides
have been shown to bind to tumor vasculatures in breast

Neutrophils

Macrophages

Fibroblasts

T-cells

B-cells

NK cells

Tumor cells

Endothelial cells

Pericytes

Extra-cellular matrix

A B C

Figure 4. Major components in the TME. (A) tumor vasculature components and extra-cellular matrix, (B) tumor stromal cells and

(C) over-expressed receptors on tumor cells.
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carcinoma, melanoma and Kaposi’s sarcoma (Pasqualini
et al., 1997; Arap et al., 1998; Pasqualini et al., 2000).
Subsequently, many other publications followed, describing
the isolation of tumor vasculature related targeting peptides
(Table 2) (Landon and Deutscher, 2003; Zurita et al., 2003;
Ruoslahti, 2004; Kelly et al., 2005; Su et al., 2005).

Peptide targeting MMPs

Matrix metalloproteinases (MMPs) family is among the
molecules that are upregulated in tumor microenvironment,
and has been known to be functionally important in angio-
genesis (Koivunen et al., 1999). Not only that, MMPs are
also involved in increasing cell motility and invasiveness
(Birkedal-Hansen, 1995). Although MMPs are secreted
proteins, they are able to mediate phage homing. This might
be due to the binding of MMP-2 and MMP-9 to αvβ3 integrin
(Brooks et al., 1996), thus forming a complex that is
stable enough for the binding of phage. Apparently, the
complex is stable enough for strong binding of the phage to
the MMP. Interestingly, the selected phage bound to MMP-2
and MMP-9 also specifically homes to tumor vasculature

(Koivunen et al., 1999), indicating that (i) that one, or both, of
these MMPs is specifically expressed in tumor vasculature
and (ii) they are available for phage binding from the circu-
lation. Multiple peptides inhibiting MMP families have been
isolated through phage display screening. Their sequence,
activities and function are summarized in Table 2 (Ujula
et al., 2010; Ndinguri et al., 2012).

Peptide targeting pericytes of angiogenic vessels

Pericytes secrete growth factors that stimulate EC prolifer-
ation. Pericytes also secrete proteases to modulate the
surrounding ECM and guide EC migration (Gerhardt and
Betsholtz, 2003; Armulik et al., 2005; Saunders et al., 2006;
Stapor et al., 2014). Recently, more researches are pointing
towards the importance of pericyte coverage in vessel
remodeling, maturation, and stabilization (Ribeiro and Oka-
moto, 2015). Therefore, pericyte might be the overlooked
player in angiogenesis and should be given more emphasis
in anti-tumor targeted therapy.

Several rounds of biopanning led Burg et al. to identify
two decapeptides (TAASGVRSMH and LTLRWVGLMS)

Table 2. Peptide targeting TME and TME stromal cells

Target Peptide sequence Peptide affinity (Kd)/
LC50/IC50

Reference

Endothelium/av integrin ACDCRGDCFCG (‘‘RGD’’ motif) LC50∼10 mmol/L (Koivunen et al.,
1995)

Endothelium expressing
aminopeptidase N/CD13

CNGRC LC50∼34–481
mmol/L

(Pasqualini et al.,
2000)

Breast endothelium/amino
peptidase P

CPGPEGAGC ND (Essler and
Ruoslahti, 2002)

Prostate endothelium SMSIARL ND (Arap et al., 2002a)

Lung endothelium (membrane
dipeptidase)

CGFECVRQCPERC ND

Skin endothelium CVALCREACGEGC ND

MMP9 CRRHWGFEFC IC50∼10 mmol/L (Ndinguri et al.,
2012)

MMP2 CTTHWGFTLC IC50∼10 mmol/L

Transmembrane chondroitin sulfate
proteoglycan NG2

TAASGVRSMH ND (Burg et al., 1999)

LTLRWVGLMS ND

Tumor-associated FN CTVRTSADC Kd∼11 µmol/L (Han et al., 2015)

HCSSAVGSWTWENGKWTWKGIIRLEQ Kd∼65 nmol/L (Kim et al., 2012b)

Tenascin C FHKHKSPALSPV 4.58 ± 1.4 µmol/L (Kim et al., 2012a)

Tumor associated macrophages
(TAMs)

YEQDPWGVKWWY ND (Cieslewicz et al.,
2013)

Cancer associated fibroblasts (CAFs) HTTIPKV MC = 0.70 (Brinton et al., 2016)

APPIMSV MC = 0.74

Urokinase plasminogen activator (uPA)
receptor (uPAR)

AEPMPHSLNFSQYLWYT ND (Landon and
Deutscher, 2003)

LWXXAr (Ar = Y, W, F, H) XFXXYLW IC50∼0.01–10
mmol/L

(Goodson et al.,
1994)
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specific to a transmembrane chondroitin sulfate proteogly-
can NG2, which is expressed in pericytes of angiogenic
vessels (Schlingemann et al., 1990; Burg et al., 1999).
These peptides specifically homed to tumor vasculature
in vivo but not to tumor vasculature in NG2 knockout mice,
indicating the specificity and targeting capability of these
peptides (Burg et al., 1999). Although the role of NG2 in
angiogenesis is still unclear, NG2 is a cell surface receptor
for type-VI collagen and also binds to PDGF-A, which could
potentially stimulate this growth factor (Nishiyama et al.,
1996). As a component in pericyte, NG2 is undetectable in
endothelial cells (Burg et al., 1999), therefore blocking NG2
represents a specific pericyte targeting.

Peptides targeting extra-cellular matrix (ECM)

The role of ECM components is now recognized as an
important determinant in the growth and progression of solid
tumors (Wernert, 1997; Pupa et al., 2002). ECM is exten-
sively remodeled in tumor progression through 2 main pro-
cesses: (i) neosynthesis of ECM components (i.e.,
alternative splicing mechanism of fibronectin to include EDA
and EDB domain in malignant tumor fibronectin) and (ii)
degradation of ECM by hydrolytic enzymes (e.g., proteases)
that are produced, activated or induced by neoplastic cells,
therefore become more permissive environment for tumor
growth (Kaspar et al., 2006).

Tumor-associated fibronectin Fibronectin serves as a
coordinator between cancer cells and ECM, and is involved
in cancer cell survival, proliferation, invasion and metastasis
(Wierzbicka-Patynowski and Schwarzbauer, 2003). One of
the most extensive changes in ECM remodeling is the
addition of extra-domain A and B (EDA and EDB), which are
alternatively spliced-in during the synthesis of tumor-asso-
ciated fibronectin. These domains are undetectable in
healthy adult but has been found in high concentrations in
malignant tumors. Clinical evidences indicated that tumor-
associated FN (also termed oncofetal FN), is overexpressed
in many malignant cancers, including breast cancer (Ioachim
et al., 2002; Bae et al., 2013), prostate cancer (Suer et al.,
1996; Albrecht et al., 1999), bladder cancer (Arnold et al.,
2016), oral squamous cell carcinoma (Lyons et al., 2001),
head and neck squamous cell carcinoma (Mhawech et al.,
2005), colorectal cancer (Inufusa et al., 1995) and lung
cancer (Khan et al., 2005), and upregulated FN expression
has been correlated with poor prognosis of the patients.
Therefore, tumor-associated FN represents an ideal target
for solid tumor targeting.

Through in situ phage display technology, Kim et al.
developed an EDB binding scaffold-like peptide termed
APTEDB (Kim et al., 2012b). APTEDB consists of a stabilizing
scaffold and two target-binding regions, mimicking the mor-
phology of a DNA leucine zipper. Taking advantage of the
synergistic three-dimensional structure for optimal binding,
APTEDB exhibited a high binding affinity (Kd ∼65 nmol/L) to
EDB and could be used as a targeting ligand to be

conjugated to anti-cancer drugs for high tumor selectivity
and reducing systemic toxicity (Kim et al., 2014; Kim et al.,
2016), deliver biologics (i.e., oligonucleotides, siRNA and
drugs) for solid tumor treatment (Saw et al., 2013; Saw et al.,
2015; Saw et al., 2017) and to encapsulate superparamag-
netic iron oxide particles for Magnetic Resonance Imaging of
EDB over-expressing tumors (Park et al., 2012). In another
study, Han et al. developed a cyclic nonapeptide (ZD2) with
the sequence of CTVRTSADC that could be used for EDB
specific targeting and imaging of prostate cancer. This linear
peptide, which has Kd ∼11 μmol/L binding affinity towards
EDB, demonstrated excellent specific targeting to prostate
cancer in vivo and could be utilized as an imaging agent for
EDB-overexpressing prostate cancer (Han et al., 2015).

Tenascin C (TNC) TNC is a glycoprotein which forms a
large structure body by assembling other ECM molecules
and participates in cell adhesion, movement, permeation,
survival, migration and differentiation (Chiquet-Ehrismann,
1990). As with tumor-associated FN, TNC is not usually
expressed in normal cells except in immune tissues, such as
bone marrow and thymus gland (Klein et al., 1993; Heme-
sath and Stefansson, 1994), but is specifically expressed in
malignancy, inflammation and wound healing. It had been
reported that the elevated expression of TNC depended on a
malignancy in the tumor stroma of some malignancies,
including oral cancer, sarcoma, breast cancer, and colon
cancer, squamous cell carcinoma (Hindermann et al., 1999)
chondrosarcoma (Ghert et al., 2001), breast cancer (Tsun-
oda et al., 2003) and colon cancers (Hanamura et al., 1997;
Suzuki et al., 2017).

Kim et al. isolated a peptide that not only selectively
bound to TNC in xenograft mouse tissue and patient tumors
but also reduced TNC-induced cell rounding and migration.
Due to the bulky size of TNC, they adopted two independent
screening; the first using full-length TNC (expressed in
eukaryotic cells) and the second using alternative spliced
domain (expressed in bacteria). Out of a total of 35 clones,
19 had the same sequences (denoted peptide #1,
FHKHKSPALSPV, 54.2% consensus) and another 13 clones
were also identical (denoted peptide #2, FHKPFFPKGSAR,
37.1% consensus). The binding affinity of peptide #1 to TNC
was 4.58 ± 1.4 µmol/L (Kim et al., 2012a).

Peptide targeting tumor associated macrophages
(TAMs)

High density of TAMs has been correlated to poor prognosis
in several types of cancers, including brain, breast, ovarian
and pancreatic cancers, where the majority of these TAMs
express M2-like phenotype (Kurahara et al., 2011; Medrek
et al., 2012; Colvin, 2014; Zhou et al., 2015). Therefore, M2-
like TAMs have been exploited as therapeutic targets, and
positive outcomes were shown in selective depletion of this
macrophage subpopulations (Georgoudaki et al., 2016).
Small molecules such as folic acid (targeting folate receptor
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β) and mannose (targeting mannose receptor) have been
conjugated to drugs or carriers for macrophage targeting and
drug delivery (Hashida et al., 2001; Low et al., 2008; Yu
et al., 2013). However, these receptors are not macrophage
specific and they are also expressed in other cell types for
example, mannose receptors are also expressed in dendritic
cells (Sallusto et al., 1995)). Folic acid also binds different
isoforms of folate receptors on tumor cells and normal
epithelial cells (Ross et al., 1994), therefore diminishing the
specificity effect of the ligand. In 2012, Segers et al. reported
a novel peptide that binds selectively to scavenger receptor-
A on macrophages in atherosclerotic plaques. Nevertheless,
it was found that this receptor is also expressed on dendritic
cells (Segers et al., 2012). Therefore, M2-like macrophage-
specific peptide should be screened and developed for
clinical application.

Cieslewicz et al. polarized murine bone marrow-derived
macrophages with either IFN-γ and LPS or with IL-4 to
generate both M1 and M2 cells for biopanning. After three
rounds of phage panning, highly selective M2 macrophage-
binding peptides were identified, and this peptide binds
preferentially to M2 cells. Sequencing of the 10 clones
obtained above revealed two unique sequences:
YEQDPWGVKWWY (denoted M2pep Phage, consensus
80%), and HLSWLPDVVYAW (consensus 20%). M2pep
Phage demonstrated higher affinity and selectivity towards
M2; 10.8-fold higher binding to M2 macrophages over
scramble-M2pep, as well as 5.7-fold higher binding to M2
over M1 macrophages. Furthermore, after intravenous
administration, M2pep Phage was able to selectively binds
M2-like TAMs in mouse colon carcinoma tumors (Cieslewicz
et al., 2013).

Peptide targeting cancer associated fibroblasts (CAFs)

One of the dominant cell type in solid tumor is CAFs (Aug-
sten, 2014). They are likely to be derived from the mesoderm
and exhibited mesenchymal-like features (Kalluri and
Weinberg, 2009). CAFs are often found in close vicinity or in
direct contact with tumor cells (Kalluri and Weinberg, 2009).
In normal condition, fibroblasts are likely to be quiescent or in
resting state, yet became activated in response to growth
factors, cytokines and mechanical stress (Kalluri and Wein-
berg, 2009; Rasanen and Vaheri, 2010; Shiga et al., 2015).
Unlike tumor cells that presents diverse marker proteins on
cell surface, CAFs selectively overexpressed certain pro-
teins, such as fibroblast-activated protein-α (FAP-α) and α-
smooth muscle actin (α-SMA) (Bhowmick et al., 2004; Kalluri
and Zeisberg, 2006; Franco et al., 2010; Rasanen and
Vaheri, 2010). Therefore, CAF targeting or responsive
nanomaterial may be an efficient strategy to achieve
improved antitumor efficacy.

Brinton et al. presented a new strategy for analysis by
combining phage display and accompanying software:

“PHage Analysis for Selective Targeted PEPtides” or
PHASTpep, which they claimed to identify highly specific
and selective peptides. Using this combination, they dis-
covered and validated two peptide sequences (HTTIPKV
and APPIMSV) targeted to pancreatic CAFs in mice. The
Mander’s coefficient was high for both HTTIPKV (0.70) and
APPIMSV (0.74) indicating phage clone binding to αSMA-
positive CAFs in vivo (Brinton et al., 2016).

Urokinase plasminogen activator (uPA) receptor (uPAR)
uPA is a serine protease largely produced in stromal
fibroblast-like cells in melanoma, colon, breast, and pros-
tate cancer. The uPA/uPAR interaction is important in early
tumor development (i.e., cell adhesion and invasion).
Goodson et al. isolated a uPAR specific peptide,
AEPMPHSLNFSQYLWYT. This peptide was able to com-
pete for binding of radiolabeled uPA fragment, therefore
served as a potent antagonist for uPAR (Landon and
Deutscher, 2003).

Plausible targets for the development of tumor-
targeting peptide

CD10+GPR77+ CAFs

Recently we demonstrated that CD10+GPR77+ CAFs
specifically define a subset of CAF that correlated with
chemoresistance and poor survival in breast and lung cancer
patients. Mechanistically, the activation of CD10+GPR77+
CAFs was driven by the consistent NF-κB activation, which
is maintained via GPR77 (C5a receptor) complement sig-
naling. Furthermore, CD10+GPR77+ CAFs could lead to
successful engraftment of patient-derived xenografts
(PDXs), while blocking these CAFs with a neutralizing anti-
GPR77 antibody inhibited tumor formation while restoring
chemosensitivity of the tumor. Therefore, targeting the CD10
+GPR77+ CAF subset could present an effective therapeutic
strategy against solid tumors (Su et al., 2018).

CD146

Also known as melanoma cell adhesion molecule (MCAM),
CD146 is a member of cell adhesion molecules of the
immunoglobulin (Ig) superfamily (Lehmann et al., 1989).
CD146 has been known to be involved in angiogenesis,
tumor metastasis, lymphocyte activation, morphogenesis
during development and tissue regeneration (Ouhtit et al.,
2009; Wang and Yan, 2013; Ye et al., 2013). As CD146 is
mainly expressed on ECs, CD146 is required for endothelial
cell proliferation, migration and tube formation (Kang et al.,
2006; Zheng et al., 2009), playing critical roles in angio-
genesis (Yan et al., 2003; Chan et al., 2005; Harhouri et al.,
2010; Kebir et al., 2010; Tu et al., 2015). To date, antibody-
drug conjugate (ADC) targeting CD146 have been devel-
oped, therefore suggesting CD146 targeting could mitigate
tumor growth and metastasis (Rouleau et al., 2015).
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PITPNM3

Phosphatidylinositol transfer protein, membrane-associated
3 (PITPNM3), also known as Nir1, is essential in CCL18-
induced chemotaxis through calcium influx. The function of
PITPNM3 could be completely diminished by GPCR path-
way inhibitor pretreatment or via pertussis toxin (PTX). We
first demonstrated that PITPNM3 is abundantly expressed in
breast cancer cells (Chen et al., 2011). In another indepen-
dent research, He et al. revealed that PITPNM3 was also
upregulated in hepatocellular carcinoma (HCC) cells and
tissues. While the silencing of PITPNM3 significantly atten-
uated the invasiveness and metastatic ability of HCC cells,
the upregulation of PITPNM3 increased HCC cell mobility.
Mechanism wise, the inhibition of PITPNM3 suppressed the
activation of Pyk2, FAK, and Src, and also impaired integrin
clustering; indicating that PITPNM3 is a key player in cancer
migration and invasion, therefore is a promising target in
cancer therapy (C. He et al., 2014).

Transmembrane 4L six family member 1 (TM4SF1)

TM4SF1 was first discovered as a tumor cell antigen and
could be specifically recognized by mouse monoclonal
antibody L6 (Hellstrom et al., 1986b; Marken et al., 1992).
TM4SF1 is expressed abundantly on many cancer cells
(Hellstrom et al., 1986a; Hellstrom et al., 1986b), on tumor
blood vessel endothelial cells (Shih et al., 2009). TM4SF1 is
also associated with pathologic angiogenesis, targeting
TM4SF1 would provide a dual anticancer mechanism:
simultaneously targeting tumor cells and the tumor vascu-
lature (secondary mechanism) (Visintin et al., 2015).

PEPTIDE TARGETING OVER-EXPRESSED
RECEPTORS ON TUMOR

In cancer treatment, overexpressed receptors are modulated
by targeting agents such as antibodies, antibody fragments,

peptides or small chemicals that could block their activities
by directly binding these receptors, halting downstream
mechanism therefore blocking cancer progression. Other
approaches included exploiting receptor overexpression for
the targeted delivery of anticancer drugs or biologically
active molecules that are unable discriminate between
cancer and normal cells. The ligand acts as their “eyes”,
guiding them directly towards the overexpressed receptors
on tumor cells, therefore specifically attacking malignant
cells while sparing normal cells (Mendelsohn and Baselga,
2003).

In this section, we highlighted some prominent over-ex-
pressed receptors that have been widely used for cancer cell
specific targeting. There is a myriad of targeting ligands that
are currently known to be overexpressed in various cancer,
differing in cancer types and subtypes, stages of cancer. It is
quite a challenge to summarized all of these receptors in this
review, therefore the selection was done on PubMed search
with “receptor” and “targeting” filters. Figure 5 highlighted the
Top-10 cancer-associated overexpressed receptors and
their corresponding publications in PubMed until 2018.
Comprehensive review of literature reveals that (with the
exception of CD44 and Fas receptors), all other receptors
had been used as targets for phage display biopanning and
at least one peptide ligand has been developed for these
receptors; which are highlighted in detail in the section
below.

ErbB family (EGFR & HER2)

In the ErbB family, there are four known members: ErbB1/
EGFR/HER1 (only found in humans), ErbB2/HER2/Neu,
ErbB3/HER3 and ErbB4/HER4 (Seshacharyulu et al., 2012).
These receptors are transmembrane glycoproteins with
molecular weights ranging from 170 to 185 kDa (Olayioye
et al., 2000). EGFR are major contributors of a complex
signaling cascade in cancer cells that modulates growth,
signaling, differentiation, adhesion, migration and survival,
therefore making EGFR an attractive candidate for anti-
cancer targeting and therapy (Grandis and Sok, 2004).
Specifically, EGFR has shown to play a key role in the
development and growth of tumor cells, including cell pro-
liferation and apoptosis (Wells, 1999).

In 2014, Wang, Zho and Joshi applied for an international
patent (“Peptide reagents and methods for detection and
targeting of dysplasia, early cancer and cancer”, Patent No.
WO2016029125A1) for the screening and evaluation of
EGFR-targeting peptide through in situ phage display
screening, utilizing the PhD-7 heptapeptide random library
and PhD-12 decapeptide random library provided by New
England Biolab. The screening resulted in 17 EGFR-specific
peptides: QRHKPRE, HAHRSWS, YLTMPTP, TYPISFM,
KLPGWSG, IQSPHFF, YSIPKSS, SHRNRPRNTQPS,
NRHKPREKTFTD, TAVPLKRSSVTI, GHTANRQPWPND,
LSLTRTRHRNTR, RHRDTQNHRPTN, ARHRPKLPYTHT,
KRPRTRNKDERR, SPMPQLSTLLTR and NHVHRMH

No. of publication
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Figure 5. Top-10 cancer-associated overexpressed recep-

tors and their corresponding publications in PubMed until

2018.
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ATPAY; all showing selectivity and specificity towards EGFR.
Nevertheless, the most prominent peptide sequences tar-
geting EGFR so far are CMYIEALDKYAC (developed based
on the structure of the natural EGF ligand) (Ai et al., 2011;
Yang et al., 2016), YHWYGYTPQNVI (Kd∼22 nmol/L, also
known as “GE11”) (Li et al., 2005; Song et al., 2008; Ren
et al., 2015; Fan et al., 2016) and LARLLT (also known as
“D4”) (Song et al., 2009; Ongarora et al., 2012; Lin and Kao,
2014; Fontenot et al., 2016), was also found to have high
specificity towards EGFR, though D4 peptide was developed
using a structural model, not through phage display
technology.

HER2 is encoded by the ErbB-2 proto-oncogene. The
growth and differentiation of cells are regulated by the
intracellular domain of HER2 (Yarden and Sliwkowski, 2001;
Cho et al., 2003), while the extracellular domain of HER2
interacts with HER family members to form heterodimer
complex that facilitates signal transduction (Burstein, 2005).
HER2 is a major contributor to breast cancer and about
20%–30% of BC cases are HER2 positive (Lee-Hoeflich
et al., 2008; Li et al., 2016). HER2 genes could be amplified
to nearly about 2 million receptors on the surface of tumor
cells (Kallioniemi et al., 1992; Gutierrez and Schiff, 2011).
Therefore, HER2 emerged as a trustworthy drug target when
addressing HER2+ cancers (Baselga and Swain, 2009;
Rimawi et al., 2015), ovarian (Menderes et al., 2017; Zanini
et al., 2017) and gastric cancers (Ruschoff et al., 2012;
Abrahao-Machado and Scapulatempo-Neto, 2016). Karas-
seva et al. described the selection of HER2-binding peptides
using phage display. The peptide, KCCYSL bound to purified
HER2 with a Kd of 30 mmol/L, and selectively bound to
breast and prostate cancer cell lines, but not to normal cells
(Karasseva et al., 2002). Houimel et al. isolated three linear
peptides specific to HER2 (MARSGL, MARAKE, MSRTMS),
and from here derived a humanized pentameric ‘‘peptabody’’
(Pab) molecules (fusion of linear peptide to an antibody-like
tail). All three Pab bound to ErbB-2 with Kd∼6–16 nmol/L and
inhibited HER2+ cancer cell growth and proliferation up to
40% (Houimel et al., 2001). Park et al. isolated bipodal
peptide binder aptamer like peptide (aptide) specific to the
extra-cellular domain of HER2 (APTHER2, Kd 89 mol/L). This
APTHER2 was then conjugated onto superparamagnetic
nanoparticles (SPION) for HER2-targeted specific magnetic
resonance imaging (MRI) (Park et al., 2013).

VEGFR

Vascular endothelial cell growth factor (VEGF) is a protein
tyrosine kinase, and a well-known mediator of angiogenesis
which is predominately mostly mediated by VEGF receptor
family (VEGRR1, 2, 3; neurophilin 1) (Ferrara et al., 2003;
Hoeben et al., 2004). Ample evidences now show that
VEGFR family could be exploited as a potent therapeutic
target in cancers. Often, the overexpression of VEGF and
VEGFR are associated with invasion and metastasis in

many malignancies (Prewett et al., 1999), including col-
orectal (Amaya et al., 1997; Duff et al., 2006), breast (Price
et al., 2001; Ryden et al., 2003; Wulfing et al., 2005; Ghosh
et al., 2008) and non-small cell lung cancers (Koukourakis
et al., 2000; Kajita et al., 2001).

Giordano et al. introduced “Biopanning and Rapid Anal-
ysis of Selective Interactive Ligands” (termed BRASIL) as a
new approach in the screening, selection and sorting of high
affinity peptides. The novelty of this method lies in the
additional step of cell-surface-binding peptides sorting based
on differential centrifugation. Cell suspension was first
incubated with phage in an aqueous upper phase, which will
then be centrifuged through a non-miscible organic lower
phase. Giordano and colleagues claimed that this single-
step organic phase separation is faster, with enhanced
sensitivity and specificity comparing to current methods that
primarily rely on multiple washing steps or limiting dilution.
Using HUVEC cells as a selection, they isolated 21 phage
clones bound to starved HUVECs and to VEGF-stimulated
HUVECs. Fourteen clones (67%) had a >150% enhance-
ment (range, 1.5–8.7-fold; median, 2.2-fold) binding upon
VEGF stimulation. Sequence alignment analysis of 34
clones randomly chosen from the selected phage revealed
that 24 clones (70%) of the phage recovered through BRA-
SIL selection had peptide motifs that could be perfectly
mapped to sequences present in VEGF family members.
They selected two peptides (CPQPRPLC and CNIRRQGC)
for in vitro binding assay on VEGF receptor- 1 (VEGFR-1).
One of the selected peptides, CPQPRPLC phage bound to
VEGFR at over 1,000-fold enrichment as compared to con-
trol (Giordano et al., 2001).

Folate receptor alpha (FRα)

Folate receptor alpha (FRα) is a 38-kDa glycoprotein, and is
a receptor that binds to folates and mediates their intracel-
lular transport(Henderson, 1990). FRα is significantly up-
regulated in a many cancer such as ovarian cancer (OC),
endometrial adenocarcinoma and non-small cell lung cancer
(NSCLC) (Kane et al., 1988; Matsue et al., 1992; Kelemen,
2006). It is known that the expression of FRα is highly cor-
related with tumor grade, stage, malignancy and aggres-
siveness (Bueno et al., 2001; Hartmann et al., 2007),
therefore suggesting that FRα is a promising target for tumor
therapy and diagnosis.

Xing et al. reported a FRα specific 12-mer peptide C7
(MHTAPGWGYRLS, Kd∼0.3 μmol/L) isolated through four
rounds of biopanning by using a Ph.D.-12 phage library
displaying random dodecapeptides. The tumor targeting
ability of C7 was confirmed in in vivo phage homing exper-
iment and fluorescence imaging. C7 was accumulated at the
site of tumor tissue, indicating that the peptide has the ability
to target tumor tissue without phage environment, indicating
the probability of using this peptide for FRα targeted therapy
(Xing et al., 2018).
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PD-L1

Immune checkpoint inhibition has demonstrated significant
success in cancer treatment in recent years, as host immune
response could recover from tumor evasion (Pardoll, 2012).
By evoking the host’s innate immune response, patients can
potentially negate the tumor’s ability to resist targeted ther-
apy, eliminating the need for continuous lines of therapy
(Tumeh et al., 2014). One of particular interest is the inter-
action between programmed cell death receptor 1 (PD-1)
and its ligand, programmed cell death ligand 1 (PD-L1) (Zou
et al., 2016). PD-L1 expression allow tumor cells to go
unrecognized by immune T-cells as foreign. The overex-
pression on PD-L1 on tumor cells would interact with the PD-
1 on the T-cell surface, inhibiting the T-cell to destroy the
foreign (tumor) cell (J. Naidoo et al., 2014) Overexpression
of PD-L1 has been reported in many different tumor types,
such as melanoma (40%–100%), NSCLC (35%–95%),
glioblastoma (100%), ovarian cancer (33%–80%), and col-
orectal adenocarcinoma (53%) (Chen et al., 2012).

Recently, Li et al. used a random bacterial surface display
library to screen and identify the PD-L1 binding peptides,
and further enriched the peptide binding with PD-L1 with
magnetic-activated cell sorting (MACS) and fluorescence-
activated cell sorting (FACS). From the initial 5 × 106 pep-
tides library after one cycle of MACS, after eight cycles of
FACS, the percentage of peptide in the sorting gate
increased from 2.1% (40 nmol/L PD-L1) to 54.1% (10 nmol/L
PD-L1). Sequencing of forty bacterial clones revealed nine
different peptide sequences with the consensus sequence
CWCWR, Kd∼95 nmol/L. The soluble peptides of the
CWCWR sequence were synthesized, and the binding
specificity was tested in PD-L1 high-expressing MDA-MB-
231 and low-expressing MDA-MB-435 breast cancer cell
lines (Li et al., 2018).

c-MET

c-MET, also called tyrosine-protein kinase Met or hepatocyte
growth factor receptor (HGFR), is a protein that is encoded
by the MET gene. MET gene was discovered as a proto-
oncogene more than two decades ago and it has been
extensively studied (Cooper et al., 1984; Bottaro et al.,
1991). Met could be activated via autocrine, paracrine, or
genetic mutations that can lead to tumorigenesis, angio-
genesis and metastasis (Rong et al., 1993; Rong et al.,
1994; Takayama et al., 1997). Various studies have linked
the overexpression of this C-Met-ligand-pair to most types of
human solid tumors, including brain (Jung et al., 1994),
breast (Altstock et al., 2000), ovary (Huntsman et al., 1999),
thyroid (Di Renzo et al., 1992), pancreas (Ebert et al., 1994),
stomach (Di Renzo et al., 1991), prostate (Humphrey et al.,
1995) and nasopharyngeal carcinoma (Qian et al., 2002).

To isolate a specific c-Met-binding peptide, Zhao et al.
screened for a Met-binding peptide (YLFSVHWPPLKA,
Kd∼64.2 nmol/L), designated Met-pep1. Met-pep1 binds to

Met on the cell surface and thus competed with HGF for Met
binding. Interestingly, Met-pep1 is internalized by the cells
after binding, and inhibited human leiomyosarcoma SK-
LMS-1 proliferation in vitro. In SK-LMS-1 mouse xenograft
model, tumor-homing of Met-pep1 was evident as early as 1
h post-injection and remained visible in some animals as late
as 24 h post injection (Zhao et al., 2007), indicating that Met-
pep1 could be used as a diagnostic agent or a therapeutic
carrier in c-MET overexpressing tumors.

CD133

CD133 is first identified as an antigenic marker for
hematopoietic stem cells (Miraglia et al., 1997; Yin et al.,
1997). CD133 is found to be expressed in several
hematopoietic malignancies including acute myelogenous
leukemia (Horn et al., 1999), chronic lymphocytic leukemia
(Waller et al., 1999), and myelodysplastic syndromes (Green
et al., 2000). Recently, CD133 has been reported to be
overexpressed in several solid tumors including retinoblas-
toma (Hemmati et al., 2003), glioblastoma (Singh et al.,
2003; Singh et al., 2004), prostate adenocarcinoma (Collins
et al., 2005; Rizzo et al., 2005), kidney carcinoma (Florek
et al., 2005), pancreatic cancer (Hermann et al., 2007) and
colorectal cancers (O’Brien et al., 2007). Importantly, in
glioblastoma and colorectal cancer, CD133-expressing cells
are considered cancer stem cells (CSCs) as they mediate
tumor initiation and metastasis (Singh et al., 2004; O’Brien
et al., 2007; Ricci-Vitiani et al., 2007). These small popula-
tion of CSCs are considered the tumor initiating cell popu-
lation, and CSCs are often insensitive to chemotherapy and
radiation treatment (Neuzil et al., 2007; Tang et al., 2007).
Bao et al. showed that CD133+ glioma stem cells mediate
radiation resistance in highly malignant gliomas (Bao et al.,
2006). Therefore, targeting CD133+ would present an
opportunity to eradicate tumor initiating cells, CSCs and
tumor cells, also potentially drug-resistant cancer subpopu-
lations (Smith et al., 2008).

Sun et al. identified a peptide binding specifically to
mouse CD133, LS-7 (LQNAPRS, Kd∼ ND). Co-localization
of LS-7 was seen with CD133+ cells but not CD133- cells.
LS-7 significantly inhibited cell migration of colon and breast
cancer cells. In mice, in vivo treatment of LS-7 homed with
high specificity towards CD133+ cells indicating CD133
could be a potential target for anti-motility and anti-metas-
tasis strategy especially in cancer stem cell therapy (Sun
et al., 2012).

Prostate-specific membrane antigen (PSMA)

PSMA is a 100 kDa type II transmembrane glycosylated
protein and as the name implies, is overexpressed in nearly
all prostate cancers cells, its expression is 100–1000 times
higher in tumor tissues compared to normal tissues (Wright
et al., 1995). The initial descriptions of an increase in PSMA
expression in prostate cancer was associated with higher
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tumor grade with the presence of metastases (Bostwick
et al., 1998; Sweat et al., 1998; Chang et al., 2001) sug-
gesting that PSMA is a highly plausible target for PSMA-
positive prostate cancer therapy and since has been adop-
ted as a biomarker for diagnosis and imaging (Barve et al.,
2014).

To screen for novel PSMA-specific peptide to be used as
targeting ligands and targeted drug delivery to prostate
cancer cells, Jin et al. identified PSMA-specific peptides
through combinatorial phage display techniques. After five
rounds of biopanning against recombinant human PSMA
extracellular domain (ECD), GTI tripeptide was identified as
the highest affinity peptides towards PSMA ECD, with Kd

values of the GTI peptide to PSMA-positive LNCaP and C4-
2 cells are 8.22 μmol/L and 8.91 μmol/L, respectively. Con-
jugation of GTI peptide with the proapoptotic peptide D
(KLAKLAK)2 induced cell death in LNCaP cells. Also, GTI
peptide shows the highest uptake in C4-2 xenografts, with
minimal uptake in other organs (Jin et al., 2016).

SCARCITY OF INTRACELLULAR TARGETING
PEPTIDE: A CASE STUDY FOR APTSTAT3

Most peptide therapeutics are peptides targeting intracellular
checkpoints in tumor as these peptides could exert thera-
peutic effects per se via binding and inactive their targets.
These peptides usually target transcription factor, enzymes
or overexpressed oncogene that are not visible extracellu-
larly. Oncogene-targeted therapeutic strategies have been
shown to sensitize tumor cells to the effects of chemotherapy
and radiotherapy, and act synergistically with the traditional
chemo- and radiotherapeutics (Kumar et al., 1996; Milas
et al., 2000; Yu and Hung, 2000; Argiris et al., 2004; Ropero
et al., 2004). Nevertheless, compared to extracellular tar-
geting peptide, publications related to intracellular targeting
peptide in the suppression of oncogenes or transcription
factor has not been on par, and this might be attributed to the
inefficiency of the peptides to effectively cross the cellular
membrane. However, if succeeded in overcoming this bar-
rier, peptides could be much more effective than antibodies
or their derivatives due to the absence of thiolated secondary
structure, allowing peptides to retain their original secondary
structure in exerting the targeting effect.

STAT3 has received much attention for the important role
it plays in signaling pathways linked to cancers (Yu et al.,
2009). In cancer cells notably, STAT3 tends to be constitu-
tively activated and had been associated with tumorigenesis
and malignancy. Constant STAT3 activation leads to the
production of a number of cytokines that regulate prolifera-
tion, angiogenesis, survival, and metastasis (Yu et al., 2007).
Therefore, many research groups have tried to develop
STAT3 inhibitors that can block upstream or downstream
elements in the STAT3 signaling pathway (Benekli et al.,
2009; Yue and Turkson, 2009). We previously reported an
identification of STAT3-binding peptide (APTSTAT3, Kd ∼231

nmol/L). Conjugation of APTSTAT3 with a cell-penetrating
peptide 9R (APTSTAT3-9R) was developed for enhanced
cellular uptake. Not only APTSTAT3-9R blocked STAT3
phosphorylation, they also reduced the expression of STAT
downstream molecules in various types of cancer cells
(melanoma, breast, lung, liver and brain cancer) Further-
more, intra-tumoral injection of APTSTAT3-9R exerted potent
antitumor activity in both xenograft and allograft tumor
models. This study suggested a solid preclinical proof-of-
concept for APTSTAT3 as a powerful agent for STAT3 inhibi-
tion for targeting broad array of cancers with constitutively
activated STAT3 (Fig. 6).

CHALLENGES AND FUTURE OUTLOOK

The utilization of peptide as a targeting could bring forth
multiple advantages - such as highly specific, naturally
degradable, easily synthesized, and simple tunability with a
variety of linker chemistries, and potentially reduce side
effects and toxicity (Wang et al., 2017). However, there are
also various hurdles that needed to be overcome in order for
these peptides to be developed in the clinics.

Increasing peptide avidity

The affinity of a peptide is used to describe the strength of a
peptide-ligand interaction. Most peptides possess high
affinity towards target (nanomolar to micromolar), which
could be considered as high affinity. However, a short, sin-
gular linear ligand, peptides usually lack avidity, that is the
ability to bind to the target via multiple interactions that can
synergize their binding to enhance the affinity and also lead
to enhancement of target residence time resulting in high
local concentration of the targeted molecules (Vauquelin and
Charlton, 2013). To overcome this barrier, most researchers
decorated short linear peptides on the surface of nanocar-
riers to increase the probability of the peptide to interact with
the specific ligands. Rouslahti et al. fused NGR peptide to
TNFα, a highly toxic cytokine whose clinical application was
limited due to its systemic toxicity. These targeted cytokines
were effective even at 1,000-fold lower concentration that
than usual dose, therefore diminishing the highly toxic side
effects of TNFα. The success of this peptide-cytokine fusion
could be attributed to the fact that the quaternary structure of
TNFα is a trimer and the NGR peptide could be attached to
each subunit, resulting in three NGR peptide: TNFα ratio;
enhancing receptor binding of NGR peptide through an
avidity effect (Ruoslahti, 2012). Similar strategy was adopted
by Jeon et al., when they described an EDB-targeting aptide
fused to mouse TNF-α (mTNFα-APTEDB) for systemic and
targeted therapy of EDB-overexpressing fibrosarcoma (Jeon
et al., 2017). mTNFα-APTEDB showed enhanced tumor
inhibition properties than mTNFα alone or mTNFα linked to a
nonrelevant aptide, without causing an appreciable toxicity
as measured in body weight loss.
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Reducing peptide aggregation and increasing peptide
solubility

Peptide with 5 amino acids and less are usually water sol-
uble and their solubility decreases with the length of the
peptide. However, peptides screened through phage display
biopanning ranged between 7–30 amino acids. In aqueous
solution, these peptides could be conforming to a specific
3-dimentional structure that allowed specific binding with
their receptors. In practice, solubilizing peptides could be
challenging as improper solubilization could result in the loss
of the peptide activity. For this reason, Xiao et al. conjugated
betaine onto bacterial xanthine guanine phosphoribosyl-
transferase (CG-GPRT) protein and the HIV inhibitory pep-
tide (CG-T20). Results indicated that betaine could

successfully reduce the protein/peptide aggregation and
increased the solubility of both the protein and the peptide
(Xiao et al., 2008), therefore suggesting that betaine conju-
gation could be used for reducing peptide aggregation and
increasing peptide solubility.

Overcoming poor cell permeability and increase cellular
uptake

Since the discovery of natural CPPs (Tat and Penetratin), a
number of synthetic peptides have since been added to this
family; including short peptides comprising positive-charged
amino acids such as arginine, lysine or histidine. To date,
many reports on CPPs in their application as intracellular
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delivery vehicles, including small-molecule drugs (Lindgren
et al., 2006), liposomes (Zhang et al., 2013), and biophar-
maceuticals including oligonucleotides (Margus et al., 2012),
peptides and proteins (Morris et al., 2001). When conjugated
with TAT peptide, pro-apoptotic peptides (KLAKLAK)2 con-
jugate was taken up efficiently by mouse melanoma and
human breast cancer cells in vitro. In the cells, the peptide
conjugate further activated the endogenous caspase-3
which then cleaved the peptide resulting in release of the
pro-apoptotic peptide (KLAKLAK)2. Not only this peptide
induced apoptosis in these cells in vitro, they also inhibited
the growth of mouse melanoma xenografts in mice (Kwon
et al., 2008). This peptide conjugate also induced apoptosis
in the various cancer cell lines such as melanoma, cervical
carcinoma, non-small cell lung carcinoma, breast cancer
(Yang et al., 2010).

Phage display biopanning technique has brought about
an immense pool of high affinity and highly specific peptide
ligand for solid tumor therapy. Many of these peptide-based
targeting ligands have shown promising results in enhancing
solid tumors therapy, including increasing tumor accumula-
tion, highly specific tumor targeting and enhanced tumor
inhibition effect when used in combination with anti-cancer
drugs or biologics. However, for successful translation into
the clinics, peptide-targeting ligand should be optimized for
their affinity, avidity, water-solubility and target specificity.
With the advancement of technology, one could now use a
combined primary phage display screening and a secondary
computational optimization method to develop an optimal
peptide for targeting any receptor of interest in the field of
solid tumor therapy.
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