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Phorbol myristate acetate suppresses breast
cancer cell growth via down-regulation
of P-Rex1 expression

Dear Editor,

P-Rex1 is a Rac-selective guanine nucleotide exchange
factor (GEF) that is synergistically activated by G-protein
coupled receptors and receptor tyrosine kinases (Welch
et al., 2002). We previously reported that aberrantly upreg-
ulated P-Rex1 promotes prostate cancer metastasis by
activating Rac1 signals (Qin et al., 2009). P-Rex1 is also
highly overexpressed in estrogen receptor-positive and
ErbB2-overexpressing human luminal breast tumors, which
correlates with the aggressiveness of human breast cancer
and poor outcome in breast cancer patients (Montero et al.,
2011; Sosa et al., 2010). Silence of endogenous P-Rex1
blocks breast cancer cell proliferation, tumorigenesis, and
motility (Montero et al., 2011; Sosa et al., 2010). Therefore,
P-Rex1 is an important mediator in cancer progression and
could be a potential therapeutic target.

Protein kinase C (PKC), a family of serine-threonine
kinases, has been implicated in breast cancer progression
(Urtreger et al., 2012). PKC isozymes are classified into
conventional (α, β, and γ), novel (δ, ε, η, and θ), and atypical
(ζ and λ) PKCs. Expression profiles of PKC isoforms vary
among different breast cancer cell lines (Urtreger et al.,
2012). Phorbol 12-myristate 13-acetate (PMA), a structural
homolog of diacylglycerol (DAG), activates conventional and
novel PKCs. PMA treatment induces breast cancer cell
growth arrest via sustained up-regulation of the cell-cycle
inhibitor p21 (WAF1/CIP1) (Barboule et al., 1999; Fortino
et al., 2008). Interestingly, Rac1 was reported to be over-
expressed or hyperactive in breast cancer tissues (Sch-
nelzer et al., 2000) and hyperactivity of Rac1 suppressed
p21 (WAF1/CIP1) expression in cancer cells (Knight-Kra-
jewski et al., 2004). Since P-Rex1 functions as a Rac1
activator in cancer cells (Qin et al., 2009; Sosa et al., 2010),
the purpose of the present study was to determine the role of
P-Rex1 in PMA inhibition of breast cancer cell growth.

Both MCF-7 and BT-474 cell lines, derived from human
luminal breast cancers, are ER-positive and highly express
P-Rex1 (Sosa et al., 2010). MCF-7 cells are also ErbB2-
positive whereas BT-474 cells are ErbB2-overexpressed.
Thus, these two cell lines were chosen for our studies.

Western blot analysis showed that the P-Rex1 protein
expression level in BT-474 cells is 4.5-fold higher than that in
MCF-7 cells (Fig. 1A). Thirty hours treatment with PMA
caused a concentration-dependent decrease in P-Rex1
protein levels in both MCF-7 and BT-474 cells with a maxi-
mum reduction of 87.2% ± 1.1% and 57.0% ± 8.6 %,
respectively, at a concentration of 10 ng/mL PMA (Fig. 1B).
PMA also significantly attenuated growth of both MCF-7 and
BT-474 cells in a concentration-dependent manner with an
inhibition of 77.8% ± 12.4% and 50.6% ± 3.7%, respectively,
at 10 ng/mL PMA (Fig. 1C). Interestingly, PMA-induced
inhibition of cell growth is correlated to the degree of P-Rex1
down-regulation in MCF-7 and BT-474 cells. Thus, a recov-
ery assay was performed to determine whether PMA inhi-
bition of breast cancer cell growth is P-Rex1 dependent. As
shown in Fig. 1D inset, expression of recombinant P-Rex1
restored the P-Rex1 expression level in PMA-treated MCF-7
cells. PMA treatment dramatically reduced the growth of
control MCF-7 cells but not cells transfected with P-Rex1.
Expression of recombinant P-Rex1 had little effect on MCF-7
cell growth in the absence of PMA but completely restored
cell growth in the presence of PMA (Fig. 1D). Although
transfection of recombinant P-Rex1 plasmid only slightly
increased P-Rex1 protein level in untreated BT-474 cells, it
still partially restored the P-Rex1 protein expression in PMA-
treated BT-474 cells (Fig. 1E, inset). More importantly,
expression of recombinant P-Rex1 increased PMA-treated
BT-474 cell growth by 1.7-fold, which equals 70% of
untreated control cells (Fig. 1E).

Hyperactived ErbB receptor signaling has been frequently
characterized in breast carcinomas (Hynes and Lane, 2005).
P-Rex1 is an essential mediator of ErbB signaling in breast
cancer (Sosa et al., 2010). Thus, we silenced endogenous
P-Rex1 expression in MCF-7 and BT-474 cells by over 80%
using P-Rex1 specific siRNA (Fig. 1F and 1G, inset).
Treatment with heregulin (100 ng/mL), an ErbB activating
ligand, increased proliferation of MCF-7 (Fig. 1F) and BT-474
(Fig. 1G) cells transfected with control siRNA by 1.8-fold and
2.1-fold respectively, as indicated by BrdU incorporation
assay. However, this stimulatory effect was significantly
reduced in cells transfected with P-Rex1 siRNA (Fig. 1F and

© The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2016, 7(6):445–449
DOI 10.1007/s13238-016-0261-x Protein&Cell

P
ro
te
in

&
C
e
ll

http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-016-0261-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-016-0261-x&amp;domain=pdf


1G). Together, our data suggest that P-Rex1 functions as a
key molecule in breast cancer cell growth and that down-
regulation of P-Rex1 contributes to PMA suppression of
MCF-7 and BT-474 cell growth.

PMA mimics DAG in the cellular membrane to activate
PKC. Treatment with PMA (10 ng/mL) significantly increased

PKC kinase activity in both MCF-7 and BT-474 cells, which
was completely blocked by pre-treatment with the general
PKC inhibitor Gö6983 (2 µmol/L) (Fig. S1A). Western blot
assay showed that both MCF-7 and BT-474 cells express
PMA-sensitive conventional PKC isoforms (α and β) and
novel PKC isoforms (δ, ε and η). MCF-7 cells also express
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Figure 1. PMA suppresses breast cancer cell growth through P-Rex1 down-regulation. (A) Western blot analysis of P-Rex1

protein expression in MCF-7 and BT-474 cells. Data shown are means ± SEM (n = 3). (B) PMA concentration-dependent down-

regulation of P-Rex1 protein expression in MCF-7 and BT-474 cells. Data are means ± SEM (n = 3) with *P < 0.01 and **P < 0.001

compared with untreated cells, normalized by β-actin. (C) PMA concentration-dependent suppression of MCF-7 and BT-474 cell

growth. Cells were cultured in the presence or absence of PMA for 48 h (MCF-7) or 72 h (BT-474). Data shown are means ± SEM (n =

5 of duplicates) with *P < 0.05 and **P < 0.001 as compared with untreated cells. (D and E) Expression of recombinant P-Rex1

blocked PMA inhibition of MCF-7 and BT-474 cell growth. Cells transfected with control vector or P-Rex1 were cultured in the

absence or presence of PMA (10 ng/mL) for 24 h and 48 h (MCF-7) or 48 h (BT-474). Relative cell growth refers to increased cell

number normalized by cell number prior to PMA treatment. Data are means ± SEM (n = 5 of duplicates) with *P < 0.01 as compared to

cells without PMA treatment. (F and G) Silence of endogenous P-Rex1 by its siRNA abolished heregulin (100 ng/mL)-stimulated

MCF-7 and BT-474 cell proliferation, determined by BrdU incorporation assay. Data are means ± SEM (n = 3 of triplicates) with *P <

0.01. Insets: Western blot analysis of P-Rex1 and β-actin protein expression in MCF-7 and BT-474 cells.
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the novel PKC isoform (θ). In addition, PMA-insensitive
atypical PKC isoforms (ι and λ) were also detected in both
MCF-7 and BT-474 cells (Fig. S1B). Immunofluorescence
staining analysis showed that 30 min after treatment of MCF-
7 cells with PMA (10 ng/mL), PKCα appeared to translocate
to the cell plasma membrane and was enriched in the
nucleus whereas PKCε mainly translocated to the nucleus
(Fig. S1C). These effects further indicate PKC activation
upon stimulation with PMA. Interestingly, pre-treatment with
Gö6983 (2 µmol/L) reduced the PMA inhibitory effect on
P-Rex1 protein expression from 85.6% ± 2.6% to 33.6% ±
7.7% in MCF7 cells (Fig. 2A, left) and completely blocked
PMA-induced down-regulation of P-Rex1 protein in BT-474
cells (Fig. 2A, right). In contrast, 100 nmol/L of Gö6976, a
selective inhibitor of conventional PKC isoforms, had no
effect on PMA down-regulation of P-Rex1 expression in
MCF-7 and BT-474 cells (Fig. 2A). As expected, Gö6983 but
not Gö6976 blocked PMA-induced suppression of MCF-7
and BT-474 cell growth (Fig. 2B). Thus, activation of novel
PKC isoforms but not conventional PKC isoforms may be
involved in PMA-induced P-Rex1 down-regulation and sup-
pression of breast cancer cell growth.

It should be noted that Gö6983 is a PKC-selective but not
specific inhibitor. At the concentration used (2 µmol/L) it also
inhibits many other kinases. Our data does not exclude the
possibility of involvement of other kinases in PMA effects in
breast cancer cells. Thus, we investigated whether expres-
sion of active novel PKC isoforms (PKCε, PKCδ, and PKCη)
directly modulate P-Rex1 expression and breast cancer cell
growth. As shown in Fig. 2C, ectopic expression of wild-type
(WT) or constitutively active (CAT) PKCδ or PKCη had no
significant effect whereas expression of PKCε CAT mutant
down-regulated P-Rex1 protein expression in MCF-7 and
BT-474 cells by 40%–60% (Fig. 2C). In contrast, expression
of PKCε WT had no significant effect on P-Rex1 expression
(Fig. 2C), suggesting that PKCε overexpression by itself is
not sufficient to induce P-Rex1 down-regulation in breast
cancer cells. To further investigate whether PKCε activity is
essential for P-Rex1 down-regulation, Gö6983 was used to
inhibit the constitutively active PKCε activity. As shown in
Fig. 2D, Gö6983 completely abolished PKCε CAT-induced
P-Rex1 down-regulation. Interestingly, expression of PKCε
CAT mutant but not WT suppressed MCF-7 cell proliferation
by 70%, which was also attenuated by Gö6983 (Fig. 2E).
Together, our data suggest that activation of PKCε is more
important than overexpression of PKCε in regulating P-Rex1
expression and breast cancer cell growth.

In summary, our study is the first to use a small molecule,
PMA, to target P-Rex1 expression levels to suppress breast
cancer cell growth. PMA itself has both oncogenic and anti-
tumorigenic properties by direct or indirect modulation of
various cellular targets (Griner and Kazanietz, 2007). Previ-
ous studies suggest that induction of the cell-cycle inhibitor
p21 (WAF1/CIP1) is involved in connecting thePMA-activated
PKC signaling pathways to the breast cancer cell cycle reg-
ulatory machinery, leading to cell growth arrest (Barboule

et al., 1999; Fortino et al., 2008). Interestingly, Rac1 was
reported to be overexpressed or hyperactive in breast cancer
tissues and hyperactivity of Rac1 suppressed p21 (WAF1/
CIP1) expression in cancer cells. Since P-Rex1 functions as a
Rac1 activator in cancer cells, PMA-down-regulation of
P-Rex1 expression should result in reduction of Rac1 activity,
leading to increased expression of p21 (WAF1/CIP1). Thus,
our study provides a potential molecular mechanism under-
lying PMA suppression of breast cancer cell growth.

Our studies further showed that active PKCε, but not the
other PMA-sensitive PKC isoforms, down-regulates P-Rex1
expression and suppresses breast cancer cell growth. PKCε
has a unique role in regulating cell-signaling pathways in
cancer (Griner et al., 2007; Urtreger et al., 2012). Elevated
PKCε levels were correlated with breast cancer aggres-
siveness (Pan et al., 2005). Our study presents the first
evidence suggesting that the PKCε/P-Rex1 pathway may be
an attractive new target for therapeutic intervention, which
provides an additional approach for improving the current
treatment of breast cancer. For example, estrogen receptor-
targeted therapies have significantly reduced breast cancer
mortality. However, resistance generally emerges because
various growth factor receptors such as ErbB2 can trans-
activate estrogen receptors in an estrogen-independent
manner, contributing to tumor growth. Trastuzumab, a
monoclonal ErbB2 antibody, has significant clinical benefit
for patients with ErbB2-elevated breast tumors (Smith et al.,
2007). However, patients may also develop resistance within
1 year of treatment. A common feature of the possible
mechanisms of resistance is Rac1 activation and inactivation
of Rac1 reduces Trastuzumab resistance in breast cancer
cells (Zhao et al., 2011). P-Rex1 is highly expressed in
human breast cancers with high ErbB2 and estrogen
receptor expression and functions as a Rac-specific activa-
tor at a convergence point downstream of ErbB receptors
and other growth factor receptors (Montero et al., 2011;
2013; Sosa et al., 2010). Thus, it has been suggested as an
attractive therapeutic target (Sosa et al., 2010). Under-
standing PKCε-dependent P-Rex1 down-regulation may
provide a novel strategy for development of chemothera-
peutic agents for P-Rex1-overexpressing breast cancer
patients that develop resistance to anti-estrogen and/or anti-
ErbB2 therapies.
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Figure 2. PKCε activation contributes to PMA suppression of breast cancer cell growth through P-Rex1 down-regulation.

The general PKC inhibitor Gö6983 (2 µmol/L), but not the conventional PKC isoform inhibitor Gö6976 (100 nmol/L), attenuated PMA

(10 ng/mL) suppression of P-Rex1 expression (A) and breast cancer cell growth (B). (A) Western blot analysis of P-Rex1 expression.

Data are means ± SEM (n = 3) with *P < 0.01 compared to cells without PMA treatment. (B) Cell growth assay. Cells were cultured in

the presence or absence of PMA for 48 h (MCF-7) or 72 h (BT-474). Data are means ± SEM (n = 5 of duplicates) with *P < 0.01

compared to cells without PMA treatment. (C) Expression of PKCε constitutively active form (CAT), but not PKCε wild-type (WT),

PKCδ or PKCη WTand CAT mutant, down-regulated P-Rex1 expression in MCF-7 and BT-474 cells. Data are means ± SEM (n = 3)

with *P < 0.01 compared to cells transfected with vector. (D) Gö6983 (2 µmol/L) attenuated PKCε CAT-induced down-regulation of

P-Rex1 expression in MCF-7 cells. (E) Expression of PKCε CAT, but not its WT, suppressed MCF-7 cell growth, which is blocked by

treatment with Gö6983 (2 µmol/L). Data are means ± SEM (n = 3 of duplicates) with *P < 0.01 compared to cells transfected with

vector. Insets: Representative Western blot images of P-Rex1, PKCε, and β-actin protein expression in breast cancer cells.
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