
REVIEW ARTICLE

An insight into plant–Tomato leaf curl New Delhi virus interaction

Namisha Sharma1
• Manoj Prasad1

Received: 15 August 2017 / Accepted: 23 October 2017 / Published online: 2 November 2017

� Archana Sharma Foundation of Calcutta 2017

Abstract Plants being sessile are constantly exposed to

several stresses, which involve different types of abiotic

and biotic stress factors. Biotic stress in plants is caused by

various living organisms called plant pathogens including

bacteria, viruses, fungi and parasites. Among these patho-

gens, plant viruses cause severe damage to world agricul-

tural productivity. The reason behind such widespread

destruction caused by viruses is their ability to frequently

evolve them through mutation and genetic recombination,

to succeed over the unfavourable conditions. The virus

infects both susceptible and tolerant/resistant plants by the

similar and systematic manner but resistant/tolerant plants

combat the virus spread and suppress the viral growth.

When pathogen enters the plant system, diverse defense

responses are initiated which are mediated by plant disease

resistance genes (R genes) mediated resistance and hor-

mone based signaling pathways which restrict the viral

spread by initiating hypersensitive response. To further

enhance our knowledge regarding resistance mechanisms,

the virus infection pattern and interactions of virus within

resistant and susceptible plants needs to be analysed. At

present, most successful strategy involves deployment of

crops possessing resistance/tolerance against viruses with

the foremost interest of detecting genes associated with

resistance or recovery. Among several plant viruses,

‘Geminiviruses’ are the most devastating. In this article we

have provided a comprehensive overview of Tomato leaf

curl New Delhi virus (ToLCNDV), a member of family

Geminiviridae and the plant defense system initiated

against this virus. The evaluation of ToLCNDV infection

in a variety of hosts differing in their tolerance and iden-

tification of differentially expressed genes would be helpful

in speculating the threats associated with similar bego-

moviral invasions.

Keywords ToLCNDV � Epigenetics � Host–virus

interaction � Virus resistance

Introduction

Solanaceae is economically the most important family and

are highly divergent in regard to habitat and morphology

[27]. Tomato is considered as protective food based upon

the significant amount of nutrients it provides which are

essential for human health. Tomato yield has been affected

by more than 200 diseases caused by fungi, bacteria,

viruses, and nematodes worldwide. It was reported to serve

as a key host crop for 24 fungi, 7 bacteria, 10 viruses, 3

viroids, and multiple nematodes which indicate its signif-

icance as a model plant for studying the molecular mech-

anisms governing plant-pathogen interactions [20]. Viral

diseases are major limiting factor in plant cultivation and

extremely difficult to control or eradicate. About 136 viral

species have been described to infect tomato crops, which

is notably higher to any other vegetable crop. Among that

Tomato yellow leaf curl virus (TYLCV; Begomovirus),

Tomato spotted wilt virus (TSWV; Tospovirus) Pepino

mosaic virus (PepMV; Potexvirus), Tomato mosaic virus

(TMV; Tobamovirus) and Tomato torrado virus (ToTV;

Torradovirus) are the most important emerging viruses
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causing severe diseases to tomato [32]. The members of

Geminiviridae family have caused severe diseases and

yield loss in tomato. The symptoms of virus infection in

host plants include yellow mosaic, upward curling of leaf

margin, vein swelling, decreased leaflet area, and plant

stunting. Amongst the geminivirus infecting tomato, To-

mato leaf curl New Delhi virus (ToLCNDV) has been

reported to hinder the agricultural production in a broad

geographical regions of the world comprising Middle and

Far East, Europe, North Africa and predominant in north-

ern India. In recent past, comprehensive research has been

conducted related to virus genome, encoded proteins and

their functions, genetic variability and plant-virus interac-

tions. Depending on the plant-virus interaction, several

strategies have been proposed to control/ reduce the virus

spread. Still the sources of resistance against ToLCNDV

are limited. Therefore, there is an immediate need to

identify the mechanism that leads to the natural resistance

in the wild relatives against ToLCNDV. This review

highlights our current knowledge of ToLCNDV infection,

interaction with host plants and significance of these

associations.

Tomato leaf curl New Delhi virus

The family Geminiviridae consists of seven genera,

namely, Becurtovirus, Begomovirus, Mastrevirus, Cur-

tovirus, Eragrovirus, Topocuvirus and Turncurtovirus,

which are characterized by single stranded circular

deoxyribonucleic acid (ssDNA) genomes encapsidated in a

geminate shape particle. Geminivirus has a small genome

(2.5–3.0 kb), comprised of either one (monopartite) or two

circular ssDNA molecules (bipartite) and are transmitted

by specific insect vectors [31]. Amongst all the members,

Begomoviruses cause a significant loss in yield of various

economically important dicotyledonous crops and are

transmitted through whitefly (Bemisia tabaci). It is the

largest genus of Geminiviridae family containing 322

species. The members of this genus can be either

monopartite or bipartite. They encode for 7–8 proteins on

both virion and complementary strands. Depending on the

phylogeny begomoviruses can be distinguished into two

groups: Old World (OW) and New World (NW). These

groups are genetically distinct as NW viruses entail

bipartite genome, whereas the OW begomoviruses com-

prise either a monopartite along with satellite DNAs or

bipartite genome [22]. Moreover, OW viruses are geneti-

cally more diverse and additionally have a conserved gene,

AV2/V2 (pre-coat protein) in DNA-A which is not encoded

by the NW begomoviruses [91]. As it has been reported

that begomoviruses have higher tendency to recombination

and attaining new DNA components, thus they are extre-

mely vulnerable to evolutionary process, leading to

emergence of new virulent strains. ToLCNDV is a bipartite

begomovirus and is naturally transmitted via whitefly

species (Bemisia tabaci; order: Hemiptera). Due to its

association with severe diseases in economically and

socially relevant crops, researchers have made tremendous

progress to illustrate and understand the biology of these

viruses.

Geographical distribution, host range and virus–

vector interaction

ToLCNDV was recognized around 20 years ago [72] in

solanaceous crops in India. Initially it was reported to

infect tomato plants particularly in several countries of

Asia [35, 64, 73]. Recently, it was identified to be dis-

tributed in areas of southern Italy [76], Tunisia [65], Iran

[121] and Spain [45]. In India, ToLCNDV majorly affects

tomato yield in Andhra Pradesh, Delhi, Gujarat, Haryana,

Maharashtra, Punjab, Uttar Pradesh, and West Bengal.

The host of ToLCNDV are mainly the members of

Solanaceae family such as tomato causing Tomato leaf curl

disease (ToLCD) [123], potato causing potato apical leaf

curl disease [13], eggplant causing yellow mosaic disease

[84], pepper [35] and tobacco [1]. However, recently it was

also reported to infect cucurbit crops in Murai, Spain

[76, 105, 110]. ToLCNDV strains have been isolated from

cucumber, bottle gourd and muskmelon in Thailand, bitter

guard in Pakistan, zucchini squash in Spain and Italy [45],

Luffa, pumpkin and ash gourd (Benincasa hispida) in

India. ToLCNDV also infects plants belonging to Mal-

vaceae, Fabaceae, Phyllanthaceae, and Papaveraceae fam-

ilies. In Malvaceae family it causes yellow vein mosaic

virus in okra and cotton leaf curl disease in cotton. In

Fabaceae it infects soybean (Glycine max), opium poppy

(P. somniferum) from Papaveraceae and sweet leaf (S.

androgynous) from Phyllanthaceae family. The infection

by ToLCNDV is evidenced by abnormality in tomato, such

as stunted or dwarfed growth, leaflets are curled upwards

and inwards, slightly chlorotic and yellowish in texture and

are stiff, thicker than normal, crumpling, and

mosaic/mottling symptoms [104]. ToLCNDV is naturally

transmitted via whitefly species (Bemisia tabaci). Bemisia

tabaci exists in tropical and subtropical regions and is a

major threat to agronomically important plants. Bemisia

tabaci consists of cryptic species complex and 37 discrete

species of whiteflies have been recognized based on the

DNA markers (mitochondrial cytochrome oxidase I;

mtCOI) [17] and these species vary in range of infecting

hosts, insecticide resistance, and their ability to transmit

virus. Middle East-Asia Minor 1 (MEAM-1) (previously

known as B biotype), Asian 1 and Asia II species of B.

tabaci have been reported to transmit the virus worldwide.

Contrastingly, Mediterranean Q1 (MED Q1) species were
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observed to cause ToLCNDV epidemics specifically in

southern Spain in various crops viz tomato, zucchini, and

melon. Initially, through its stylet, insect acquires or and

inoculate the virus from the plant phloem and the acqui-

sition access period (AAP) and inoculation access period

(IAP) varies from 10 to 60 min. In case of B. tabaci

infecting tomato plants the AAP and IAP was 30 min [11].

It transmits virus in a persistent, circulative manner with a

latent period of 8–21 h during which the virus circulates

from digestive tract of insect to the salivary gland from

where with the help of stylet viruses are transmitted with

the saliva into the plant. This translocation of ToLCNDV is

facilitated by a protein termed as midgut protein. Since,

ToLCNDV has been reported to infect crops other than

Solanaceae family and the information for B. tabaci-

ToLCNDV interactions is limited, thus the significance of

host specificity of B. tabaci and ToLCNDV during infec-

tion need to be studied.

Genome organization and function of virus-encoded

proteins

ToLCNDV genome consists of two genomic components;

DNA-A which encodes for six ORFs i.e., AV1/CP; coat

protein and AV2; pre-coat protein, AC1/Rep; replication

initiation protein, AC2/TrAP; transcription activator pro-

tein, AC3/REn; replication enhancer and AC4; pathogen-

esis related protein. On the other hand, DNA-B has two

ORFs which encodes for BV1/NSP, nuclear shuttle protein

and BC1/MP, movement protein [22]. Apart from mono- or

bi-partite genome, presence of an additional molecule i.e.,

satellite DNA has also been reported in geminiviruses.

Amongst the bipartite ToLCNDV 44% were found to be

associated with betasatellites [47].

Virus-encoded proteins

Coat Protein (AV1/CP) is the only structural protein of

geminiviruses and forms twinned virion structure required

to encapsidate the new viral genome. It has the ability to

bind ssDNA and dsDNA and regulates viral replication by

down-regulating the nicking and closing activity of Rep

[10, 60]. It accumulates in the nucleolus and facilitates

viral DNA shuttle from nucleus to cytoplasm in

monopartite begomovirus. In bipartite viruses, CP has been

reported to specifically function in the nuclear shuttling in

the mutant virus of nuclear shuttle protein [37]. It is a late

expressing gene and the major determinant in viral trans-

mission. In contrast to CP, AV2 protein promotes Rep

activities by enhancing its nicking activity [90]. In tomato

plants infected with AC2 mutant clones of Tomato leaf curl

virus (ToLCV) and ToLCNDV, reduction in the viral DNA

accumulation was reported [71].

Rep protein is highly conserved and it is a prerequisite

for initiation of RCR [53]. It has domains for nicking,

DNA-binding, oligomerization and ATPase activity. Dur-

ing RCR and transcription of viral genome, it recognizes

conserved nonanucleotide TAATATT;AC within a hairpin

loop of the plus-strand and initiates DNA cleavage/ligation

process [24]. Rep also plays an essential role in activating

the host replication machinery by interacting with the plant

cell cycle regulatory elements. Rep interacts with

retinoblastoma-related protein (RBR) [29] and activates

E2F-family transcription factors which in turn removes the

cell cycle arrest. Apart from this, Rep interacts with

replication factor C (RFC) complex and minichromosome

maintenance complex component 3 (MCM3) and prolif-

erating cell nuclear antigen (PCNA) to aid the host DNA

replication event [3, 5, 58]. In transgene-based approach,

considering its critical roles in the genome replication and

interactions with multiple proteins, Rep is a potential target

for the generation of geminivirus resistant plant.

Moreover, AC2 and AC3 are transcribed together to

produce a dicistronic messenger RNA (mRNA) and their

promoter sequence is encoded within the coding sequence

of Rep gene [102]. Initially, AC2 was identified as a

transcription activator which interacts with DNA-binding

protein PEAPOD2 (PPD2), and binds onto the CP promoter

to activate its transcription [51]. Further, it was revealed

that AC2 acts as the suppressor of silencing activity, both

Post-transcriptional gene silencing (PTGS) and Transcrip-

tional gene silencing (TGS). AC3 enhances the viral DNA

replication in association with AC1 and PCNA. AC3

interplay with Rep and enhances its ATPase activity, thus

facilitating the unwinding of viral DNA [79]. In tomato,

REn has been reported to interact with NAC1 (NAM,

ATAF, and CUC1) which assist in viral DNA replication

[98] and increase the viral titre.

Simultaneously, geminiviruses encode a small protein

AC4 that completely overlaps AC1 transcript. AC4 has

been evidenced to be engaged in virus movement, virus

replication and as a suppressor of PTGS mechanism of host

plant. In Curtovirus, (Beet severe curly top virus; BSCTV)

disruption of C4 did not affect the virus replication within

the infected N. benthamiana leaf but inhibited the spread of

virus in the new emerging leaves [46]. In N. benthamiana,

C4 was found to bind with ssDNA and dsDNA of virus and

help in its movement [109]. Simultaneously, it was repor-

ted that C4 induced the expression level of cell-cycle

related genes such as PCNA, Cyclin-dependent kinases

(CDKs) and cyclins (cyc1, cyc2, and cyc2b), and down-

regulated the expression of CDK inhibitor (ICK1) and the

retinoblastoma-related protein (RBR1), resulting in virus

replication, accumulation and symptom development [77].

Likewise, AC5 ORF has been annotated in various

geminiviruses. It is encoded by downstream region of AC3
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and covers a portion of coding region of CP. Its functions

may vary amongst different viruses. In Mungbean yellow

mosaic India virus (MYMIV), AC5 facilitates viral infec-

tion and movement, whereas in Tomato Chlorotic Mottle

Virus (ToCMoV), Watermelon Chlorotic Stunt Virus

(WmCSV) and Tomato Leaf Deformation Virus (TLDV),

AC5 is non-essential for viral-induced pathogenesis [63].

Further, the DNA-B encoded Nuclear shuttle protein (BV1/

NSP) and Movement protein (BC1, MP) are prerequisite

for movement of virus. NSP is required for shuttling of

newly synthesized viral DNA from nucleus to cytoplasm.

The plant acetyltransferase (AtNSI; Arabidopsis thaliana

nuclear shuttle protein interactor) associates with NSP and

assists in nuclear export of viral DNA [62]. NSP acts as

pathogenicity determinant by interacting and inhibiting the

NSP-interacting kinases (NIKs)-mediated antiviral

responses and increases the susceptibility of plants to

geminivirus infection [23]. Additionally, MP actively binds

with NSP-viral DNA complex and participates in cell-to-

cell movement of virus through plasmodesmata [26]. Fur-

ther NSP, MP, viral DNA and Histone 3 form a complex

which aid in cell-to-cell trafficking of the viral genome

[124]. It interacts with plant protein such as Arabidopsis

regulator of endocytosis, synaptotagmin (SYTA) and heat

shock cognate 70 kDa protein (Hsc70), which facilitates

the viral DNA movement between the cells. Further, MPs

also act as virulence factor of bipartite begomoviruses and

mutation at its 30 region has been linked with symptom

development [26].

ToLCNDV multiplies by a specific mechanism known

as rolling circle replication (RCR) within the plant nucleus

utilizing the host proteins such as primase and polymerase

to produce a dsDNA replicative form (RF) of viral genome

[31]. DNA-A and DNA-B are transcribed in bi-directional

manner and are separated by a non-coding region termed as

common region (CR) or Intergenic region (IR) of 180 to

200 nt. This region consists of origin of replication (Ori)

required for rolling circle replication and promoter ele-

ments such as TATA boxes and sequences recognized by

various transcription factors including ‘AG’ motif and

G-box [31]. IR comprises a conserved hairpin motif which

encodes a consensus AT-rich nonanucleotide sequence, 5’-

TAATATTAC-3’, in the loop where Rep-mediated nicking

initiates RCR. IR consists of repeated upstream iterative

sequence motifs known as ‘iterons’ for binding of Rep

proteins. The region between repeats of iteron and stem

loop is called as origin of replication or ori.

Suppressors of plant defense mechanism

Apart from assisting in virus replication and movement, virus

proteins have evolved to act as suppressors of plant defense

mechanism, thus inhibiting the response of plant against viral

infection. Against DNA viruses, RNA interference (RNAi)-

mediated silencing machinery is the major defense mecha-

nism. Several virus encoded proteins have been reported to

play key roles in suppressing host defences specifically tar-

geting the silencing machinery. Initially, AC2 was found to act

as the suppressor of silencing activity, both PTGS and TGS.

AC2 interact with Adenosine kinase (ADK), enzyme required

to generate S-adenosyl methionine (SAM) and inhibit the

methylation cycle [117]. Further, it attenuates PTGS by

inhibiting the activity of RNA dependent RNA polymerase 6

(RDR6), Argonaute1 (AGO1) [49] and calmodulin like pro-

tein (rgs-CaM) [122] proteins which are required for siRNA

biogenesis thus making the host plant susceptible for virus

infection. Besides AC2, AV2 was hypothesized to function in

suppressing the PTGS mediated defense mechanism in host

plant [126]. It was demonstrated that AV2 interacts with SGS3

which prevents conversion of ssRNA to dsRNA, thus inhibits

the production of siRNAs [25]. AV2 also suppresses the TGS

in plants but the mechanism is still not elucidated [116].

Another study highlighted the role of AC3 in controlling the

virus-induced gene [78] but the exact mechanism is still

unknown. Further, in begomoviruses, AC4 acts as a sup-

pressor of silencing mechanism by binding the single stranded

siRNA and miRNA, thus inhibiting the cleavage of target

mRNA and inducing the viral spread [14]. Additionally, AC5

represses both PTGS and TGS of host plant. It interacts with

ssRNA to inhibit the PTGS machinery. It was hypothesized

that AC5 suppresses chromatin methylation by reducing the

expression of Domains Rearranged Methyltransferase-2

(DRM2; CpHpH cytosine methyltransferase) in N. ben-

thamiana [55]. Recent information suggests the role of Rep in

TGS [87]. Simultaneously, Rep associates with SUMO-con-

jugating enzyme 1 (SCE1) and modifies the sumoylation

pattern of host factors to create conditions suitable for viral

infection [12]. Thus, by targeting these virus protein through

transgenic approach, resistance can be developed against

ToLCNDV.

Involvement of host factors during ToLCNDV–plant

interactions

Our restricted information of host gene response during

virus infection in plant is the major constrain for future

studies. Several tomato cultivars have been derived by

introgression of resistance against tomato leaf curl disease

from wild Solanum species such as S. pimpinellifolium, S.

peruvianum, S. chilense, S. habrochaites, S. chmielewskii

and S. pinnellii [83, 104].

Various approaches have been exploited to establish the

host gene-expression modulation during geminivirus

infection [4, 50, 69, 96]. Differentially expressed genes

such as those encoding ubiquitin-conjugating enzyme,

receptor-like protein kinase, cell cycle proteins, hormone
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and its regulation, disease resistance genes and various

antioxidants were identified during the interaction of

ToLCNDV with tomato and potato plants [40, 69, 96].

Apart from this, many QTLs have been identified to be

associated with tolerance/resistance against ToLCNDV

[92]. Thus, well established resistant/tolerant hosts and

comprehensive analysis of differentially expressed host

genes may contribute in the discovery of resistance

response against geminiviruses. In this regard, functional

characterization of accessible or reported datasets of pro-

teome and transcriptome of various plant-geminivirus

interaction may assist in revealing the key regulatory

component of resistance.

The ubiquitin-proteasome system

The 26SP, a multi-subunit complex, has ATP-dependent

proteolytic function, which is required for the degradation

of ubiquitinated intracellular proteins. Ubiquitin protea-

some systems (UPS) have appeared as a new subject in

plant-microbe interactions [101]. Role of ubiquitin and

proteasome during plant-pathogen interaction were exten-

sively reviewed [19, 94]. However, limited information is

available defining the role of these networks in gemi-

nivirus-plant interaction. Transcript profiling in tolerant

tomato plant upon ToLCNDV infection has shown induc-

tion of various UPS gene [96]. It suggests operation of a

possible virus resistance pathway mediated or controlled

by ubiquitin proteasomal degradation (Fig. 1). Apart from

UPS, the individual subunit of this multimeric complex is

implicated in the diverse function. SlRPT4, a component of

19S regulatory particle (RP) was identified to possess viral

DNA binding properties, thus inhibiting the binding of

SlRNA PolII on IR which in turn regulates the ToLCNDV

genome transcription (Fig. 1). Simultaneously, SlRPT4

restricts the virus spread through the activation of HR and

PCD, and thus contributed in the inhibition of ToLCNDV

pathogenesis and progression, leading to reduced level of

corresponding viral genes [93]. Furthermore, a compre-

hensive study is required to decipher the mechanism of

other UPS components for improved understanding of

plant-pathogen interactions.

Resistance genes

Plants are a great source of nutrients and therefore are

infected by several pathogens. They have developed dif-

ferent strategies which include avoidance (structural bar-

riers), as well as suppression (by several secondary

metabolites) and active defense (by antimicrobial mole-

cules, such as degradative enzymes and phytoalexins)

against pathogens. Plants’ response to pathogen often relies

on the network of Resistance proteins (R proteins) [44].

These R genes can identify specific effectors and trigger the

‘hypersensitive response (HR)’, which is the key reaction

of resistance mechanism in many plant-pathosystems. The

HR induces programmed cell death (PCD), which controls

several physiological and development specific processes

in plants [33]. Till date several R genes have been reported

in tomato to be involved in pathogen recognition [89].

Table 1 recapitulates the known R genes in plants against

viruses.

In tomato, two NB-ARC-LRR R genes have been

identified to regulate the viral defense viz; Sw5 and Tm2

[106]. Various studies have identified only five loci that are

linked to viral resistance: Ty-1/Ty-3 and Ty-4 from S.

chilense, Ty-2 from S. habrochaites and Ty-5 from S.

peruvianum [2, 36, 42, 43, 52]. Amongst these Ty-1 and

Ty-3 were found to encode RDRs that are associated with

amplification of RNA silencing mechanism [113]. Besides

this, the promoter region of TYLCV was found to be

hypermethylated in Ty-1 expressing tomatoes. The Ty-5

locus is a recessive resistance QTL and associated with

NAC1 marker [2]. It encodes for messenger RNA

surveillance factor Pelo gene called Pelota and is required

during recycling phase of protein biosynthesis (Fig. 1)

[52]. A large number of resistance genes have been intro-

gressed in tomato cultivars plants from wild tomato

[66, 83, 104]. Through pyramiding of Ty-2 and Ty-3 in

tomato cultivar via breeding, increased resistance was

observed against ToLCNDV [83].

Recently, defense related genes nucleotide-binding site

and leucine-rich repeat (NBS-LRR) were found to be dif-

ferently expression in tolerant (Capsicum annuum and S.

lycopersicum) and susceptible (Nicotiana benthamiana and

N. tabacum) plants upon imposition of ToLCNDV infection

[50]. Interestingly, NIK1 (NSP-interacting kinase 1) which

consists of a leucine-rich repeat receptor-like kinase (LRR-

RLK) domain, was identified to interact with Nuclear

shuttle protein of begomoviruses (Fig. 1) [97]. Further, the

interaction between NIK1-NSP initiates complete inhibition

of translational machinery; regulated via RPL10 and L10-

interacting MYB domain-containing protein (LIMYB)

leading to antiviral defense in plants [125]. Due to accel-

erated evolution in genome of geminiviruses and variation

in the host range, R gene responsible for tolerance/resis-

tance against ToLCNDV need to be identified from the wild

type species. These predicted R genes can be acclimated to

develop defense mechanism in plants through transgenic

approach or traditional pyramiding approach.

Transcription factors (TFs)

The imposition of biotic stress triggers transcriptional

reprogramming in plants which regulates the metabolic and

phenotypic changes and leads to defense response. Various
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Fig. 1 Schematic representation of Tomato leaf curl New Delhi

virus–plant host interaction. Virus entry into host cell initiates defense

machinery and induces changes in gene expression level. It includes

protein degradation, RNAi- mediated resistance to ToLCNDV,

activation of Transcription factor and resistance genes

Table 1 Resistance genes identified in plants against viruses

R gene Host plant Structure of R protein Pathogen Avr against R protein References

I(locus) Phaseolus

vulgaris

TIR-NB-LRR Bean common mosaic virus [BSMV],

SMV

Unknown [112]

N Nicotiana TIR-NB-ARC-LRR Tobacco mosaic virus [TMV] p50 [Helicase] [119]

Y-1 S. tuberosum TIR-NB-ARC-LRR Potato virus Y Unknown [114]

Tm-2/Tm-

22
S. lycopersicum CC-NB-ARC-LRR Tomato mosaic virus [ToMV] Movement protein [81]

Sw-5b S. lycopersicum CC-NB-ARC-LRR Tomato spotted wilt virus [TSMV] 30 kDa movement

protein

[106]

RCY1 A. thaliana CC-NB-ARC-LRR Cucumber mosaic virus [CMV] Coat protein [108]

HRT A. thaliana CC-NB-ARC-LRR Turnip crinkle virus [TCV] Coat protein [15]

Rx1/ Rx2 Solanum

tuberosum

CC-NB-ARC-LRR Potato virus X Coat protein [7]

CYR1 Vigna mungo CC-NB-LRR Mungbean yellow mosaic virus

[MYMV]

Coat protein [59]

L-locus Capsicum

annuum

CC-NB-LRR ToMV, TMV Coat protein [67]

Rsv1 Glycine max CC-NB-LRR Soybean mosaic virus [SMV] HC-Pro [34]

Ty-1/Ty-3 Solanum chilense Tomato RDR Tomato yellow leaf curl virus

[TYLCV]

Unknown [113]

Tm-1 Solanum

hirsutum

TIM-barrel-like domain

protein

ToMV Replicase Helicase-

domain

[38]
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transcription factors have been reported to be associated

with plant immunity against plant viruses [111]. Tran-

scription factors might directly or indirectly interact with

signalling molecules to initiate defense response by regu-

lating the downstream signaling networks. In a study on

Nicotiana benthamiana it was observed that WRK1-WRY3

and MYB1 regulate the expression of N-gene required to

initiate defense against begomoviruses [57]. Further, it was

revealed that additionally N-gene associates with Squa-

mosa promoter binding protein (SBP)-domain TF

(NbSPL6). NbSPL6 initiates the transcription of defense

related genes specifically RPS4-mediated immunity

response against viruses (Fig. 1) [74].

In a recent study, membrane bound NAC transcription

factors, SlNACMTF3 and SlNACMTF 8, were found to be

differentially expressed upon ToLCNDV infection in

tomato cv. Pusa Ruby. These membrane bound transcrip-

tion factors were revealed to regulate the expression of

biotic stress-related genes such as Senescence associated

protein, Elicitor responsive protein 1, Pathogen related

protein 1b (PR1b), hence elucidating the key role of these

TFs in regulating biotic stress response [9]. Similarly,

SlWRKY16 was demonstrated to regulate the expression of

Tornado1 (SlTRN1) upon salicyclic acid treatment. SlTRN1

is essential for cell expansion and vein formation, thus

elevation in the level of its transcripts during ToLCNDV

might be related to the appearance of elevated symptoms

(Fig. 1) [61]. Since, TFs play vital role in governing the

alterations in defense pathway, it is essential to identify the

transcription factors regulating the plant defense responses

against viruses.

Role of RNA interference mechanism

during geminivirus-plant interaction

In plants, RNA interference (RNAi) inhibits gene

expression using three approaches: by degradation of

transcripts (PTGS); inhibiting translation of mRNAs, or by

promoting methylation of targeted DNA fragment affect-

ing transcription of genes (TGS) [99]. PTGS and TGS are

correlative since both the mechanisms require the devel-

opment of small interfering RNAs (siRNAs). PTGS is

induced when siRNA produced is complementary to the

coding region of the target gene and entails sequence-

specific RNA degradation. Contrastingly, siRNA comple-

mentary to the target gene promoter region initiates TGS,

which causes chromatin remodeling through methylation

[21, 95]. In case of geminivirus, these siRNAs are pro-

duced during virus replication by the action of host RDRs,

or by transcription of inverted repeats or converged pro-

moters [75, 99, 107]. Virus-derived siRNAs have been

extensively studied during various plant-virus interactions

(Fig. 1) [16, 85]. The siRNA-mediated gene silencing has

been shown to be involved in the recovery from the

specific virus infection in plants [86, 88, 95, 120]. Further,

this phenomenon has been used to develop tolerance

against ToLCNDV through transgenic approach

[103, 115].

PTGS as antiviral defense

Upon virus infection in plants, RNA silencing is the innate

antiviral defense response, during which dsRNAs derived

from virus replication are recognized as the pathogen-as-

sociated molecular patterns (PAMPs), activating the pat-

tern-recognition receptors (PRRs); DCL enzymes leading

to synthesis of vsiRNA [127]. The increased accumulation

of vsiRNAs during viral infections establishes the function

of RNA silencing in antiviral defense. In a study against

ToLCNDV in tomato, a naturally tolerant cultivar of

tomato, namely H-88-78-1, was identified which has

reduced infectivity and virus titre at 21 dpi in contrast to a

susceptible cv. Punjab Chhuhara [96]. A crucial role of

antivirus activity of siRNA was established, as in cv. H-88-

78-1 less abundance of virus genome was correlated with a

relatively higher level of vsiRNAs production [96].

Recently, it was depicted that the variation in tolerance is

attributed to the differential level of siRNAs production

[50]. A significant variation was observed in the transcript

level of genes associated with the gene silencing machinery

(RDR6, AGO1 and SGS3). Besides, PTGS another mech-

anism of RNA silencing is Transcriptional Gene Silencing

(TGS). Its mechanism and role in virus resistance is dis-

cussed below.

Role of epigenetics in regulating the geminiviruses

infection

Epigenetic is a vital mechanism for development and stress

associated phenotype of a system. It is related to herita-

ble but concurrently reversible alterations in the expression

of genes that are not due to DNA sequence variation [8]. It

is a crucial mechanism which regulates the gene tran-

scription, and thus gene expression by determining the

binding of transcription regulators to DNA [21, 99]. In

eukaryotic cell, it involves variations in the chromatin

structure by some of the chemical modulations of DNA

through methylation of cytosine residues (DNA methyla-

tion) or by posttranslational modifications of proteins

associated with DNA (histones). DNA methylation

involves contracting processes; addition and removal of a

methyl group at C5 (5th carbon) of pyrimidine ring of

cytosine. Two types of DNA methyltransferases are iden-

tified in plants, for methylation maintenance; Chro-

momethylase (CMT; methylation maintenance),

Methyltransferase (MET; maintenance of methylation),
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Kryptonite (KYP; methylation maintenance and H3K9

methylation) and de novo methylation; Domains Rear-

ranged Methyltransferase (DRM; de novo methyla-

tion) [118]. Contrastingly, repressor of silencing1 (ROS1),

demeter-like2 (DML2), and DML3 are DNA glycosylases

that actively mediate DNA demethylation via a base

excision repair process [28]. This DNA methylation con-

fers gene silencing and plays crucial roles in plant devel-

opment and defense against viruses, transposons, and

transgenes [75, 99].

Further, this epigenetic pathway involves siRNAs;

23–24 nt long) directing epigenetic changes termed as

RNA-directed DNA methylation (RdDM). These siRNAs

are homologous to promoter regions of a gene and stimu-

late de novo cytosine methylation in the promoter region

[99, 118]. Synthesis of these siRNAs relies on RNAi

machinery core proteins: Dicer (DCL3), DNA dependent

RNA polymerase (RNA PolIV/V), and Argonaute (AGO4).

The biogenesis of heterochromatic siRNA requires tran-

scription by DNA-dependent RNA polymerase PolIV

(RNA PolIV) and ssRNAs thus produced are converted to

dsRNA by RNA dependent RNA polymerase (RDR2).

These dsRNAs are diced by DCL3 to produce 24 nt siR-

NAs. The guide strand incorporates into AGO4/ AGO6

containing RITS complex, which then enters the RNA

PolV-mediated pathway of de novo DNA methylation.

PolV transcripts function as a scaffold RNA which inter-

acts with the siRNA associated with AGO4/6. This siRNA

bound AGO4/6 associates with chromatin modifiers such

as DRM2, which catalyzes de novo methylation at the

siRNA-targeted site [30]. Apart from antivirus defen-

se RdDM mechanism guides chromatin modifications and

silences transposons in plants.

TGS-mediated resistance to ToLCNDV

In plants, transcripts of virus genome trigger the RNA

silencing machinery [80]. Apart from viral transcript

degradation, several reports suggest that plants employ

DNA methylation to instigate defense against gemi-

niviruses. The dsRNA generated during viral infection can

initiate sRNAs directed de novo DNA methylation via

RdDM pathway resulting in transcriptional silencing of

viruses [18, 39, 120]. RdDM entails virus genome modi-

fication by de novo methylation at cytosine-residue in virus

DNA and associated histones and thus suppresses the

transcription and/or replication of virus [18, 85, 88, 120].

Against ToLCNDV, RdDM has been reported to initiate

methylation in the coding (AC1/Rep) and promoter regions

(IR). Moreover, significant variation in expression of genes

for cytosine or histone methyltransferase, methyl cycle

enzymes, and DCL proteins and components of RdDM

pathways was observed in the tolerant cv. as compare to

susceptible cv. (Fig. 1) [95]. This study provides support to

the hypothesis that tolerant/resistant plants utilize small

RNA-directed methylation as one of the defense strategy

against geminiviruses, thus suppressing the transcription of

virus genome. Further, role of different virus components

and plant factors liable for defense mechanism needs to be

explored.

MicroRNA as antiviral defense

During ToLCNDV infection, regulation of gene expression

at transcription level has been quite well explained

[50, 96]. However, recently miRNAs have emerged as an

important class of regulators which controls the expression

of both host and viral genes at post-transcriptional levels

(Fig. 1) [68, 70, 82]. MiRNAs are non-coding RNAs of 19

to 24 nt that govern gene expression at post-transcriptional

level by binding and initiating the degradation of its

complementary target mRNAs, thus inhibiting its

translation.

The role of miRNAs in regulating biotic stress response

in plants is being investigated. Specific set of miRNAs has

been found to differentially express during virus infections

in different plant-virus interactions [48, 82]. During

begomovirus infection, expression pattern of diverse

miRNA was predicted to be altered. The expression of

miR159 was up-regulated during ToLCNDV infection. It

was predicted to target MYB transcription factor, which

binds to the promoter region of LEAFY gene (LFY) which

is broadly expressed throughout the transition from vege-

tative to reproductive phase. Thus, during ToLCNDV

infection enhanced expression of miR159 was related to

the symptom (leaf curling) development [70]. Similarly,

other miRNAs such as miR156, miR164, miR166,

miR160/167 and miR170, which modifies the expression of

key development related transcription factors, such as SPL

(Squamosa Promoter Binding Protein), NAC, HD-Zip

(Homeodomain-leucine zipper), and ARFs (Auxin

responsive factor), Scare-crow like genes respectively,

were observed to have differential expression pattern dur-

ing ToLCNDV infection (Fig. 1). These studies propose

that the virus infection specifically regulate a group of

miRNAs which leads to the symptom development. In

addition to this, in several studies significant difference was

observed in expression of miRNA targeting the defense

related genes. In tomato, miRNAs were identified which

were predicted to target functional R genes viz, sly-

miR6022 (21 nt; targets Hcr9), sly-miR6023 (22nt; targets

Hcr9) and miR6024 and miRNA 6026 (22 nt; targets Tm2)
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and sly-miR6027 (22 nt; targets Sw5) [56]. Thus, indicating

that miRNAs have a crucial role in regulating the role of

R genes triggered resistance responses.

Furthermore, few host-miRNAs have been revealed to

directly bind the viral transcripts. In silico analysis pre-

dicted several tomato miRNAs/miRNAs* (such as

miR1918, miR156b*, miR159, miR164a, miR169b*,

miR169d, miR171d, miR172b* miR166a* and miR319)

having significant affinity to associate with ToLCV gen-

ome or encoded transcripts [68]. Although, numerous plant

miRNAs have been classified/predicted to have a crucial

role during virus infection but the precise function of the

most is still unidentified. Although various studies have

been executed on diverse plant species unveiling the sig-

nificance of miRNAs during virus infection, no compre-

hensive study has identified and elucidated the precise role

of virus infection-related miRNAs in tomato crop.

Regulation of virus infection through contrived resistance

Geminiviruses are controllers of host cellular machinery

and encode several viral suppressors of RNA silencing

(VSRs). Further, due to the viral genome evolution,

breeding and transgenic approaches have not induced

stable resistant lines. Recently, RNAi silencing based

genetic engineering approaches have been utilized as

effective defense strategy. The artificial miRNA

(amiRNA)-based transgenics approach has been used to

decipher the gene silencing attribute of miRNAs. Subse-

quently, this antiviral therapy has been used to generate

plants producing amiRNAs corresponding to pre-coat and

coat protein transcripts of ToLCNDV evolve resistance in

tomato [115]. Apart from amiRNAs, artificial transacting

siRNAs regulating the VSRs has been considered an

effective approach [104]. Conversely, in case of combined

infection by multiple virus these RNAi-based approaches

would not be sufficient to overcome virus infection.

Recently, invented CRISPR/Cas9 technology (Clustered

regularly interspaced short palindromic repeats/ CRISPR-

associated9) aiming the virus genomic regions has emerged

as a novel tool to engineer resistance against geminiviruses

[6, 41, 123]. This approach has been activated against Rep,

CP and promoter region (IR) of Tomato yellow leaf curl

virus (TYLCV), Beet curly top virus (BCTV), and Mer-

remia mosaic virus (MeMV). This approach can be used to

target essential machineries of virus replication and tran-

scription. It could be postulated that Cas9/sgRNA module

associates with virus genome, specifically origin of repli-

cation and inhibits the binding of Rep proteins, thus reg-

ulating the virus accumulation. Notoriously, the robustness

of CRISPR/Cas9 technology needs to be verified in field

conditions. In the upcoming decade the CRISPR/Cas9

technology along with NGS would be applicable to

establish the disease resistance against ToLCNDV by

generating varieties of staple crops.

Conclusion and future prospects

Excessive ToLCNDV-induced yield losses have reported

worldwide in most of the agriculturally important staple

crops. The spread of ToLCNDV, its management strategies

and the future prospects to regulate the spread of

ToLCNDV are depicted in Fig. 2. Initially, the virus con-

trol strategies involved management of B. tabaci via use of

pesticides [54]. However, notably new strains of viruses are

emerging due to recombination and mutations in the gen-

ome of ssDNA viruses. Comprehensive research is requi-

site to establish the molecular basis and mechanistic details

of evolution of ToLCNDV genome and the mechanism by

which ToLCNDV associates with different viruses and

satellites.

Further, identification of plant defense mechanism

evolved against these viruses in natural genotypes varying

in their tolerance/resistance against viruses needs to be

explored. Simultaneously, an approach concerning apper-

ception of R gene responsible for defense against

ToLCNDV needs to be proposed to develop resistant/tol-

erant plants through transgenic or traditional pyramiding

strategies. However, our effort in finding the appropriate

genes/or pathways involved in plant defense against

ToLCNDV is reduced due to the inadequate well-charac-

terized, compatible host model suitable for transcriptome

profiling studies.

Apart from genes such as R genes, Ubiquitin pro-

teasomal genes and Transcription factors, small RNAs

(sRNAs) have also been demonstrated as a source of

plant defense against ssDNA viruses. NGS can be

utilized to decipher the repertoire of sRNAs, aiding in

understanding the perspective of host defense and viral

counter-defense measures. In particular, identification

of plant miRNAs is difficult due to their small size

(18–24 nt) and multiple occurrences in the genome.

Recent advancements in high throughput sequencing

technology have led to the discovery of species-specific

miRNAs in many plant species in addition to conserved

miRNAs during biotic stress [48, 82]. Further, illus-

tration and identification of additional miRNAs is

required during ToLCNDV infection and the machinery

involved for defense through miRNA is a prerequisite

to understand the molecular mechanism related to

regulation of viral infection through variation in

expression of miRNA targets.

During infection, viruses activate the transcription of

host genes (like those involved in cell-cycle and signaling),

which are required for viral DNA replication. These results
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validate that geminivirus are the models for studying the

mechanism of genome methylation and pathways regulat-

ing cytosine methylation in plants. Further, due to the

inability to attain field resistance in transgenic tomato,

application of high-throughput technologies and reverse

genetic approaches, like virus-induced gene silencing

(VIGS) [57] and RNAi would be beneficial to develop

defense mechanism against ToLCNDV. Lately, upon tar-

geting ToLCNDV genes (AC1, AC2, AC4, AV1 and AV)

[100, 115] a significant decrease in the virus titre was

witnessed.

Concurrently, based on the role of ssDNA viruses in

modification of host machinery for replication and tran-

scription its application in gemone editing is under process.

Advancement in this aspect can be done based on

advancement in the geminivirus-plant interactions. Immi-

nently, geminivirus-based tools will be established to gain

insight of the plant machinery.
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