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Abstract
We consider a two player zero-sum differential game with state constraints, in which the
dynamics is decoupled: each player has to stay in a closed (nonempty) set. We prove that,
under suitable assumptions, the lower and the upper values are locally Lipschitz continuous
andwe establish that they are solutions, in the viscosity sense, of the Hamilton–Jacobi–Isaacs
equation, which involves an appropriate Hamiltonian, called inner Hamiltonian. We finally
provide a comparison theorem. It follows that the differential game under consideration
admits a value (which coincides with the lower and the upper values). A key step in our
analysis is a new nonanticipative Filippov-type theorem, which is valid for general closed
sets.

Keywords Differential games · State constraints · Hamilton-Jacobi-Isaacs equation ·
Viscosity solutions

1 Introduction

We shall consider state-constrained two player differential games in which the dynamics is
decoupled in the following sense: a first system is exclusively controlled by one player using
measurable functions u

⎧
⎪⎪⎨

⎪⎪⎩

ẏ(t) = f1(t, y(t), u(t)), for a.e. t ∈ [t0, T ]
u(t) ∈ U for a.e. t ∈ [t0, T ]
y(t0) = y0 ∈ A1

y(t) ∈ A1 for all t ∈ [t0, T ] ,

(1)
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whereas, a second player intervenes with measurable functions v modifying the dynamics of
a second control system

⎧
⎪⎪⎨

⎪⎪⎩

ż(t) = f2(t, z(t), v(t)), for a.e. t ∈ [t0, T ]
v(t) ∈ V for a.e. t ∈ [t0, T ]
z(t0) = z0 ∈ A2

z(t) ∈ A2 for all t ∈ [t0, T ] .

(2)

Here, T > 0 is a fixed final time, f1(., ., .) : R × R
n1 × R

m1 → R
n1 and f2(., ., .) :

R × R
n2 × R

m2 → R
n2 are given functions, U ⊂ R

m1 and V ⊂ R
m2 are given sets.

Associated with any initial data (t0, x0) = (t0, y0, z0) ∈ [0, T ] × A1 × A2, A1 (resp.
A2) being a nonempty closed subset of R

n1 (resp. R
n2 ), and with any couple of controls

(u(·), v(·)) we shall consider the following cost functional:

J (t0, x0; u(·), v(·)) :=
∫ T

t0
[L1(t, x(t), u(t)) + L2

(
t, x(t), v(t))] dt + g

(
x(T )

)
, (3)

in which x(t) = x[t0, x0; u(·), v(·)](t) (= (y[t0, y0; u(·)](t), z[t0, z0; v(·)](t))) denotes the
solution of systems (1) and (2) associated with the controls (u, v). Set n := n1 + n2. The
functions L1 : R × R

n × R
m1 → R and L2 : R × R

n × R
m2 → R are called Lagrangians

(or running cost) and g : R
n → R is the final cost. We shall consider a differential game in

which the first player wants to minimize the functional J (.), while the second player’s goal
is to maximize J (.).

For each starting point (y0, z0) ∈ A1 × A2 and subinterval [t0, T0] ⊂ [0, T ], we define
the set of admissible controls for the two players as follows:

U([t0, T0], y0) := {u(·) : [t0, T0] → U measurable | y[t0, y0; u(·)](t) ∈ A1 ∀t ∈ [t0, T0]} ;
V([t0, T0], z0) := {v(·) : [t0, T0] → V measurable | z[t0, z0; v(·)](t) ∈ A2 ∀t ∈ [t0, T0]} .

When T0 = T , which is often the case under consideration, we shall use the simplified
notation:

U(t0, y0) := {u(·) : [t0, T ] → U measurable | y[t0, y0; u(·)](t) ∈ A1 ∀t ∈ [t0, T ]} ;
V(t0, z0) := {v(·) : [t0, T ] → V measurable | z[t0, z0; v(·)](t) ∈ A2 ∀t ∈ [t0, T ]} .

Our standing assumptions allows us to be in a situation such that, for all x0 = (y0, z0) ∈
A1 × A2 and t0 ∈ [0, T ], we have

U(t0, y0) �= ∅ and V(t0, z0) �= ∅.

As is customary in differential games theory, we consider the upper value function V � and
the lower value function V �. In the definition of V � and V � we shall make use of nonantic-
ipative strategies, in the Varayia-Roxin-Elliot-Kalton sense. To recall this notion, we take,
for instance, initial data (t1, y0) ∈ [0, T ] × A1 and (t2, z0) ∈ [0, T ] × A2. We say that a
mapping α : V(t2, z0) → U(t1, y0) is a nonanticipative strategy for the first player if, for any
τ ∈ [0, T − t2], for all controls v1(·) and v2(·) belonging to V(t2, z0), which coincide a.e.
on [t2, t2 + τ ], then α(v1(·)) and α(v2(·)) coincide a.e. on [t1, (t1 + τ) ∧ T ]. Analogously
we can define the nonanticipative strategies β for the second player. For t0 ∈ [0, T ] and
x0 = (y0, z0) ∈ A1 × A2, we write SU (t0, x0) and SV (t0, x0) the sets of the nonanticipative
strategies for the first and second player respectively.

Now, the lower value V � is defined by:

V �(t0, x0) := inf
α∈SU (t0,x0)

sup
v(·)∈V(t0,y0)

J (t0, x0;α(v(·)), v(·)) , (4)
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where the functional J (.) is represented in (3). The upper value function is defined as follows:

V �(t0, x0) := sup
β∈SV (t0,x0)

inf
u(·)∈U(t0,z0)

J (t0, x0; u(·), β(u(·))) . (5)

In absence of state constraints, differential games have been widely investigated using
different approaches, cf. [3, 5, 16, 18, 22, 28, 30]. The case in which the dynamics of the
players are decoupled and that each player has to make sure that his state variable does not
violate his own state-constraint is a classical situation for a number of applications (cf. Isaacs’
book [25] for classical examples of games with decoupled dynamics).

State constrained problems are in general more difficult to treat: the main issue is due to
the fact that both players have to use admissible controls and strategies, and the set of controls
allowed to each player depends on the position of the initial state variable. To solve this prob-
lem it is useful to provide Filippov-type results (called also distance estimates results) in a
nonanticipative way (see the discussion in [11, 12]). State constrained differential games with
coupled dynamical constraints have been investigated in [27] and [12]. Koike in [27], under
implicit uniform controllability assumptions and considering inner Hamiltonians, shows that
the upper and lower value functions are viscosity solutions of the associated Hamilton–
Jacobi–Isaacs equation and provides a comparison result. In [12] the implicit controllability
assumptions of [27] are replaced by directly verifiable constraint qualifications (inward point-
ing conditions); it is shown that it is possible to derive a nonanticipative Filippov-type result
(for measurable in time dynamic constraint and state constraints with C1 boundaries) and, as
a consequence, that the upper and lower values are locally Lipschitz continuous; these are
also the unique viscosity solution of the related Hamilton–Jacobi–Isaacs equation; moreover
conditions under which the game admits a value are provided.

Decoupled state constrained differential games have been considered in [6, 17] for pursuit-
evasion problems, in [11] for Bolza problems, and in [1] for exit cost problems. Imposing
some uniform controllability assumptions, Bardi, Koike and Soravia [6] show that the game
admits a (continuous) value, and imposing additional constraint qualifications they provide
a comparison theorem. Using different (viability) techniques, Cardaliaguet, Quincampoix
and Saint-Pierre [17], under some suitable assumptions (which do not involve controllability
conditions) demonstrate that the game has a value in the class of lower semicontinuous
functions. The existence result [17] was subsequently extended to Bolza problems in [11],
in which a nonantivipative Filippov-type theorem is also proved (for state constraints with
a C2 boundary); this is used also to show that the value is locally Lipschitz continuous
(when the final cost is locally Lipschitz continuous). Bagagiolo, Maggistro and Zoppello [1]
investigate exit cost differential game on domains with C2 boundary and provide an existence
and uniqueness result; the continuity of the values follow from a nonanticipative Filippov-
type result, which is proved for linear dynamic constraints and state constraints that are
represented by half-spaces (the boundary are hyperplanes). For an application of the results
obtained in [1] to a discontinuous hybrid model we refer the reader to [2].

Numerical schemes for Differential games (in presence or in absence of state constraints)
have been developed by Falcone, cf. [23] and the references therein (see also his papers
in collaboration with Bardi, Bottacin, Soravia and Cristiani [3, 4, 21]). For an alternative
approach also we suggest the work done by Cardaliaguet, Quincampoix and Saint-Pierre,
cf. [16]. For different methods that transform a reference state constrained differential game
problem to a state constraint free problem see [24].

In our paper, we first establish that, under a set of assumptions which allow the dynamic
constraints and the Lagrangians to be possibly discontinuous w.r.t the time variable (more
precisely f1, f2, L1 and L2 are supposed to be merely of bounded variation in t), V � and V �
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are locally Lipschitz continuous. The main difficulty, here, is represented by the presence of
the state constraint, and it is, then, necessary to provide a new nonanticipative Filippov-type
theorem, which holds for general closed sets and is a crucial result to construct admissible
controls and strategies. Then,we show thatV � andV � are solutions in the viscosity sense of the
Hamilton–Jacobi–Isaacs equation associated with the reference problem. We highlight that
we focus on fundamental properties of the lower and upper value functions, in particular their
Lipschitz regularity and characterization as viscosity solutions, even when the problem data
exhibit only a boundedvariation behaviourwith respect to the timevariable. This investigation
introduces a novel perspective in the literature on differential games, even for state constraint
free problems, extending key insights from recents findings obtained in the context of optimal
control [14], [9], [8] and calculus of variations [10], where problems with data of bounded
variation with respect to the time variable have been considered. Following [27] (cf. [26]
for optimal control problems) and [6, 11, 17] the Hamilton–Jacobi–Isaacs equation shall
involve an inner Hamiltonian: this is the (standard inf-sup) Hamiltonian which is modified
on the boundary of the state constraint set, taking into account only inward pointing (w.r.t.
the state constraint set) vectors which belong to the convexified velocity sets of each player.
The last step is represented by a comparison theorem, which we prove imposing additional
continuity properties on the dynamic functions f1 and f2, and on the Lagrangians L1 and
L2. As a result we obtain that the differential game has a value. The comparison theorem
provided here represents an extension to differential games with decoupled dynamics of the
comparison result proved in [31] for optimal control problems: this is based on the stability
properties of the interior of the Clarke tangent cone (cf. [29]).

2 Standing Assumptions

We shall assume that the data involved in systems (1) and (2) and the cost (3) above satisfy
the following hypotheses:

(H1): f1(., y, .) is L × Bm1 measurable, f2(., z, .) is L × Bm2 measurable and L2(., x =
(y; z), .)isL × Bm1 measurable and L2(:; x = (y; z); :)isL × Bm2 measurable for
each y and z (here L denotes the Lebesgue subsets of R and Bm the Borel subsets of
R
m); U ⊂ R

m1 and V ⊂ R
m2 are closed sets;

(H2):

(i) there exists c f ∈ L1(0, T ) such that

| f1(t, y, u)| ≤ c f (t)(1 + |y|), | f2(t, z, v)| ≤ c f (t)(1 + |z|)
for all (y, z, u, v) ∈ R

n1 × R
n2 ×U × V and for a.e. t ∈ [0, T ],

(ii) for every R0 > 0, there exists c0 > 0 such that

| f1(t, y, u)| ∨ | f2(t, z, v)| ≤ c0 for all (t, x = (y, z), u, v) ∈ [0, T ] × R0B ×U × V ,

(H3): for every R0 > 0, there exist a modulus of continuity ω f : R+ → R+ and k f ∈
L1(0, T ) such that

| f1(t, y′, u) − f1(t, y, u)| ≤ ω f (|y − y′|), | f2(t, z′, v) − f2(t, z, v)| ≤ ω f (|z − z′|)
for all y, y′ ∈ R

n1 , z, z′ ∈ R
n2 with |y|, |y′|, |z|, |z′| ≤ R0, u ∈ U , v ∈ V , and t ∈

[S, T ], and
| f1(t, y′, u) − f1(t, y, u)| ≤ k f (t)|y − y′|, | f2(t, z, v) − f2(t, z

′, v)| ≤ k f (t)|z − z′|
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for all y, y′ ∈ R
n1 , z, z′ ∈ R

n2 with |y|, |y′|, |z|, |z′| ≤ R0, u ∈ U , v ∈
V , and a.e. t ∈ [S, T ],

(H4): for every R0 > 0, there exist a modulus of continuity ωL : R+ → R+ and kL ∈
L1(0, T ) such that (here x = (y, z))

|L1(t, x
′, u) − L1(t, x, u)| ∨ |L2(t, x

′, v) − L2(t, x, v)| ≤ ωL(|x − x ′|)
for all x, x ′ ∈ R0B, u ∈ U , v ∈ V , and t ∈ [S, T ],

|L(t, x ′, u, v) − L(t, x, u, v)| ≤ kL(t)|x − x ′| for all x, x ′ ∈ R0B,

u ∈ U , v ∈ V , and a.e. t ∈ [S, T ] ,
and

|L1(t, x, u)| ∨ |L2(t, x, v)| ≤ c0 for all x ∈ R0B, u ∈ U , v ∈ V and t ∈ [S, T ].
(BV): for every R0 > 0, f1(., y, u), f2(., z, v) and L(., x, u, v) have bounded variation

uniformly over x = (y, z) ∈ R0B, u ∈ U and v ∈ V in the following sense: there
exists a non-decreasing function of bounded variation η : [0, T ] → [0,∞) such that

| f1(s, y, u) − f1(t, y, u)| ∨ | f2(s, z, v) − f2(t, z, v)|
∨ |L1(s, x, u) − L1(t, x, u)| ∨ |L2(s, x, v) − L2(t, x, v)| ≤ η(t) − η(s),

for every [s, t] ⊂ [0, T ], u ∈ U , v ∈ V , and x = (y, z) ∈ R0B.
(H5): for every R0 > 0, there exists kg ≥ 0 such that |g(x) − g(x ′)| ≤ kg|x − x ′| for all

x, x ′ ∈ R0B

(IPC): (Convexified Inward Pointing Condition) for each t ∈ [S, T ), s ∈ (S, T ], y ∈ ∂A1,
and z ∈ ∂A2,

co f1(t
+, y,U ) ∩ int TA1(y) �= ∅ , co f1(s

−, y,U ) ∩ int TA1(y) �= ∅
and

co f2(t
+, z,U ) ∩ int TA2(z) �= ∅ , co f2(s

−, z, V ) ∩ int TA2(z) �= ∅ .

Here, TA(x) denotes the Clarke’s tangent cone to the set A at x defined by

TA(x) :=
{
η : for any sequences xi

A−→ x and ti ↓ 0, there exists {wi } ⊂ A

such that t−1
i (wi − xi ) → η

}
.

B denotes the closed unit ball of the Euclidean space; coD is the convex hull of the set D.
For a, b ∈ R, we write a ∧ b := min{a, b} and a ∨ b := max{a, b}. The limits in (IPC) are
intended in the sense of Kuratowski (see for instance [32] for details on this notion):

f1(t
+, y,U ) = lim

t ′↓t
f1(t

′, y,U ), f1(s
−, y,U ) = lim

s′↑s
f1(s

′, y,U ),

and similarly for f2.

3 The Hamilton–Jacobi–Isaacs Equation

We first introduce the Hamiltonian functions of interest in this paper, starting from the (un-
max-minimized) Hamiltonian:

H(t, x = (y, z), p = (py, pz), u, v) := − f1(t, y, u) · py
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− f2(t, z, v) · pz − L1(t, x, u) − L2(t, x, v).

We observe that, from the particular game structure (which is decoupled with respect the
controls), these coincide, i.e. the Isaacs condition holds.Wewrite H the obtainedHamiltonian
function:

H(t, x, p) := inf
v∈V sup

u∈U
H(t, x, p, u, v) = sup

u∈U
inf
v∈V H(t, x, p, u, v) .

We set also

Q1(t, (y, z)) := (co f1, L1)(t
+, (y, z),U ), Q2(t, (y, z)) := (co f2, L2)(t

+, (y, z), V )

and

G1(t, (y, z)) := {(e1, 
1) ∈ Q1(t, (y, z)) : e1 ∈ intTA1(y)},
G2(t, (y, z)) := {(e2, 
2) ∈ Q2(t, (y, z)) : e2 ∈ intTA2(z)}.

This allows us to introduce the inner Hamiltonian

Hin(t, (y, z), p = (py, pz)) := inf
(e2,
2)∈G2(t,(y,z))

sup
(e1,
1)∈G1(t,(y,z))

[−e1 · py − e2 · pz − 
1 − 
2],

which is defined on [0, T ] × (A1 × A2) × (Rn1 × R
n2). Observe that the Isaacs condition is

still satisfied:

Hin(t, (y, z), p = (py, pz)) = inf
(e2,
2)∈G2(t,(y,z))

sup
(e1,
1)∈G1(t,(y,z))

[−e1 · py − e2 · pz − 
1 − 
2]

= sup
(e1,
1)∈G1(t,(y,z))

inf
(e2,
2)∈G2(t,(y,z))

[−e1 · py − e2 · pz − 
1 − 
2] .
(6)

We aim to characterize the lower and upper value functions as generalized solutions in the
viscosity sense to the following Hamilton–Jacobi–Isaacs equation:

⎧
⎨

⎩

−∂tW (t, x) + Hin

(
t, x, ∂xW (t, x)

)
= 0 on [0, T ) × (A1 × A2)

W (T , x) = g(x) on A1 × A2.
(7)

The inner Hamiltonian function Hin involved in Eq. (7) can be discontinuous. One way to
overcome this difficulty, when we consider the notion of viscosity solution, is to make use of
the upper and lower semicontinuous envelopes of the Hamiltonian Hin (see for instance [6, 7,
20]). We recall that the upper and lower semicontinuous envelopes of a function �(t, x, p),
written respectively �∗ and �∗, are defined by

�∗(t, x, p) := lim sup
(t ′,x ′,p′)→(t,x,p)

�(t ′, x ′, p′)

and

�∗(t, x, p) := lim inf
(t ′,x ′,p′)→(t,x,p)

�(t ′, x ′, p′).

(The limits here are taken at points where � is defined.)

Definition 3.1 (Viscosity super/sub solutions of (7))A continuous functionw : [0, T ]×(A1×
A2) −→ R is called viscosity supersolution of (7) on [0, T )× (A1 × A2) if w(T , x) = g(x)
for all x ∈ (A1× A2) and it satisfies the following property: for any test function ϕ ∈ C1 such
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thatw−ϕ has a localminimumat (t0, x0) ∈ [0, T )×(A1×A2) (relative to [0, T ]×(A1×A2))
then

−∂tϕ(t0, x0) + (Hin)
∗(t0, x0, ∂xϕ(t0, x0)) ≥ 0.

A continuous function w : [0, T ] × (A1 × A2) −→ R is called viscosity subsolution of
(7) on [0, T ) × (A1 × A2) if w(T , x) = g(x) for all x ∈ (A1 × A2) and it satisfies the
following property: for any test function ϕ ∈ C1 such that w − ϕ has a local maximum at
(t0, x0) ∈ [0, T ) × (A1 × A2) (relative to [0, T ] × (A1 × A2)) then

−∂tϕ(t0, x0) + (Hin)∗(t0, x0, ∂xϕ(t0, x0)) ≤ 0.

Definition 3.2 (Viscosity solution of (7)) Consider the Hamilton–Jacobi–Isaacs equation (7).
Then we say that a continuous function is a viscosity solution of (7) if it is(at the same time)
a supersolution on [0, T ) × A1 × A2 and subsolution on [0, T ) × A1 × A2 of (7).

A central role in the analysis of the value functions is the fact that we can guarantee the
possibility to construct admissible controls and strategies in a nonanticipative way. This is
the objective of next section.

4 State Constrained Control Systems: Nonanticipative Constructions of
Admissible Controls

Consider the state-constrained control system, described as follows:

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, T ] (8)

u(t) ∈ U a.e. t ∈ [0, T ] (9)

x(t) ∈ A for all t ∈ [0, T ] , (10)

in which f (., ., .) : R × R
N × R

m → R
N is a given function, A ⊂ R

N is a given closed set,
and U ⊂ R

m is a given closed set.
We shall refer to a couple (x(.), u(.)), comprising a measurable function u(.) : [0, T ] →

R
m and an absolutely continuous function x(.) : [0, T ] → R

N which satisfy ẋ(t) =
f (t, x(t), u(t)) and u(t) ∈ U a.e., as a process (on [0, T ]). The function x(.) is called a
state trajectory and the function u(.) is called a control function. If x(.) satisfies the state
constraint (10), the process is ‘admissible’.

We shall assume that the control system data satisfy the hypotheses: (H1)′-(H3)′, (BV)′
and (IPC)′ which are the equivalent formulations of the hypotheses (H1)–(H3), (BV) and
(IPC) but for the control system (8)–(10) and f1, A1,m1 and n1 (or f2, A2,m2 and n2) are
replaced by f , A,m and N . Observe that the inward pointing condition now takes the form

(IPC)′: (Convexified Inward Pointing Condition) for each t ∈ [S, T ), s ∈ (S, T ], x ∈ ∂A,

co f (t+, x,U ) ∩ int TA(x) �= ∅ , co f (s−, x,U ) ∩ int TA(x) �= ∅ .

Employing the L∞-metric on the set of trajectories, we derive linear estimates w.r.t. the
left-end points of a reference process and its approximating process. This result, often referred
as nonanticipative Filippov’s theorem or ’distance estimates’, guarantees the possibility to
construct approximating admissible controls (and trajectories) in a nonanticipative way, and,
therefore, build up suitable nonanticipative strategies (which is crucial when dealing with the
differential games considered in this paper).
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Theorem 4.1 Take a closed nonempty set A ⊂ R
N . Fix r0 > 0 and define R(t) := (r0 +

1) exp
(∫ t

0 c f (s)ds
)
−1. Assumehypotheses (H1)′-(H3)′, (BV)′, (IPC)′ for R0 := R(T ). Then

there exist constants k0 > 0, K0 > 0, δ0 > 0, ρ0 > 0, (whose magnitude depends only on
the parameter r0 and the data of assumptions (H1)′-(H3)′, (BV)′, (IPC)′), with the following
property: given any (t1, ξ1) ∈ [0, T ] × (A ∩ R(t1)B) and admissible process (x1(.), u1(.))
on [t1, T ] such that x1(t1) = ξ1, for any (t2, ξ2) ∈ [0, T ] × (A ∩ R(t2)B), there exists an
admissible process (x2(.), u2(.)) on [t2, T ] with x2(t2) = ξ2 such that the construction of
u2(.) is nonanticipative,

x2(t) ∈ int A for all t ∈ (t2, T ] , and (11)

‖x1(. + t1−t2) − x2(.)‖L∞(t2,T2) ≤ K0 (|ξ1 − ξ2| + |t1−t2|) , (12)

where T2 := (T + t2−t1) ∧ T .

Moreover if ρ := (1 + η(T )) exp
(∫ T

0 k f (t) dt
)

(|ξ1 − ξ2| + |t1− t2|) ≤ ρ0 then there

exists a finite sequence {τ1, . . . , τM }, (with M ≤ T /δ0+1) such that t2 ≤ τ1, τ1+δ0 ≤ τ2,…,
τ j +δ0 ≤ τ j+1, . . . , τM < T2, and the control u2 on [t2, T2] that has the following structure:

u2(t) :=
⎧
⎨

⎩

ū j (t) if t ∈ [τ j , (τ j + k0ρ) ∧ T2]
u1(t − k0ρ + t1 − t2) if t ∈ (τ j + k0ρ, (τ j + δ0) ∧ T2] for j = 1, . . . , M
u1(t + t1 − t2) otherwise,

for some control functions ū j : [τ j , (τ j + k0ρ) ∧ T2] → U, j = 1, . . . , M.

Remark 4.2 A scrutiny of the proof of Theorem 4.1 tells us further useful information about
the existence of admissible controls for processes emerging from some given initial data
(t0, ξ0) ∈ [0, T ) × A (even if we are not necessarily interested in comparing it with respect
to admissible processes having different initial data, which is the purpose of Theorem 4.1
statement). Indeed, we can always fix a control function u0 on [0, T ]. Then for any given
initial data (t0, ξ0) ∈ [0, T ) × A, we can consider a positive number ρ, which now has
a different expression from (14) below and can be written in terms of the state constraint
violation of the trajectory x0(.) associated with the control u0 on [t0, T ] (cf. [15] for the
details in the context of differential inclusions, the adaptation of which to the control systems
is straightforward). The analysis along the line of the proof of Theorem 4.1 (cf. [15] for
the differential inclusions) then provides an admissible pair (x̄, ū) such that x̄(t0) = ξ0,
x̄(t) ∈ intA for all t ∈ (t0, T ] and, if ξ0 is ‘close’ to the boundary ∂A and a reference vector
v ∈ co f (t+0 , ξ0,U ) is given, then the control ū can be constructed in such a manner that, for
each ε > 0 we can find σ > 0 such that

∣
∣
∣
∣

∫ t0+σ

t0
[ f (s, x̄(s), ū(s)) − v] ds

∣
∣
∣
∣ ≤ ε. (13)

When we consider our reference differential game problem and assumptions (H1)-(H3),
(BV ) and (I PC) are satisfied, this translates into the fact that for every initial data (t0, x0 =
(y0, z0)) ∈ [0, T ) × A1 × A2, the sets of admissible controls U(t0, y0) and V(t0, z0) are
nonempty and, in particular, we can always find controls ū ∈ U(t0, y0) and v̄ ∈ V(t0, z0)
satisfying the properties described above.

Proof of Theorem 4.1 We fix a control function u0 on [0, T ]. Fix also any r0 > 0. Assume
that the function f and set A in the theorem statement satisfy (H1)′, (H2)′, (H3)′, (IPC)′ and
(BV)′ with constant c0 > 0, and functions c f , k f ∈ L1(0, T ), for R0 := R(T ). Take any
t1 ∈ [0, T ]. The constants R0 and c0 bound, respectively, magnitudes and velocities of all
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processes (x, u) on the subinterval [t1, T ] ⊂ [0, T ] starting from R(t1)B. Let η̄ > 0 and
η(.) be the constant and modulus of variation appearing in (BV)′. Take any ξi ∈ A∩ R(ti )B,
i = 1, 2, with ξ1 �= ξ2 (for, otherwise, there is nothing to prove).

Let (x1, u1) be any given admissible process on [t1, T ]. We shall first construct, in a
nonanticipative way, an admissible process (x2, u2) on [t2, T2] such that (11) and (12) are
satisfied (Steps 1–5). In Step 6, we provide its extension to [t2, T ] (when T2 < T ).

Step 1. (A reduction argument).
The reduction techniques and the preliminary analysis used in [15] can be easily adapted

to our control system (8) (considering the multivalued map (t, x) � F(t, x) := f (t, x,U )),
allowing us to restrict our attention, without loss of generality, to the case when
(i): ξ2 ∈ (∂A + η̄

2B) ∩ A ∩ R(t2)B and

ρ := (1 + η(T )) exp

(∫ T

0
k f (t) dt

)

(|ξ1 − ξ2| + |t1−t2|) ≤ ρ0, for some ρ0 > 0, (14)

(ii): we consider a subinterval [t2, T̃2] ⊂ [0, T ] (in place of [t2, T2]) such that T̃2 − t2 ≤ δ0
for some δ0 > 0,
(iii): η(T̃2) − η(t2) ≤ γ.

Here, ρ0 > 0, δ0 > 0 and γ > 0 are constants which depend only on the data given in the
assumptions, see (16) and (17)–(18) below.
Using well-known stability properties of the interior of Clarke tangent cone [29], owing
to [15, Lemma 5], we can eventually modify the reference function f at most on a finite
number of times {σi } ⊂ [0, T ] and obtain a new function f̃ which satisfies the following
property: there exist ε ∈ (0, 1) and η̄ > 0 (we can arrange that η̄ is the same constant
appearing in (BV)′, otherwise we can always reduce its size) such that given any (t, x) ∈
[0, T ] × (

(∂A + η̄B) ∩ R0B ∩ A
)
, we can find a vector v ∈ co f̃ (t, x,U ) such that

x ′ + [0, ε](v + εB) ⊂ A, for all x ′ ∈ (x + εB) ∩ A. (15)

We also know that a process (x, u) for the dynamics governed by f̃ is also a process for f
and vice-versa. Therefore, it is not restrictive to continue our analysis assuming that, for any
(t, x) ∈ [t, T ] × (

(∂A + η̄B) ∩ R0B ∩ A
)
we can find v ∈ co f (t, x,U ) such that (15) is

true for all x ′ ∈ (x + εB) ∩ A.
Let ω : [0, T ] → [0,∞) be the function

ω(δ) := sup

(∫

I
k f (s)ds

)

,

where the supremum is taken over sub-intervals I ⊂ [0, T ] of length not greater than δ.
Observe that ω(.) is well-defined on [0, T ], for k f ∈ L1(0, T ), and that ω(δ) → 0, as δ ↓ 0.
Fix k0 ≥ 1 such that k0 > ε−1 and take constants δ0 > 0, ρ0 > 0 and γ > 0 in such a
manner that

δ0 ≤ ε, ρ0 + c0δ0 < ε, k0ρ0 < δ0, ρ0 ≤ η̄, 4δ0c0 ≤ η̄, (16)

and

4eω(δ0)(γ + c0ω(δ0)) < ε, (17)

[
δ0/2 + c0k0ω(δ0) + k0e

ω(δ0)(γ (1 + ω(δ0) + c0ω(δ0)(3 + ω(δ0))
]
ρ + γ δ0 < (k0ε − 1) .

(18)
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Set K := (1 + η(T )) exp
(∫ T

0 k f (t) dt
)
so that ρ = K (|ξ1 − ξ2| + |t1−t2|).

Step 2. (Admissible control construction – first part of the time interval).
Since we can restrict attention to a situation in which (i) is valid, we can find a vector

v ∈ co f (t2, ξ2,U ) satisfying property (15) for (t, x) = (t2, ξ2). Now, consider the arc
y : [t2, T̃2] → R

n such that y(t2) = ξ2 and ẏ(t) = v. It immediately follows that, for all
t ∈ [t2, (t2 + k0ρ) ∧ T ],

y(t) = ξ2 + (t − t2) v . (19)

Recalling that c0 constitutes an upper bound for the magnitude for both v and ‖ẋ1‖L∞ , we
deduce that

‖x1(. + t1−t2) − y(.)‖L∞(t2,(t2+(T−t1)∧k0ρ)∧T̃2)
≤ 2c0k0ρ . (20)

In addition, from (BV)′ we also obtain that, for all s ∈ [t2, (t2 + k0ρ) ∧ T̃2],
dco f (s,y(s),U )(ẏ(s)) ≤ (η(s) − η(t2)) + k f (s)|y(s) − y(t2)|

≤ (η(s) − η(t2)) + k f (s)c0 (s − t2) . (21)

Invoking Filippov’s Existence Theorem (cf. [32, Thm. 2.4.3]), in which we take as reference
multivalued function F̃(t, x) := co F(t, x) = co f (t, x,U )) and bearing in mind condition
(21), we can find an F̃-trajectory x̃ on [t2, (t2 + k0ρ)∧ T̃2] with x̃(t2) = y(t2) = ξ2 and such
that, for any t ∈ [t2, (t2 + k0ρ) ∧ T̃2]

‖x̃ − y‖L∞(t2,t) ≤ eω(δ0)(γ + c0 ω(δ0)) (t − t2) . (22)

It follows that for all t ∈ [t2, (t2 + k0ρ) ∧ T̃2],
x̃(t) ∈ y(t) + eω(δ0)(γ + c0 ω(δ0))(t − t2)B, from (22),

⊂ ξ2 + (t − t2)(v + eω(δ0)(γ + c0 ω(δ0))B), from (19),

⊂ ξ2 + (t − t2)(v + ε/4B), from (17)

⊂ intA, from (14) − −(16).

(23)

We take a decreasing sequence {σk}k≥1 in (t2, (t2+k0ρ)∧ T̃2] such that σ1 := (t2+k0ρ)∧ T̃2
and σk ↓ t2 as k → +∞. Observe that, since x̃(t) ∈ intA for all t ∈ (t2, (t2 + k0ρ) ∧ T̃2],
there exists a decreasing sequence εk ↓ 0, with εk ∈ (0, (ε(σk − t2)) ∧ (δ0ρ)), for all k ≥ 1,
such that

x̃(σ ) + εk B ⊂ intA for all τ ∈ [σk, σ1].
Employing the techniques used in the proof of [13, Lemma 5.2, Step 3] we can find an

F–trajectory x2(.) on [t1, (t2 + k0ρ)∧ T̃2] such that x2(t2) = y(t2) = ξ2 and, for each k ≥ 2,

x2(t) ∈ x̃(t) + εk

2
B ⊂ intA, for all t ∈ (σk, σk−1]. (24)

In particular we have:

x2(σ1) ∈ x̃(σ1) + ε1

2
B ⊂ y(σ1) +

[
δ0

2
+ eω(δ0)(γ + c0 ω(δ0))k0

]

ρ B. (25)

Using the Filippov’s Selection Theorem (cf. [32, Thm. 2.3.13]) we can find a control
ū2 : [t2, (t2 + k0ρ) ∧ T̃2] → U such that (x2, ū2) is a process on [t2, (t2 + k0ρ) ∧ T̃2].
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Observe that, in fact, from the analysis of this stepwe can deduce amuch stronger property:
for each initial data (t, ξ), where t ∈ [0, T ] and

ξ ∈
(

∂A + η̄

2
B

)

∩ A ∩ R(t)B, (26)

we can construct a control ū : [t, (t +k0ρ)∧T ] → U such that the associated process (x̄, ū)

emerging from x̄(t) = ξ satisfies the condition x̄(s) ∈ intA for all s ∈ (t, (t + k0ρ) ∧ T ]
and

x̄((t + k0ρ) ∧ T ) ∈ ȳ((t + k0ρ) ∧ T ) +
[

δ0

2
+ eω(δ0)(γ + c0 ω(δ0))k0

]

ρ B,

where ȳ(s) := ξ + (s − t)v, s ∈ [t, (t + k0ρ)∧ T ] and v ∈ co f (t, ξ,U )∩ intTA(ξ) is taken
according to Step 1.

Therefore for each initial data (t, ξ) such that (26) is satisfied, we consider the associated
(fixed) control obtained in this step, which is admissible on [t, (t + k0ρ) ∧ T ].
Step 3. (Admissible control construction – second part of the time interval and distance
estimates).

Observe that, given any control u on [t1, T ] such that the process (x(.), u(.)) with starting
point x(t1) = ξ1 is admissible on [t1, T ], if we consider the process (x̂(.), u(. + t1− t2))
on [t2, T 2] such that x̂(t2) = ξ2 (which in general is not necessarily admissible), then from
Gronwall’s inequality we have

max
t∈[t2,T2]

dA(x̂(t)) ≤ ‖x(. + t1−t2) − x̂(.)‖L∞(t2,T2)

≤ exp

(∫ T

0
k f (t) dt

)

(1 + η(T )) (|ξ1 − ξ2| + |t1−t2|) (= ρ).

(27)

Take now an admissible process (x1(.), u1(.)) on [t1, T ] such that x1(t1) = ξ1. Define a new
control

u2(t) :=
{
ū2(t) if t ∈ [t2, (t2 + k0ρ) ∧ T̃2]
u1(t+t1−t2 − k0ρ) if t ∈ (t2 + k0ρ, T̃2] .

Write (x2, u2) the process associated with the control u2 with starting point x2(t2) = ξ2. It
follows that for any t ∈ [t2, (t2 + k0ρ) ∧ T̃2]

|x1(t+t1−t2) − x2(t)| ≤
∫ t

t2
| f (s + t1−t2, x1(s + t1−t2), u1(s + t1−t2))

− f (s, x2(s), u2(s))|ds + |ξ1 − ξ2|
≤ 2c0k0ρ + |ξ1 − ξ2|
≤ (2c0k0K + 1) (|ξ1 − ξ2| + |t1−t2|) .

(28)

We have to consider now the case in which t2 + k0ρ < T̃2. Write (x̂2(.), u1(. + t1− t2))
the process associated with the control u1(. + t1−t2) with starting point x̂2(t2) = ξ2. From
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(27) applied to (x̂2, u1(. + t1 − t2)) we deduce that maxt∈[t2,T2] dA(x̂2(t)) ≤ ρ. For all
t ∈ [t2 + k0ρ, T̃2] we have

|x̂2(t) − x2(t)| =
∣
∣
∣
∣

∫ t

t2
f (s, x̂2(s), u1(s + t1−t2))ds −

∫ t

t2
f (s, x2(s), u2(s))ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

t2
f (s, x̂2(s), u1(s + t1−t2))ds −

∫ t2+k0ρ

t2
f (s, x2(s), ū2(s))ds

−
∫ t

t2+k0ρ
f (s, x2(s), u1(s + t1−t2 − k0ρ))ds

∣
∣
∣
∣

≤
∫ t

t−k0ρ
| f (s, x2(s), u1(s + t1−t2))|ds +

∫ t2+k0ρ

t2
| f (s, x2(s), ū2(s))|ds

+
∫ t

t2
| f (s, x̂2(s), u1(s + t1−t2)) − f (s, x2(s), u1(s + t1−t2))|ds

+
∫ t−k0ρ

t2
| f (s, x2(s), u1(s + t1−t2)) − f (s + k0ρ, x2(s), u1(s + t1−t2))|ds

+
∫ t−k0ρ

t2
| f (s+k0ρ, x2(s), u1(s+t1−t2)) − f (s+k0ρ, x2(s+k0ρ), u1(s+t1−t2))|ds

≤ 2c0k0ρ +
∫ t

t2
k f (s)|x̂2(s) − x2(s)|ds +

∫ t−k0ρ

t2
(η(s + k0ρ) − η(s))ds

+
∫ t−k0ρ

t2
k f (s)|x2(s + k0ρ) − x2(s)|ds

≤ (2c0 + γ + ω(δ0)c0)k0ρ +
∫ t

t2
k f (s)|x̂2(s) − x2(s)|ds.

(29)
Then, from Gronwall’s inequality (in the integral form), we deduce that, for all t ∈ [t2, T̃2],

|x̂2(t) − x2(t)| ≤ eω(δ0)(2c0 + γ + ω(δ0)c0)k0ρ. (30)

Take any t ∈ (t2 + k0ρ, T̃2], from the estimates above we obtain

|x1(t+t1−t2) − x2(t)| ≤ |x1(t+t1−t2) − x̂2(t)| + |x̂2(t) − x2(t)|
≤ eω(δ0)(1 + η(T ))(|ξ1 − ξ2| + |t1−t2|) + eω(δ0)(2c0 + γ + ω(δ0)c0)k0ρ

≤ eω(δ0)
[
1 + η(T ) + (2c0 + γ + ω(δ0)c0)k0K

]
(|ξ1 − ξ2| + |t2−t1|) ,

(31)
from which we deduce the required estimate:

‖x1(. + t1−t2) − x2(.)‖L∞(t2,T̃2)
≤ K0(|ξ1 − ξ2| + |t1−t2|), (32)

where

K0 := eω(δ0)
[
1 + η(T ) + (2c0 + γ + ω(δ0)c0)k0K

]
.

Step 4. (The process is admissible on the second part of the time interval).
From (24) we know that x2(t) ∈ intA for all t ∈ (t2, (t2 + k0ρ) ∧ T̃2]. So to complete the

proof we proceed assuming that t2 + k0ρ < T̃2. Define the arc ŷ : [t2, T̃2] → R
n as follows

ŷ(t) :=
{
y(t) = ξ2 + v(t − t2) if t ∈ [t2, t2 + k0ρ)

ξ2 + k0ρv + ∫ t
t2+k0ρ

˙̂x2(s − k0ρ)ds if t ∈ [t2 + k0ρ, T̃2] . (33)
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Observe that, when t ∈ [t2 + k0ρ, T̃2], we have ŷ(t) = k0ρv + x̂2(t − k0ρ), and writing
z(t) a projection on A of the arc t �→ x̂2(t − k0ρ), it satisfies |x̂2(t − k0ρ) − z(t)| =
dA(x̂2(t − k0ρ)) ≤ ‖x̂2 − x1(. + t1−t2)‖L∞(t2+k0ρ,T̃2)

≤ ρ and we deduce that

ŷ(t) ∈ z(t) + k0ρv + ρB for all t ∈ [t2 + k0ρ, T̃2]. (34)

Notice also that for all t ∈ [t2 + k0ρ, T̃2], making use of (25) and (30), recall that here
τ1 = t2 + k0ρ, we obtain

| x2(t) − ŷ(t)| ≤ |x2(t2 + k0ρ) − y(t2 + k0ρ)|
+

∣
∣
∣
∣

∫ t
t2+k0ρ

[
f (s, x2(s), u2(s)) − f (s − k0ρ, x̂2(s − k0ρ), u1(s − k0ρ + t1−t2))

]
ds

∣
∣
∣
∣

≤ [
δ0/2 + eω(δ0)(γ + c0ω(δ0))k0

]
ρ + ∫ t

t2+k0ρ
(η(s) − η(s − k0ρ))ds (35)

+ ∫ t
t2+k0ρ

k f (s)|x2(s) − x2(s − k0ρ) + x2(s − k0ρ) − x̂2(s − k0ρ)|ds
≤ [

δ0/2 + eω(δ0)(γ + c0ω(δ0))k0 + c0ω(δ0)k0 + ω(δ0)eω(δ0)(2c0 + γ + ω(δ0)c0)k0
]
ρ + γ δ0

Since |x̂2(t − k0ρ) − x̂(t2)| ≤ c0(T̃2 − t2) for all t ∈ (t2 + k0ρ, T̃2], appealing once
again to (16), we also have

|z(t) − x̂2(t2)| = |z(t) − x̂2(t − k0ρ) + x̂2(t − k0ρ) − ξ2| ≤ ρ + c0δ0 ≤ ρ0 + c0δ0 < ε.

Thus bearing in mind (15) and (16), we see that

z(t) + k0ρ(v + εB) ⊂ A ,

and, owing to (34),

ŷ(t) + (k0ε − 1)ρB ⊂ A .

Taking into account (18) and (36), we deduce that x2(t) ∈ int A for all t ∈ [t2 + k0ρ, T̃2] in
this case as well, confirming all the assertions of the theorem.
Step 5. (Iteration, nonanticipativity).

With the help of the reduction argument of Step 1 we constructed (in Steps 2 and 3) an
admissible process on the interval [t2, T̃2] of length at most δ0 > 0, and the magnitude of
δ0, depends only on the data of the problem and the choice of the radius r0 > 0 (which
regulates the size of the region in which the processes are supposed to emerge). We recall
that the reduction argument of Step 1 (we refer the reader to [15] and [13] for full details)
allows to reduce attention to subintervals of length smaller than δ0, since, if T2 − t2 > δ0, we
partition [t2, T2] as a family of M0 contiguous intervals, each of length at most δ0, where M0

is the smaller integer such that M−1
0 (T2 − t2) ≤ δ0, {[σ i

0, σ
i
1]}M0

i=1, where σ 1
0 = t2, σ

M0
1 = T2,

σ i
1 = σ i

0+δ0 for all i = 1, . . . , M0−1 and σ
M0
1 −σ

M0
0 ≤ δ0. If the starting point ξ2 belong to(

∂A + η̄
2B

)
∩ A∩R(t2)B, then we construct an admissible process (x2, u2) on [σ 1

0 = t2, σ 1
1 ]

according to Steps 1–4. On the other hand, if ξ2 ∈ (A ∩ R(t2)B) \
(
∂A + η̄

2B

)
, then we

just consider the admissible control u2(.) := u1(. + t1 − t2) on [σ 1
0 , σ 1

1 ]. In a subsequent
stage we simply extend the obtained process (x2, u2) for [σ 1

0 = t2, σ 2
1 ] taking into account

the position of the new initial condition x2(σ 2
0 ) := x2(σ 1

1 ) and according to the criterion

employed above: the control depends on whether x2(σ 2
0 ) ∈

(
∂A + η̄

2B

)
∩ A or not (observe

that it necessarily belongs to R(σ 2
0 )B). This tells us that to build up an admissible process
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(x2, u2) on (the full time interval) [t2, T2] it is necessary to apply the construction displayed
in the previous steps only a finite number of times M ≤ M0.

We write τ j ∈ [t2, T2], for j = 1, . . . M , the initial time of each interval of length
at most δ0 on which we employ the above construction of Steps 1–4. Observe that we
have t2 ≤ τ1 < · · · < τM < T2, τ j+1 − τ j ≥ δ0 for all j = 1, . . . , M − 1. Whenever
t /∈ ∪M

j=1

[
τ j , (τ j + δ0) ∧ T2

]
we have u2(t) := u1(t + t1 − t2). Therefore we shall end up

with an admissible control u2 on [t2, T2] that has the following structure:

u2(t) :=
⎧
⎨

⎩

ū j (t) if t ∈ [τ j , (τ j + k0ρ) ∧ T2]
u1(t − k0ρ + t1 − t2) if t ∈ (τ j + k0ρ, (τ j + δ0) ∧ T2] for j = 1, . . . , M

u1(t + t1 − t2) otherwise,

for some control functions ū j : [τ j , (τ j + k0ρ) ∧ T2] → U , j = 1, . . . , M . Observe that the
control u2 is constructed starting from u1 (shifted of the quantity t1 − t2) and it is modified
on the intervals [τ j , (τ j + δ0) ∧ T2] according to Steps 1–4.

Now, we show that this construction is nonanticipative. Take two admissible processes
(x1, u1) and (x ′

1, u
′
1) on [t1, T ] such that x1(t1) = x ′

1(t1) = ξ1. Take any σ ∈ [0, T − t1]. It
is not restrictive to consider only the following two situations:

(i) t2 + σ ∈ [t2, τ1] and t2 < τ1,
(ii) t2 + σ ∈ [τ1, (τ1 + δ0) ∧ T2],
since the analysis for all the other cases can be easily traced back to these ones.

Case (i) : t2+σ ∈ [t2, τ1] (t2 < τ1). In this case if u1 = u′
1 a.e. on [t1, t1+σ ], then clearly

for a.e. t ∈ [t2, (t2 + σ) ∧ T2] we have u2(t) = u1(t + t1 − t2) = u′
1(t + t1 − t2) = u′

2(t).
Case (ii) : t2 + σ ∈ [τ1, (τ1 + δ0) ∧ T2]. Suppose that u1 = u′

1 a.e. on [t1, t1 + σ ]. If
t2 + σ ∈ [τ1, τ1 + k0ρ] then we have

{
u2(t) = u′

2(t) a.e. on [t2, τ1]
u2(t) = ū1(t) = u′

2(t) a.e. t ∈ [τ1, τ1 + k0ρ] (36)

On the other hand, when t2 + σ ∈ [τ1 + k0ρ, (τ1 + δ0) ∧ T2], in addition to (36) we have
u2(t) = u1(t−k0ρ+t1−t2) = u′

1(t−k0ρ+t1−t2) = u′
2(t) a.e. on [τ1+k0ρ, (t2+σ)∧T2].

In both cases, we obtain that the mapping that provides the control u2 is nonanticipative.
Step 6. (Construction completion).

If T2 = T (which means that t2−t1 ≥ 0) then the construction of the admissible process
(x2, u2) is complete. Otherwise if T2 < T (i.e. T2 := T + t2−t1 and t2 < t1), we have to
extend the process (x2, u2) on [t2, T2] obtained above to the interval [t2, T ]. Observe that
in this extension procedure we restrict attention only to condition (11) since estimate (12)
involves the restriction of the trajectory x2(.) to the time interval [t2, T2].

We consider the process (w2, u0|[T2,T ]) on [T2, T ] such that w2(T2) = x2(T2), where u0
is the control (on [0, T ]) that we fixed at the beginning of the proof. Since w2(T2) ∈ intA

and T − T2 = t1− t2 < δ0, if x2(T2) ∈ (intA) �

(
∂A + η̄

2B

)
, then from (16) we deduce

that w2(t) ∈ intA for all t ∈ [T2, T ]. In this case we extend (x2, u2) to [t2, T ] obtaining
x2(t) = w2(t) and u2(t) = u0(t) on [T2, T ].
On the other hand, if x2(T2) ∈ (intA) ∩

(
∂A + η̄

2B

)
, then there exists a vector v2 ∈

co f (T2, x2(T2),U ) which satisfies condition (15). Then employing exactly the argument
displayed in Step 2 on the whole interval [T2, T ] (in place of [T2, (T2 + k0ρ) ∧ T ]), we
can find a process (x̄2, ū2) on [T2, T ] such that x̄2(T2) = x2(T2) and x̄2(t) ∈ intA for all
t ∈ [T2, T ]. Therefore, in this situation, the extension of (x2, u2) will be obtained setting
(x2, u2) = (x̄2, ū2) on [T2, T ].
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The nonanticipative property of our construction in the last interval [T2, T ] (when T − T2 =
t1 − t2 > 0) follows from the fact that we have two possible situations: either x2(T2) ∈
intA \

(
∂A + η̄

2B

)
and we complete u2 with the (fixed) control u0, or x2(T2) ∈ ∂A + η̄

2B

and then we extend u2 using the control ū provided by Step 2.
Finally, observe that if

(1 + η(T )) exp

(∫ T

0
k f (t)dt

)

(|t1−t2| + |ξ1 − ξ2|) > ρ0 (37)

then to construct the admissible process (x2, u2) we merely make use of the argument of
Step 6 (repeating it at most for a finite number of times). The analysis of Step 6 provides
a state trajectory x2(.) on [t2, T ] satisfying x2(t2) = ξ2 and condition (11), but it gives no
information on the L∞ distance between the two trajectories x1(.) and x2(.). However when
the distance between the initial data is big enough and (37) is in force we immediately deduce
that

‖x1(. + t1−t2) − x2(.)‖L∞(t2,T2) ≤ 4

ρ0
c0T K (1 + η(T )) (|t1−t2| + |ξ1 − ξ2|) .

Then, possibly adjusting the constant K0 we deduce in this case also the validity of (12). ��

5 Regularity Properties of the Lower and Upper Value Functions

Proposition 5.1 (Lipschitz continuity) Let A1 ⊂ R
n1 and A2 ⊂ R

n2 be nonempty closed
sets. Suppose that assumptions (H1)–(H5), (BV) and (IPC) are satisfied. Then the lower
value function V � and the upper value function V � are locally Lipschitz continuous on
[0, T ] × A1 × A2.

Proof Fix a real number r0 > 0. Take any (t1, x1 = (ξ1, ζ1)), (t2, x2 = (ξ2, ζ2)) ∈ [0, T ] ×
(A ∩ r0B). Define T1 := (T + t1 − t2) ∧ T , T2 := (T + t2 − t1) ∧ T and take R0 :=
exp

(∫ T
0 c f (t)dt

)
(r0 + 1).

Let ε > 0 be a given number. From the definition of the upper value V �, we can find a
nonanticipative strategy β2 ∈ SV (t2, x2) such that

V �(t2, x2) ≤ inf
u∈U(t2,ξ2)

J (t2, x2; u(·), β2(u)(·)) + ε. (38)

We consider the nonanticipative map � : U([t1, T ], ξ1) → U([t2, T ], ξ2) provided by The-
orem 4.1 applied to the control system ẏ = f1(t, y, u), which with any admissible process
(y1, u1) on [t1, T ] such that y1(t1) = ξ1 associates a constant K0 (depending only on r0)
and an admissible process (y2, u2 = �(u1)) such that y2(t2) = ξ2, y2(t) ∈ int(A) for all
t ∈ (t2, T ] and

‖y1(. + t1−t2) − y2(.)‖L∞(t2,T2) ≤ K0(|ξ1 − ξ2| + |t1−t2|). (39)

We also know that we can restrict our attention to the case in which

ρξ := (1 + η(T )) exp

(∫ T

0
k f (t)dt

)

(|ξ1 − ξ2| + |t1−t2|) ≤ ρ0;

ρζ := (1 + η(T )) exp

(∫ T

0
k f (t)dt

)

(|ζ1 − ζ2| + |t1−t2|) ≤ ρ0

(40)
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for some ρ0 ≥ 0 and let δ0 such that ρξ , ρζ ≤ δ0/k0. We have also the information that the
control u2 has the following structure:

u2(t) =
{
ū j (t) if t ∈ [τ j , (τ j + k0ρξ ) ∧ T2]
u1(t − k0ρξ + t1−t2) if t ∈ (τ j + k0ρξ , (τ j + δ0) ∧ T2]

for some control functions ū j : [τ j , (τ j + k0ρξ ) ∧ T2] → U , j = 1, . . . , M .
Theorem 4.1 gives also a nonanticipativemap� : V([t2, T ], ζ2) → V([t1, T ], ζ1) (related

to the control system ż = f2(t, z, v)), such that, for any admissible process (z2, v2) on [t2, T ]
with z2(t2) = ζ2, we have an admissible process (z1, v1 = �(v2)) on [t1, T ] satisfying

‖z2(. + t2−t1) − z1(.)‖L∞(t1,T1) ≤ K0 (|ζ1 − ζ2| + |t1−t2|) (41)

and, again since (40) is in force, we have

v1(t) =
{

v̄i (t) if t ∈ [σi , (σi + k0ρζ ) ∧ T1]
v2(t − k0ρζ + t2−t1) if t ∈ (σi + k0ρζ , (σi + δ0) ∧ T1]

for some v̄i : [σi , (σi + k0ρζ ) ∧ T1] → V , i = 1, . . . , N . Observe that the composition of
the nonanticipative maps�, β2 and� provides a nonanticipative strategy β1 := �◦β2 ◦� :
U([t1, T ], ξ1) → V([t1, T ], ζ1). We emphasize that the strategies � and � provided by
Theorem 4.1 are such that also the composition � ◦ β2 ◦ �(= β1) is nonanticipative and
the situation when t1 �= t2 does not generate an issue. Indeed, it is immediate to see that
the map β1 is anticipative when t2 ≤ t1. So we restrict our attention to the case when
t1 < t2 (that is T1 := T + t1 − t2 < T ) and |t1 − t2| is small enough. Take two admissible
controls u1, u2 ∈ U([t1, T ]; ξ1) and any σ ∈ [0, T − t1]. If t1 + σ ∈ [t1, T1] and u1 = u2
a.e. on [t1, t1 + σ ], then it is immediate to see that β1(u1) = β1(u2) a.e. on [t1, t1 + σ ].
Suppose now that t1 + σ ∈ (T1, T ]. Then the trajectories ỹ1 and ỹ2 associated respectively
with β1(u1) and β1(u2) are such that ỹ1(T1) = ỹ2(T1). Therefore, from Step 6 of the proof
of Theorem 4.1 we know that on [T1, T ] we use either a given (fixed) control u0 (when

ỹ1(T1) = ỹ2(T1) ∈ (intA1) \
(
∂A1 + η̄

2B

)
) or a particular control ū constructed in Step 2 of

the proof of Theorem 4.1 (when ỹ1(T1) = ỹ2(T1) ∈ (intA1) ∩
(
∂A1 + η̄

2B

)
). In either case,

we have β1(u1) = β1(u2) a.e. also on [T1, t1 + σ ].
From the definition of V � we have V �(t1, x1) ≥ infu∈U(t1,ξ1) J (t1, x1; u(·), β1(u)(·)) − ε

and, therefore, there exists a control û1 ∈ U(t1, ξ1) such that

V �(t1, x1) ≥ J (t1, x1; û1(·), β1(û1)(·)) − ε. (42)

Write (ŷ1, û1) and (ẑ1, β1(û1)) the associated admissible process such that ŷ1(t1) = ξ1 and
ẑ1(t1) = ζ1. Consider also the admissible control û2 = �(û1) ∈ U(t2, ξ2). From (38) we
deduce that

V �(t2, x2) ≤ J (t2, x2; û2(·), β2(û2)(·)) + ε. (43)
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Denote by (ŷ2, û2) and (ẑ2, β2(û2)) the corresponding admissible processeswith x̂2(t2) :=
(ŷ2(t2), ẑ2(t2)) = x2 := (ξ2, ζ2). Write L := L1 + L2. In view of (42) and (43) it follows that

V �(t2, x2) − V �(t1, x1) ≤ J (t2, x2; û2(·), β2(û2)(·)) − J (t1, x1; û1(·), β1(û1)(·)) + 2ε

=
∫ T

t2
L(t, x̂2(t), û2(t), β2(û2)(t))dt −

∫ T

t1
L(t, x̂1(t), û1(t), β1(û1)(t))dt

+ g(x̂2(T )) − g(x̂1(T )) + 2ε

=
∫ T2

t2
L(t, x̂2(t), û2(t), β2(û2)(t))dt +

∫ T

T2
L(t, x̂2(t), û2(t), β2(û2)(t))dt

−
∫ T2

t2
L(t+t1−t2, x̂1(t+t1−t2), û1(t+t1−t2), β1(û1)(t+t1−t2))dt

−
∫ T

T1
L(t, x̂1(t), û1(t), β1(û1)(t))dt + g(x̂2(T )) − g(x̂1(T )) + 2ε.

(44)
From (39) (resp. (41)) which is valid for ŷ1 and ŷ2 (resp. ẑ1 and ẑ2) we obtain

‖ŷ1(. + t1−t2) − ŷ2(.)‖L∞(t2,T2) ≤ K0 (|ξ1 − ξ2| + |t2−t1|) .

(resp. ‖ẑ2(. + t2−t1) − ẑ1(.)‖L∞(t1,T1) ≤ K0 (|ζ1 − ζ2| + |t2−t1|) .)
(45)

In particular we deduce that

|(ŷ2(T ) − ẑ2(T )) − (ŷ1(T ) − ẑ1(T ))| ≤ √
2c0|t2−t1| + √

2K0

(|ξ1 − ξ2| + |ζ1 − ζ2| + |t1−t2|) . (46)

In addition, since |L| ≤ c0 along the reference trajectories, we have
∣
∣
∣
∣

∫ T

T2
L(t, x̂2(t), û2(t), β2(û2)(t))dt −

∫ T

T1
L(t, x̂1(t), û1(t), β1(û1)(t))dt

∣
∣
∣
∣ ≤ 2c0|t2−t1|.

(47)
It remains to provide an estimate of the term

� :=
∣
∣
∣
∣

∫ T2

t2
L(t, x̂2(t), û2(t), β2(û2)(t))dt

−
∫ T2

t2
L(t+t1−t2, x̂1(t+t1−t2), û1(t+t1−t2), β1(û1)(t+t1−t2))dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T2

t2

[
L(t, x̂2(t), û2(t), β2(û2)(t)) − L(t, x̂1(t+t1−t2), û1(t+t1−t2), β1(û1)(t+t1−t2))

]
dt

∣
∣
∣
∣

+
∫ T2

t2

[
η(t+t1−t2) ∨ η(t) − η(t+t1−t2) ∧ η(t)

]
dt

≤
∣
∣
∣
∣

∫ T2

t2

[
L(t, x̂2(t), û2(t), β2(û2)(t)) − L(t, x̂2(t), û1(t+t1−t2), β1(û1)(t+t1−t2))

]
dt

∣
∣
∣
∣

+
∫ T2

t2
|L(t, x̂2(t), û1(t+t1−t2), β1(û1)(t+t1−t2))

− L(t, x̂1(t+t1−t2), û1(t+t1−t2), β1(û1)(t+t1−t2))|dt + η(T )|t1−t2|

≤
∣
∣
∣
∣

∫ T2

t2

[
L(t, x̂2(t),�(û1)(t), β2(û2)(t)) − L(t, x̂2(t), û1(t+t1−t2), β2(û2)(t))

]
dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T2

t2

[
L(t, x̂2(t), û1(t+t1−t2), β2(û2)(t)) − L(t, x̂2(t), û1(t+t1−t2),�(β2(û2))(t+t1−t2))

]
dt

∣
∣
∣
∣



Dynamic Games and Applications

+
∫ T2

t2
kL (t)|(ŷ2(t), ẑ2(t)) − (ŷ2(t+t1−t2), ẑ2(t+t1−t2))|dt + η(T )|t1−t2|

≤ η(T )|t1−t2| + √
2K0KL (|ξ1 − ξ2| + |ζ1 − ζ2| + |t1−t2|)

+
M∑

j=1

∣
∣
∣
∣

∫ (τ j+δ0)∧T2

τ j

L1(t, x̂2(t),�(û1)(t))dt −
∫ (τ j+δ0)∧T2

τ j

L1(t, x̂2(t), û1(t+t1−t2))dt

∣
∣
∣
∣

+
N∑

i=1

∣
∣
∣
∣

∫ (σi+δ0)∧T2

σi

L2(t, x̂2(t), β2(û2)(t))dt −
∫ (σi+δ0)∧T2

σi

L2(t, x̂2(t),�(β2(û2))(t+t1−t2))dt

∣
∣
∣
∣.

Introducing KL := ∫ T
0 kL(t)dt , we have

∣
∣
∣
∣

∫ (τ j+δ0)∧T2

τ j

[
L1(t, x̂2(t),�(û1)(t)) − L1(t, x̂2(t), û1(t+t1−t2))

]
dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ τ j+δ0−k0ρξ

τ j

L1(t + k0ρξ , x̂2(t + k0ρξ ), û1(t+t1−t2))dt

−
∫ τ j+δ0

τ j+k0ρξ

L1(t, x̂2(t), û1(t+t1−t2))dt

∣
∣
∣
∣ + 2c0k0ρξ

≤
∫ τ j+δ0−k0ρξ

τ j

∣
∣L1(t + k0ρξ , x̂2(t + k0ρξ ), û1(t+t1−t2)) − L1(t, x̂2(t), û1(t+t1−t2))

∣
∣dt

+
∣
∣
∣
∣

∫ τ j+δ0−k0ρξ

τ j

L1(t, x̂2(t), û1(t+t1−t2))dt −
∫ τ j+δ0

τ j+k0ρξ

L1(t, x̂2(t), û1(t+t1−t2))dt

∣
∣
∣
∣

+ 2c0k0ρξ

≤ 4c0k0ρξ + √
2c0KLk0ρξ + η(T )k0ρξ

and
∣
∣
∣
∣

∫ (σi+δ0)∧T2

σi

[
L2(t, x̂2(t), β2(û2)(t)) − L2(t, x̂2(t),�(β2(û2))(t+t1−t2))

]
dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ σi+δ0

σi+k0ρζ

L2(t, x̂2(t), β2(û2)(t)) −
∫ σi+δ0−k0ρζ

σi

L2(t + k0ρζ , x̂2(t + k0ρζ ), β2(û2)(t))dt

∣
∣
∣
∣

+ 2c0k0ρζ

≤
∣
∣
∣
∣

∫ σi+δ0

σi+k0ρζ

L2(t, x̂2(t), β2(û2)(t))dt −
∫ σi+δ0−k0ρζ

σi

L2(t, x̂2(t), β2(û2)(t))dt

∣
∣
∣
∣

+ 2c0k0ρζ

+
∫ σi+δ0−k0ρζ

σi

∣
∣L2(t, x̂2(t), β2(û2)(t)) − L2(t + k0ρζ , x̂2(t + k0ρζ ), β2(û2)(t))

∣
∣dt

≤ 4c0k0ρζ + √
2c0KLk0ρζ + η(T )k0ρζ .

Using (40), we finally obtain the estimate :

� ≤
(√

2K0KL + 2M0k0(4c0 + √
2c0KL + η(T ))k0(1 + η(T ))K + η(T )

)

× (|ξ1 − ξ2| + |ζ1 − ζ2| + |t1−t2|)
with M0 ≥ M ∨ N and K ≥ ∫ T

0 k f (t)dt .
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Exchanging the role of V �(t1, x1) and V �(t2, x2) in the inequality above, we obtain

|V �(t1, x1) − V �(t2, x2)| ≤ K �(|t1−t2| + |x1 − x2|) ,

for some constant K � > 0, which depends only on the data of the problem, confirming the
proposition statement. ��

6 Solutions of the Hamilton–Jacobi–Isaacs Equations

Write L := L1 + L2.

Proposition 6.1 (Dynamic programming principle) Let A1 ⊂ R
n1 and A2 ⊂ R

n2 be closed
nonempty sets. Assume (H1)–(H4), (BV) and (IPC). For any (t0, x0 = (y0, z0)) ∈ [0, T ] ×
A1 × A2 and for all σ ∈ (0, T − t0] we have

V �(t0, x0) = inf
α∈SU (t0,x0)

sup
v∈V(t0,y0)

{ ∫ t0+σ

t0
L(t, x[t0, x0;α(v), v](t), α(v)(t), v(t)) dt+

+V �
(
t0, x[t0, x0;α(v), v](t0 + σ)

)}
,

(48)
and

V �(t0, x0) = sup
β∈SV (t0,x0)

inf
u∈U(t0,z0)

{ ∫ t0+σ

t0
L(t, x[t0, x0; u, β(u)](t), u(t), β(u)(t)) dt+

+V �
(
t0, x[t0, x0; u, β(u)](t0 + σ)

)}
.

(49)

Proposition 6.1 can be proved adopting standard arguments already employed for the state
constraints free case (cf. [5], [22]). Therefore its proof is omitted.

Theorem 6.2 Let A1 ⊂ R
n1 and A2 ⊂ R

n2 be closed nonempty sets. Assume that conditions
(H1)–(H5), (BV) and (IPC) are satisfied. Then, the lower value function V � and the upper
value function V � are viscosity solutions on [0, T ) × A1 × A2 of the HJI equation (7).

Proof We show here only that V � is a viscosity solution of the HJI equation (7). The proof
for V � is similar so we omit it.

(i) Recall that n = n1 + n2. Take any (t0, x0 = (y0, z0)) ∈ [0, T ) × A1 × A2 and ϕ ∈
C1(R, R

n) such that V � − ϕ has a local minimum at (t0, (y0, z0)) (relative to [0, T ] ×
A1 × A2). We can assume that ϕ(t0, (y0, z0)) = V �(t0, (y0, z0)), and that there exists
r > 0 such that V �(t, (y, z)) ≥ ϕ(t, (y, z)) for all (t, (y, z)) ∈ ((t0, (y0, z0)) + rB) ∩
([0, T ] × A1 × A2).
Suppose, by contradiction, that there exists θ > 0 such that

(Hin)
∗ (

t0, (y0, z0),∇y,zϕ(t0, (y0, z0))
) − ∇tϕ(t0, (y0, z0)) ≤ −θ.
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From the definition of the upper semicontinuous envelope, we have

(Hin)
∗(t0, (y0, z0),∇y,zϕ(t0, (y0, z0)))

≥ lim sup

y
intA1−−−→y0

Hin(t0, (y, z0),∇y,zϕ(t0, (y, z0)))

= lim sup

y
intA1−−−→y0

inf
(e2,
2)∈G2(t0,(y,z0))

sup
(e1,
1)∈G1(t0,(y,z0))

[−e1 · py − e2 · pz − 
1 − 
2]

= inf
(e2,
2)∈G2(t0,(y0,z0))

sup
(e1,
1)∈Q1(t0,(y0,z0))

[−e1 · py − e2 · pz − 
1 − 
2].
(50)

where (py, pz) := ∇y,zϕ(t0, (y0, z0)).
Then we can select (ẽ2, 
̃2) ∈ (co f2, L2)(t

+
0 , (y0, z0), V ) such that ẽ2 ∈ intTA2(z0)

sup
(e1,
1)∈Q1(t0,(y0,z0))

[−e1 · py − ẽ2 · pz − 
1 − 
̃2] − ∇tϕ(t0, (y0, z0)) ≤ −θ.

Using the stability properties of the interior of Clarke tangent cone and the arguments
of the proof of Theorem 4.1 (see Remark 4.2), we can find an admissible control ṽ ∈
V(t0, z0) and σ0 ∈ (0, T − t0) such that, for every strategy α ∈ SU (t0, x0), we have

∫ t0+σ0

t0

[
H(s, x̃(s),∇xϕ(s, x̃(s)), α(ṽ)(s), ṽ(s)) − ∇tϕ(s, x̃(s))

]
ds ≤ −θ

2
,

where x̃(s) := x[t0, x0;α(ṽ), ṽ](s).
Now, applying the Dynamic Programming Principle and standard arguments (cf. the
proof of [12, Theorem 4.3]) we arrive at a contradiction.

(ii) Let (t0, x0 = (y0, z0)) be a local maximum (relative to [0, T ] × A1 × A2) for (V � −
ϕ), ϕ ∈ C1(Rn, R) and there exists r > 0 such that V �(t, (y, z)) ≤ ϕ(t, (y, z)) for all
(t, (y, z)) ∈ ((t0, (y0, z0)) + rB) ∩ ([0, T ] × A1 × A2). Suppose that, by contradiction,
there exists θ > 0 such that

(Hin)∗ (t0, (y0, z0),∇y,zϕ(t0, (y0, z0))) − ∇tϕ(t0, (y0, z0)) ≥ θ.

Then from the definition of the lower semicontinuous envelope

(Hin)∗ (t0, (y0, z0),∇y,zϕ(t0, (y0, z0)))

≤ lim inf
z

intA2−−−→z0

Hin(t0, (y0, z),∇y,zϕ(t0, (y0, z)))

= lim inf
z

intA2−−−→z0

inf
(e2,
2)∈G2(t0,(y0,z))

sup
(e1,
1)∈G1(t0,(y0,z))

[−e1 · py − e2 · pz − 
1 − 
2]

= inf
(e2,
2)∈Q2(t0,(y0,z0))

sup
(e1,
1)∈G1(t0,(y0,z0))

[−e1 · py − e2 · pz − 
1 − 
2]

where (py, pz) := ∇y,zϕ(t0, (y0, z0)).
It follows that we can choose (ẽ1, 
̃1) ∈ (co f1, L1)(t

+
0 , (y0, z0),U ) such that ẽ1 ∈

intTA1(y0) and

inf
(e2,
2)∈Q2(t0,(y0,z0))

[−ẽ1 · py − e2 · pz − 
̃1 − 
2] − ∇tϕ(t0, (y0, z0)) ≥ θ,

Remark 4.2 tells us that associated with the initial data (t0, y0) and the vector ẽ1 ∈
co f1(t

+
0 , y0,U ) ∩ intTA1(y0), we can construct an admissible control ū0 ∈ U(t0, y0)

such that an estimate like that one in formula (13) is in force. Consider the (constant)
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strategy α0 ∈ SU (t0, x0) such that for all v ∈ V(t0, z0) we have α0(v) := ū0. Then
α0 is clearly nonanticipative. Moreover we can find σ0 ∈ (0, T − t0) such that, for all
v ∈ V(t0, z0)

∫ t0+σ0

t0

[
H(s, x̃(s),∇xϕ(s, x̃(s)), α0(v)(s), v(s)) − ∇tϕ(s, x̃(s))

]
ds ≥ θ/2,

where x̃(s) := x[t0, x0;α0(v), v](s).
Invoking again the Dynamic Programming Principle and known arguments (cf. the proof
of [12, Theorem 4.3]) we arrive at a contradiction.

��
Under the hypotheses (H1)–(H5), (BV) and (IPC), Proposition 5.1 ensures that the lower

value function V � and the upper value function V � are locally Lipschitz continuous on
[0, T ]× A1 × A2. Moreover, Theorem 6.2 establishes that V � and V � are viscosity solutions
of (7) on [0, T ) × A1 × A2. Therefore, we can summarize these results in the following
theorem.

Theorem 6.3 Let A1 ⊂ R
n1 and A2 ⊂ R

n2 be nonempty closed sets. Assume that conditions
(H1)–(H5), (BV) and (IPC) are satisfied. Then

(i) the lower value function V � is locally Lipschitz continuous and is a viscosity solution of
(7);

(ii) the upper value function V � is locally Lipschitz continuous and is a viscosity solution of
(7).

Imposing some additional assumptions we obtain the existence and uniqueness of the
value for the reference differential game.

Theorem 6.4 Assume that (H1)–(H5), (BV) and (IPC) hold true. Suppose in addition that

(i) A1 ⊂ R
n1 , A2 ⊂ R

n2 , U ⊂ R
m1 and V ⊂ R

m2 are compact nonempty sets;
(ii) f1 is locally Lipschitz continuous w.r.t. (t, y) and continuous in u; L1 is continuous;
(iii) f2 is locally Lipschitz continuous w.r.t. (t, z) and continuous in v; L2 is continuous.

Then V := V � = V � is the unique viscosity solution on [0, T ) × A1 × A2 of (7).

Proof of Theorem 6.4 In this case, since Theorem 6.3 holds, the lower value function V � is
continuous on [0, T ) × A1 × A2 and is a subsolution and a supersolution of (7). Observe
that condition (iv) of Theorem 7.1 (below) is satisfied as a consequence of the validity of
assumption (IPC). Also, from this theorem, we deduce that for any viscosity solution W of
(7), we have W ≤ V � and V � ≤ W on [0, T ) × A1 × A2. This proves the uniqueness of the
viscosity solution of (7). Since V � is a viscosity solution of (7), we obtain that V � = V � on
[0, T ) × A1 × A2 and V := V � = V � is the unique viscosity solution of (7). ��

7 A Comparison Result

Theorem 7.1 Assume that conditions (H1)–(H5) and (BV) are satisfied. Suppose also that

(i) A1 ⊂ R
n1 , A2 ⊂ R

n2 , U ⊂ R
m1 and V ⊂ R

m2 are compact nonempty sets;
(ii) f1 is locally Lipschitz continuous w.r.t. (t, y) and continuous in u; L1 is continuous;
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(iii) f2 is locally Lipschitz continuous w.r.t. (t, z) and continuous in v; L2 is continuous;
(iv) for all y ∈ ∂A1, and z ∈ ∂A2,

int TA1(y) �= ∅, int TA2(z) �= ∅.

Consider two continuous functions W1,W2 : [0, T ]× A1 × A2 → R satisfying the following
properties

(v) W1(t, (y, z)) is a viscosity subsolution of the (HJI) equation (7);
(vi) W2(t, (y, z)) is a viscosity supersolution of the (HJI) equation (7);
(vii) W1(T , .) = W2(T , .) (= g(.)) on A1 × A2.

Then we obtain:

W1(t, (y, z)) ≤ W2(t, (y, z)), ∀(t, y, z) ∈ [0, T ] × A1 × A2 .

Proof Step 1. Suppose that

max
(t,(y,z))∈[0,T ]×A1×A2

{
W1(t, (y, z)) − W2(t, (y, z))

}
> 0,

then there exists (t0, (y0, z0)) ∈ [0, T ) ∈ A1 × A2 such that

W1(t0, (y0, z0)) − W2(t0, (y0, z0)) > 0. (51)

There exists a constant M ≤ 0 such that W1,W2 ≥ M on [0, T ] × A1 × A2 and L − 1 ≥ M
on [0, T ]× A1 × A2 ×U ×V . Set c := 1−MT (> 0) and define W̃1, W̃2, H̃in the following
functions (obtained by a Kruzkov type transform):

W̃i (s, (y, z)) := 1

1 + s
log

(
Wi (T − s, (y, z)) + M(T − s) − M + c

)
, i = 1, 2

H̃in(s, (y, z), w, pt , py, pz) := inf
(e2,
2)∈G2(T−s,(y,z))

sup
(e1,
1)∈G1(T−s,(y,z))

[
(1 + s)pt

− (1 + s)py · e1 − (1 + s)pz · e2 − (

1 + 
2 − M

)
/e(1+s)w

]
.

(52)

Set s0 := T − t0. Observe that W̃1(0, (y, z)) = W̃2(0, (y, z)) = g̃(y, z), with g̃(y, z) :=
log(g(y, z) − M + 1), and

max
(s,(y,z))∈[0,T ]×A1×A2

{
W̃1(s, (y, z)) − W̃2(s, (y, z))

}
≥ W̃1(s0, (y0, z0)) − W̃2(s0, (y0, z0)) > 0.

Since W̃1, W̃2 are continuous on the compact set [0, T ] × A1 × A2 and W̃1(0, (y, z)) =
W̃2(0, (y, z)), we can find a point (s̄, (ȳ, z̄)) ∈ (0, T ] × A1 × A2 such that

max
(s,(y,z))∈[0,T ]×A1×A2

{
W̃1(s, (y, z)) − W̃2(s, (y, z))

}
= W̃1(s̄, (ȳ, z̄)) − W̃2(s̄, (ȳ, z̄)) =: α(> 0).

Lemma 7.2 Suppose that the assumtions of Theorem 7.1 are satisfied. Then, W̃1 and W̃2 are
respectively viscosity subsolution and supersolution on (0, T ] × A1 × A2 of
⎧
⎨

⎩

W (s, (y, z)) + H̃in

(
s, (y, z),W (s, (y, z)), ∂s,y,zW (s, (y, z))

)
= 0 on (0, T ) × (A1 × A2)

W (0, (y, z)) = g̃(y, z) on A1 × A2.

(53)
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Proof Assume that (s0, (y0, z0)) ∈ (0, T ]×A1×A2 is a local minimizer for W̃2−ψ ,ψ ∈ C1
and W̃2(s, (y, z)) ≥ ψ(s, (y, z)) for all (s, (y, z)) in a neighbourhood of (s0, (y0, z0)). Then
(t0 := T − s0, (y0, z0)) is a local minimizer for W2 − ϕ, where

ϕ(t, (y, z)) := e(1+T−t)ψ(T−t,(y,z)) − Mt + M − c.

We know that if W2 is a supersolution of (7) then

Hin(T − s0, (y0, z0), p0) − ∇tϕ(T − s0, (y0, z0)) ≥ 0,

where p0 := ∇y,zϕ(T − s0, (y0, z0))), that is
{

inf
(e2,
2)∈G2(t,(y0,z0))

[ − pz · e2 − 
2
]

+ sup
(e1,
1)∈G1(t,(y0,z0))

[ − py · e1 − 
1
]} − ∇tϕ(T − s0, (y0, z0)) ≥ 0 .

We deduce, writing q0 := ∇y,zψ(s0, (y0, z0)), that

(1 + s0)e
(1+s0)ψ(s0,(y0,z0)) ×

{
inf

(e2,
2)∈G2(T−s,(y0,z0))

[ − qz · e2 − 
2
]

+ sup
(e1,
1)∈G1(T−s,(y0,z0))

[ − qy · e1 − 
1
]}

+ e(1+s0)ψ(s0,(y0,z0))[ψ(s0, (y0, z0)) + (1 + s0)∇tψ(s0, (y0, z0))] + M ≥ 0.

It follows that

inf
(e2,
2)∈G2(T−s,(y0,z0))

sup
(e1,
1)∈G1(T−s,(y0,z0))

[ − (1 + s)qy · e1

− (1 + s)qz · e2 − (
1 + 
2 − M)/e(1+s)ψ(s,(y,z))]

+ ψ(s0, (y0, z0)) + (1 + s0)∇tψ(s0, (y0, z0)) ≥ 0

and so

H̃in(s0, (y0, z0), W̃2(y0, z0),∇s,y,zψ(s0, (y0, z0))) ≥ 0.

This confirms that W̃2 is a viscosity supersolution of (53). Similar arguments show that W̃1

is a viscosity subsolution of (53). This concludes the proof of Lemma 7.2. ��
We continue the proof of the theorem by constructing suitable test functions.

Step 2. For s, t ∈ [0, T ], y, y′ ∈ A1, z, z′ ∈ A2 we set

φn(s, t, y, y
′, z, z′) :=W̃1(s, (y, z)) − W̃2(t, (y

′, z′)) + n2
∣
∣
∣
∣y − y′ − 1

n
ξ1

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣z

′ − z − 1

n
ξ̄2

∣
∣
∣
∣

2

− |y′ − ȳ|2 − |z − z̄|2 − |t − s̄|2 − n2|s − t |2,
where ξ̄1 ∈ intTA1(ȳ) and ξ̄2 ∈ intTA2(z̄). Then, there exist constants δ ∈ (0, 1) andη ∈ (0, 1)
such that (cf. [29])

y + (0, δ](ξ̄1 + ηB) ⊂ intA1, ∀y ∈ (ȳ + 2δB) ∩ A1

and

z + (0, δ](ξ̄2 + ηB) ⊂ intA2, ∀z ∈ (z̄ + 2δB) ∩ A2.
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Since φn is continuous and [0, T ] × A1 × A2 is a compact set, for each n ≥ 1, there exists a
maximizer (sn, tn, yn, y′

n, zn, z
′
n) for φn on ([0, T ] × A1 × A2)

2.
We know that

φn(sn, tn, yn, y
′
n, zn, z

′
n) ≥ φn(s̄, s̄, ȳ + 1

n
ξ̄1, ȳ, z̄, z̄ + 1

n
ξ̄2)

that is

n2
∣
∣
∣
∣yn − y′

n − 1

n
ξ̄1

∣
∣
∣
∣

2

+ n2
∣
∣
∣
∣z

′
n − zn − 1

n
ξ̄2

∣
∣
∣
∣

2

+ n2 |sn − tn |2 + |y′
n − ȳ|2 + |zn − z̄|2 + |tn − s̄|2

≤ W̃1(sn, (yn, zn)) − W̃2(tn, (y
′
n, z

′
n)) − (

W̃1(s̄, (ȳ + 1

n
ξ̄1, z̄)) − W̃2(s̄, (ȳ, z̄ + 1

n
ξ̄2))

)
.

Thus, using also the fact that 0 ≤ W̃1(s̄, (ȳ, z̄)) − W̃2(s̄, (ȳ, z̄)) − (W̃1(sn, (yn, zn)) −
W̃1(sn, (yn, zn))) (recall that (s̄, (ȳ, z̄)) is a maximizer for W̃1 − W̃2 on [0, T ] × A1 × A2),
we obtain

n2
∣
∣
∣
∣yn − y′

n − 1

n
ξ̄1

∣
∣
∣
∣

2

+ n2
∣
∣
∣
∣zn − z′n − 1

n
ξ̄2

∣
∣
∣
∣

2

+ n2|sn − tn |2 + |y′
n − ȳ|2 + |zn − z̄|2 + |tn − s̄|2

≤ ω
(|(tn − sn, yn − y′

n, zn − z′n)|
) + ω

(∣
∣
∣
∣
1

n
ξ̄1

∣
∣
∣
∣

)

+ ω

(∣
∣
∣
∣
1

n
ξ̄2

∣
∣
∣
∣

)

≤ C,

for some constantC > 0.Here,ω : R+ → R+ is themodulus of continuity for the continuous
functions W̃1 and W̃2. This yields

• |yn − y′
n − 1

n ξ̄1|, |z′n − zn − 1
n ξ̄2|, |sn − tn | ≤

√
c
n ;

• |yn − y′
n | ≤ 1

n

(√
c + |ξ̄1|

)
;

• |zn − z′n | ≤ 1
n

(√
c + |ξ̄2|

)
.

Therefore we obtain that yn → ȳ, y′
n → ȳ, zn → z̄, z′n → z̄, sn → s̄ and tn → s̄ as

n → +∞. Moreover, taking n̄ ≥ 1/δ large enough, we also have

yn ∈ intA1 and z′n ∈ intA2, for all n ≥ n̄.

Step 3. For each n ≥ n̄ we consider the maps

ψ1
n (s, (y, z)) := W̃2(tn, (y

′
n, z

′
n)) + n2

∣
∣
∣
∣y − y′

n − 1

n
ξ̄1

∣
∣
∣
∣

2

+ n2
∣
∣
∣
∣z

′
n − z − 1

n
ξ̄2

∣
∣
∣
∣

2

+ n2|s − tn |2

+ |y′
n − ȳ|2 + |z − z̄|2 + |tn − s̄|2,

ψ2
n (t, (y′, z′)) := W̃1(sn, (yn, zn)) − n2

∣
∣
∣
∣yn − y′ − 1

n
ξ̄1

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣z

′ − zn − 1

n
ξ̄2

∣
∣
∣
∣

2

− n2|sn − t |2

− |y′ − ȳ|2 + |zn − z̄|2 + |t − s̄|2.

Observe that ψ1
n and ψ2

n are C1, W̃1 − ψ1
n has a (local) maximum at (sn, (yn, zn)) relative to

[0, T ]×A1×A2 and W̃2−ψ2
n has a (local) minimum at (tn, (y′

n, z
′
n)) relative to [0, T ]×A1×

A2. Bearing in mind that W̃1 and W̃2 are respectively viscosity subsolution and supersolution
on (0, T ]×A1×A2 of (53), and using basic properties of the lower and upper semicontinuous
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envelopes and the regularity assumptions on f1, f2, L1 and L2, we have

W̃1(sn, (yn, zn)) − W̃2(tn, (y
′
n, z

′
n))

≤ inf
v∈V sup

u∈U

[
2(1 + tn)[n2(sn − tn) − (tn − s̄)]

− (1 + tn)[2n2(yn − y′
n − 1

n
ξ̄1) − (y′

n − ȳ)] · f1(T − tn, y
′
n, u)

+ (1 + tn)[2n2(z′n − zn − 1

n
ξ̄2)] · f2(T − tn, z

′
n, v)

− (L1(T − tn, (y′
n, z

′
n), u) + L2(T − tn, (y′

n, z
′
n), v) − M)

e(1+tn)W̃2(tn ,(y′
n ,z

′
n))

]

− inf
v∈V sup

u∈U

[
2(1 + sn)[n2(sn − tn)]

− (1 + sn)[2n2(yn − y′
n − 1

n
ξ̄1)] · f1(T − sn, yn, u)

+ (1 + sn)[2n2(z′n − zn − 1

n
ξ̄2) + (zn − z̄)] · f2(T − sn, zn, v)

− (L1(T − sn, (yn, zn), u) + L2(T − sn, (yn, zn), v) − M)

e(1+sn)W̃1(sn ,(yn ,zn))

]
.

Taking the limit as n → +∞ and extracting a subsequence if necessary (we do not relabel),
we deduce that, for some ū ∈ U and v̄ ∈ V ,

0 <
α

2
≤ W̃1(s̄, (ȳ, z̄)) − W̃2(s̄, (ȳ, z̄))

≤ L1(T − s̄, ( ¯̄y, z̄), ū) + L2(T − s̄, ( ¯̄y, z̄), v̄) − M

e(1+s̄)
×

(
1

eW̃1(s̄,(ȳ,z̄))
− 1

eW̃2(s̄,(ȳ,z̄))

)

.

A contradiction. It follows thatW1 −W2 ≤ 0 on (t, x) ∈ [0, T ]× A1 × A2. This confirms
the theorem statement. ��
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