
Dynamic Games and Applications
https://doi.org/10.1007/s13235-024-00587-2

Analysis and Computation of the Outcomes of Pure Nash
Equilibria in Two-Player Extensive-Form Games

Paolo Zappalà1,2 · Amal Benhamiche1 ·Matthieu Chardy1 ·
Francesco De Pellegrini2 · Rosa Figueiredo2

Accepted: 1 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The outcomes of extensive-form games are the realisation of an exponential number of
distinct strategies, which may or may not be Nash equilibria. The aim of this work is to
determine whether an outcome of an extensive-form game can be the realisation of a Nash
equilibrium, without recurring to the cumbersome notion of normal-form strategy. We focus
on the minimal example of pure Nash equilibria in two-player extensive-form games with
perfect information.We introduce a new representation of an extensive-form game as a graph
of its outcomes and we provide a new lightweight algorithm to enumerate the realisations of
Nash equilibria. It is the first of its kind not to use normal-form brute force. The algorithm
can be easily modified to provide intermediate results, such as lower and upper bounds to the
value of the utility ofNash equilibria.We compare thismodified algorithm to the only existing
method providing an upper bound to the utility of any outcome of a Nash equilibrium. The
experiments show that our algorithm is faster by some orders of magnitude. We finally test
the method to enumerate the Nash equilibria on a new instances library, that we introduce as
benchmark for representing all structures and properties of two-player extensive-form games.

Keywords Extensive-form games · Nash equilibria · Graph algorithm · Complexity

Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo have contributed equally to
this work.

B Paolo Zappalà
paolo.zappala@alumni.univ-avignon.fr

Amal Benhamiche
amal.benhamiche@orange.com

Matthieu Chardy
matthieu.chardy@orange.com

Francesco De Pellegrini
francesco.de-pellegrini@univ-avignon.fr

Rosa Figueiredo
rosa.figueiredo@univ-avignon.fr

1 Orange Innovation, Orange, 44 Avenue de la République, 92320 Châtillon, France

2 LIA, Avignon Université, Campus Jean Henri Fabre, 339 Chemin des Meinajaries, 84140 Avignon,
France

http://crossmark.crossref.org/dialog/?doi=10.1007/s13235-024-00587-2&domain=pdf

Dynamic Games and Applications

1 Introduction

Extensive-form games represent players acting in sequence one after another (cf. [1]). These
games are deployed to model situations in many domains, such as e.g., macroeconomics (cf.
[2]), law (cf. [3]) and security (cf. [4]). However, from a computational standpoint, extensive-
form games are not easy to deal with. Existing methods to compute solutions of a generic
extensive-form game do not scale with the game size. In this work, we introduce a graph-
based representation for finite extensive games with two players and perfect information.
Such representation permits to resort to algorithms on graphs in the game resolution. Hence,
building on what we denote graph form, we provide an efficient method to enumerate all the
solutions of a game, i.e., to answer to the question whether or not a generic outcome of a
game is a Nash equilibrium or not.

Computing Solutions. The standard solution of a game used in this work is the Nash
equilibrium (cf. [5]), covering many foreseeable scenarios of game-theoretical models. The
subgame perfect equilibrium (SPE) is the customary solution of extensive-form games (cf.
[6]).Apractical advantage of aSPE is that it can be computedwith backward induction.On the
other hand, the suitability of SPE and the possibility to employ different notions of equilibria
beyond the SPE has been explored since its introduction (cf. [7]). For instance, the work
[8] discusses the theoretical assumptions underlying the notion of SPE and, by restricting
the horizon of acceptance of the backward induction principle acceptable by a player, it
concludes that such solution does not provide complete insight into the possible equilibria.
Later works, e.g., [9], show results of empirical tests on basic sample games proving that
other Nash equilibria rather than the SPE are attained in practice. The discussion on refined
equilibrium concepts is beyond the scope of this paper. Indeed, we are rather interested in
analysing the concept of Nash equilibrium, whose fundamental role remains unquestioned.
Extensive-form games, in particular, can have other non-SPE equilibria. In this work we
analyse Nash equilibria independently from their properties and their corresponding refined
equilibrium concepts.

To this respect, the algorithms provided in the present work offer insight into the whole
set of Nash equilibria outcomes which can be ascribed to a given extensive-form game.

To the best of our knowledge, there is no efficientmethod to compute all theNash equilibria
of an extensive-form game. Identifying a Nash equilibrium for a generic game in normal form
belongs to the class of PPAD-complete problems (cf. [10]) introduced by [11]. The most
known algorithm to identify a Nash equilibrium is the Lemke-Howson algorithm (cf. [12]),
that consists in identifying a completely labeled pair of vertices of two polytopes representing
the game. Enumerating the Nash equilibria of a game corresponds to enumerating all the
completely labeled pair of vertices of the two polytopes. Methods to solve such problem are
inefficient and require a large amount of memory (cf. [13]). Recent algorithms have proven to
be space efficient (cf. [14]), while others resort to parallel computing to overcome such issue
(cf. [15]). In a generic extensive-form game, the number of strategies available to a player
is typically exponential in the size of the game, defined as the number of its outcomes (cf.
[16]). Transforming an extensive-form game in normal form is therefore highly inefficient,
because it relies on the enumeration of an exponential number of strategies. The structure
of extensive-form games can be exploited to introduce more efficient algorithms. A Mixed
Integer Linear model introduced by [17] provides one Nash equilibrium and is linear in the
size of the game. However, no information is provided on possible other Nash equilibria.
This method proves to be highly efficient in zero-sum games (cf. [16]), but it might have
exponential time complexity in a generic game. A variant of this method (cf. [18]) allows

Dynamic Games and Applications

to find the extreme Nash equilibria, which are identified by all the vertices of the polytope
corresponding to a Mixed Integer Linear model. Govindan and Wilson [19] describe how to
adapt homotopy-based methods, conceived for nomal-form games, in order to determine an
approximatedNash equilibrium for extensive-form games. However, how to control the set of
equilibria returned by such proceduresmay not be immediate. To this respect, the graph-based
enumeration proposed in this work represents, in its simplicity, a convenient algorithmic tool
to provide pure Nash equilibria outcomes, even when the aim is to inspect those satisfying
prescribed utility ranges. For a general introduction to homotopy-based methods, see [20].

Outcomes of Nash Equilibria. Since the number of strategy profiles is exponential in
the size of the game, the number of Nash equilibria can also be potentially exponential.
Throughout this work, the focus of the analysis is thus set on the outcomes of the Nash
equilibria, rather than on the Nash equilibria themselves. This choice, which could be a
trifling remark in a generic game, is relevant when dealing with extensive-form games for
two reasons. First, the number of outcomes of Nash equilibria is proportional to the size of
the game. Second, a large class of extensive-form games can be described in a compact way
using their outcomes rather than enlisting the full game-three. We mention, among others,
the important case of timing games, the case of pricing games and the case of scheduling
games. In timing games (cf. [21]), players have to perform a single actionwithin an interval of
time, having the possibility of observing the actions of the opponents once they are taken. An
outcomeof a timinggame is just a vector of timevalues, one for each player. Instead, the game-
tree representation of a timing game, as well as that of the following games, requires to list all
the possible combinations of choices that players can perform. In a pricing game (cf. [22]),
companies have to adjust the prices of their goods in order to avoid churn towards competitors
andmaximise their profits. The outcomes are the vectors of prices chosen in discrete intervals
of time. In the scheduling game (cf. [23]), ordered players choose in sequence a machine to
perform one job, being aware of the decisions taken by their predecessors; the objective of
any player is to minimise the congestion of the machine she chooses. The outcome of the
game is a vector of assignments of players to the machines.

Contributions. In this paper, we provide solution methods for the enumeration of the
outcomes of pure Nash equilibria in a two-player perfect-recall game. We chose this specific
class of extensive-form games, because it can be described with the most convenient notation
and it can be compared to the only other result known in the literature. Ourmain objective is to
introduce a new algorithmic approach that focuses exclusively on the outcomes of extensive-
form games. We believe that this method can be extended to a larger class of games, but such
analysis is left to future works.

Our new representation of extensive-form games describes a game as a graph of its out-
comes. Based on this, amethod is provided to determinewhether an outcome is the realisation
of a Nash equilibrium of a two-player extensive-form game. Since the utility of every out-
come is known, it is possible to determine upper (resp., lower) bounds to the utility of Nash
equilibria for any player by inspecting them once ordered from the best to the worst (resp.,
from worst to best), rather than enumerating them all. Moreover, it is possible to enumer-
ate the Nash equilibria whose realisations fit any given set of constraints on the utility by
simply checking during our enumeration procedure the outcomes that meet such constraints.
The method is more efficient when the games have specific structures. Indeed, it performs
very well in games where outcomes can be compared without explicitly constructing the
sequences of actions that lead to them. This is the case of games with a regular structure as
described by examples later in the manuscript.

Summary. The paper is structured as follows. Section2 presents extensive-form games
with perfect information with a generic number of players. In Sect. 2.2, we describe a known

Dynamic Games and Applications

method to bound the utility of the Nash equilibria of a two-player game. Section3 introduces
a new graph formulation of extensive-form games that allows a new characterisation of pure
Nash equilibria in two-player games with perfect information. An equivalent formulation is
discussed in Sect. 3.3 and used in Sect. 4 to achieve the following objectives: to identify a
Nash equilibrium, to enumerate all Nash equilibria, to find an upper bound to their utility
which is compared to the methods in literature (cf. [16]) and to identify the best and the
worst Nash equilibrium for a player. Section5 presents extended computational experiments
of such methods on a given dataset of games. Section6 ends the paper with some insights
and possible research directions to extend the results to more generic extensive-form games.
The reader can find examples of games in Appendix A to visualize the notions introduced in
the article and detailed proofs of the theorems in Appendix B.

2 Extensive-Form Games

Notation. In this work we will use the following notation for vectors. A vector a =
(a1, . . . , an) is an ordered sequence of elements ak with k ∈ {1, . . . , n}. Given two
vectors a = (a1, . . . , an) and b = (b1, . . . bn), a concatenation of vectors a + b =
(a1, . . . , an, b1, . . . , bn) is represented by the operator +. Given a concatenation of vec-
tors a + b, a is said to be a prefix of a + b, and that a ≤ a + b. A vector with no elements is
called the empty vector ∅ and ∅ ≤ a for all a. Two vectors a and a′ might have a common
prefix. We denote by c = a ∩ a′ the longest common prefix of a and a′, i.e., the longest
sequence such that c ≤ a and c ≤ a′.

2.1 Definitions

We consider discrete, finite extensive-form games with perfect information, whose feature is
to have all information sets as singletons (cf. [1, 24]).Wewill describe this class of gameswith
an operative definition which appears more suitable to our algorithmic framework than the
standard one appearing in the literature. Note that, even if our definition is written specifically
for finite extensive-form games with perfect information, it is indeed compliant with other
ones appearing in the literature (cf. [25–27]). They are provided for a generic N -players
extensive-form game, even though this manuscript tackles the 2-player case only.

Let I = {1, . . . , N } be the set of players acting in a sequence of time instants. At each time
instant, a player observes a history of actions h′ and picks an action a ∈ A(h′). In particular,
at the beginning, the first player to act observes no actions h0 = ∅ and thus can act within a set
ofM actionsA(h0) = {a01 , . . . , a0M }. Let us say that for instance she picks a0 = a0m ∈ A(h0);
the second player observes h1 = (a0) and can thus pick an action a1 ∈ A(h1). Iterating at
each instant this procedure, we define the set of histories H ′. Accordingly, there is a function
A : h′ ∈ H ′ �→ A that maps every history h′ to the set of actions A available to the player
observing history h′. The game ends when there is no actions left. Formally, there is a subset
H ⊂ H ′ such that A(h) = ∅ for all h ∈ H . Such terminal histories are called outcomes.
Every outcome h ∈ H is evaluated by a function ui that maps it to the value ui (h) ∈ R

assigned by player i to h.

Definition 1 (extensive-formgame)Anextensive-formgame is a tuple� = 〈I,A, H ′, H , P,

u〉, where:
• I = {1, . . . , N } is the set of players;
• H ′ is the set of histories with ∅ ∈ H ′;

Dynamic Games and Applications

• A : h′ ∈ H ′ → A is a function that provides for every history a set of actions, i.e., for
all a ∈ A = A(h′), we have h′ + (a) ∈ H ′;

• H = {h ∈ H ′|A(h) = ∅} ⊂ H ′ is the set of outcomes;
• P : H ′ \ H → I is a function that indicates which player P(h′) ∈ I acts after observing

the history h′ ∈ H ′ \ H ;
• u = (ui)i∈I , with ui : H → R, is the utility function.

The size of a finite extensive form game is the number of outcomes. In the literature,
the standard representation of the game is the tree of possible histories (cf. Appendix A.1).
Hence, we alternatively call node a history observed by a player. The standard definition of a
strategy identifies the single action chosen by a player after observing a history. In this paper,
we consider pure strategies as we leave to future works the analysis and algorithmic solution
of the games in mixed strategies.

Definition 2 (strategy) Given a game � = 〈I,A, H ′, H , P, u〉 and a player i ∈ I, we pick
all the histories at which the player acts: Hi = {h′ ∈ H ′\H |P(h′) = i}. A strategy si is a
function si : h′ ∈ Hi �→ a ∈ A(h′) that maps every observed history h′ ∈ Hi to an action
a ∈ A(h′) available to the player i . Let Si denote the set of all strategies of player i .

If every player picks a strategy, we have a tuple of strategies s = 〈s1, s2, . . . , sN 〉, that we
call strategy profile. If we consider a strategy profile, for every history there will be an action
to be played. Eventually, this sequence of actionsmakes an outcome. Such outcome is defined
as the realisation of the strategy profile. In the following sections we write s �→ h to identify
the unique realisation h of the strategy profile s. Moreover, with some abuse of notation, we
write u(s), i.e., the utility of a strategy profile s, to indicate u(s) = u(h : s �→ h).

The solution of a game is an equilibrium, i.e., a situation in which players to pick strategies
that they do notwant to change. TheNash equilibrium is a combination of strategies forwhich
the players find it convenient not to deviate unilaterally. More specifically, if the other players
do not change their strategies s−i = (s j) j∈I\{i}, the player i has no interest in changing her
own strategy si because she would not improve her utility. This concept of Nash equilibrium
is hereafter defined.

Definition 3 (Nash equilibrium) Given a game � = 〈I, H , u〉, we say that a strategy profile
〈si 〉i∈I is a Nash equilibrium if for every i ∈ I and for all si ∈ Si :

ui (si , s−i) ≥ ui (si , s−i).

An extensive-form game with perfect information always admits at least one Nash equi-
librium in pure strategies (cf. [6]).

2.2 Bounds for Nash Equilibria in Two-Player Games

The most efficient methods to provide an upper bound to the utility of Nash equilibria have
been introduced for two-player extensive-form games. We suppose that the games are not
zero-sum, since such subcategory of games has already been fully studied (cf. [16]).

Given a two-player extensive-form game � = 〈I = {1, 2},A, H ′, P, u〉, we consider the
following optimization problem [ST]:

[ST] : s1 ∈ argmax
s1∈S1

u1(s1, s2)

s.t . s2 ∈ argmax
s2∈S2

u2(s1, s2).

Dynamic Games and Applications

This bilevel optimization problem has linear complexity in the number of the strategies
of the game. We note however that they might still be exponential in the game size, i.e., in
number of outcomes (cf. [16]). Indeed, let us for instance consider a game represented by a
complete binary tree, i.e., a game in which every node has two actions. Given |H ′\H | the
number of non-leaf nodes of the game tree, it is easy to show that there are 2|H ′\H | strategy
profiles and |H ′ \ H | + 1 outcomes. However, a different formulation of [ST] introduced in
(cf. [16]) can be written in the form of a bi-level linear program with a number of variables
and a number of constraint inequalities that grow linearly with respect to the tree size. Such
formulation, which considers mixed strategies, is discussed in details in Sect. 4.2 and it is
adapted to solve games in pure strategies.

An optimal solution of [ST] provides an upper bound to the utility of the first player of
all the Nash equilibria of the game (cf. [28]).

Theorem 1 Let us consider S the set of feasible solutions s = (s1, s2) ∈ S1 × S2 of [ST] and
the optimum value U 1 = sups∈S u1(s). Given a Nash equilibrium s∗ ∈ S1 × S2 of the game
�, it holds:

U 1 ≥ u1(s
∗).

Proof It is sufficient to prove that any Nash equilibrium is a feasible solution of [ST]. Indeed,
since s∗ is a Nash Equilibrium, we have that for all s2 ∈ S2:

u2(s
∗
1 , s

∗
2) ≥ u2(s

∗
1 , s2).

Therefore it holds that s∗
2 = argmaxs2∈S2 u2(s

∗
1 , s2). ��

3 Graph Form

3.1 A Representation of Extensive-Form Games as Graphs of Outcomes

In this section, we introduce a new representation of a two-player game in extensive formwith
perfect information as an undirected graph of its outcomes. The goal of this representation
is to focus on the outcomes, in order to identify which of them are realisations of the Nash
equilibria. We next put in relation the strategies of the players with the outcomes of the game.

If a player chooses a strategy, she limits the number of outcomes that are reachable by the
other player. We formalise this observation by associating a strategy to a subset of outcomes
that represent it. We recall that every strategy profile (s1, s2) ∈ S1 × S2 can be mapped to
its realisation h : (s1, s2) �→ h. Given a strategy s1 ∈ S1, we consider the set of possible
outcomes H(s1) which are realisations of strategy profiles (s1, s2) which include s1 ∈ S1 as
a strategy of the first player and any s2 ∈ S2 as a strategy of the second player.

Definition 4 (outcomes of a strategy) Given a two-player game � = 〈I = {1, 2}, H , u〉 and
a strategy s1 ∈ S1, the set of outcomes H(s1) ⊂ H of strategy s1 is:

H(s1) = {h ∈ H |∃s2 ∈ S2 : (s1, s2) �→ h}.
In order to understand which elements belong to the set of outcomes of a strategy, we

introduce a newproperty, called compatibility. This property enables to identify twooutcomes
that can be obtained by the same strategy chosen by a given player.

Definition 5 (compatibility) Given a two-player game � = 〈I = {1, 2}, H , u〉, we say that
two outcomes h, h′ ∈ H are compatible for player i ∈ I if there is a strategy si ∈ Si such
that h ∈ H(si) and h′ ∈ H(si).

Dynamic Games and Applications

Remark Since we discuss only two-player games, i.e., I = {1, 2}, we arbitrarily choose one
player to be the first player (e.g., i1 = 1) and one to be the second player (e.g. i2 = 2). Later
in this section it is shown that such choice can be arbitrary. If not specified, we refer to two
outcomes as compatible if they are compatible for player 1. If two outcomes h, h′ ∈ H are
compatible, there are a strategy s1 ∈ S1 and two strategies s2, s′

2 ∈ S2 such that (s1, s2) �→ h
and (s1, s′

2) �→ h′.
If two outcomes can be produced by the same strategy, the first player always takes the
same decisions at every node. Lemma 2 proves that this condition is not only necessary but
sufficient. Formally, given two outcomes h, h′ ∈ H it is necessary to observe at which node
the history starts to be different; such node is identified by their longest common prefix h∩h′.

Lemma 2 We consider a two-player game � = 〈I = {1, 2}, H , P, u〉. Two outcomes h, h′ ∈
H are compatible if and only if P(h ∩ h′) = 2.

Proof (i) First we prove that P(h ∩ h′) = 2 implies that h and h′ are compatible, then (ii)
we prove that P(h ∩ h′) = 1 implies that h and h′ are not compatible.

(i) Let us suppose that P(h ∩ h′) = 2. We need to define s1 ∈ S1 and s2, s′
2 ∈ S2 such

that (s1, s2) �→ h and (s1, s′
2) �→ h′. We recall that a strategy of the first player is a function

associating an action to each partial history h′′ ∈ H ′ in the tree observed by the first player,
i.e., such that P(h′′) = 1. For each h′′ ≤ h (h′′ ≤ h′) if P(h′′) = 1 we define a strategy
s1 ∈ S1 such that h′′ + (s1(h′′)) ≤ h (h′′ + (s1(h′′)) ≤ h′). Analogously, we define a strategy
s2 ∈ S2, such that for each h′′ ≤ h with P(h′′) = 2 we have h′′ + (s2(h′′)) ≤ h, and a
strategy s′

2 ∈ S2, such that for each h′′ ≤ h′ with P(h′′) = 2 we have h′′ + (s′
2(h

′′)) ≤ h′.
For any other h′′

� h and h′′
� h′ we take an arbitrary decision for defining s1, s2, s′

2. By
construction, we have (s1, s2) �→ h and (s1, s′

2) �→ h′.
(ii) Let us now suppose that P(h ∩ h′) = 1. Let (s1, s2) and (s′

1, s
′
2) be two strategy

profiles such that (s1, s2) �→ h and (s′
1, s

′
2) �→ h′. It is impossible to have s1 = s′

1 since
P(h ∩ h′) = 1 implies s1(h ∩ h′) �= s′

1(h ∩ h′), from which we can conclude that h and h′
are not compatible. ��

Based on the definition of compatibility, it is possible to build a graph of compatibilities
among all the outcomes of a game �, or the graph form for short.

Definition 6 (graph form) The graph of compatibility of a two-player game � = 〈I =
{1, 2}, H , u〉 is a tuple � = 〈H , E, u〉, where H is the set of outcomes as nodes of the graph,
E ⊂ H2 is the set of edges connecting any two compatible outcomes and u : H → R

2 is
the utility function that assigns a pair of weights to every node.

Remark In the following of the article we sometimes omit the transformation of an extensive-
form game � into its graph form 〈H , E, u〉, which can be performed by application of
Lemma 2, and therefore we directly introduce the game by representing it in its graph form
� = 〈H , E, u〉.

3.2 Characterisation of Nash Equilibria in the Graph Form of the Game

Given a game �, let us characterise the outcomes H(s1) of a strategy s1 ∈ S1 on its graph
form. By definition, such outcomes are all compatible with one another. Let us consider the
nodes on the graph corresponding to the outcomes H(s1); they induce a clique and, as we
show next, such clique is maximal.

Dynamic Games and Applications

Lemma 3 Consider a two-player game � = 〈I = {1, 2}, H , u〉 with its graph form � =
〈H , E, u〉. For every strategy s1 ∈ S1, the set H(s1) ⊂ H forms a maximal clique of the
graph 〈H , E, u〉.
Proof According to Definition 5, we have that H(s1) induces a clique on the graph. Consider
any outcome h ∈ H \H(s1). Since h /∈ H(s1) there is a partial history h′′ ∈ H ′, with h′′ ≤ h
and P(h′′) = 1, such that the subsequent action ak+1 ∈ A(h′′) is not chosen by strategy s1,
i.e., ak+1 �= s1(h′′). Consider now an outcome h′ ∈ H(s1) such that h′′ + (s1(h′′)) ≤ h′.

Since P(h ∩ h′) = 1, from Lemma 2 h and h′ are not compatible. Since this argument
holds for every h ∈ H\H(s1), we have that H(s1) forms a maximal clique. ��

We observe that to every maximal clique of the graph there is at least one strategy whose
set of outcomes corresponds to it. We prove that it is always true in Lemma 4.

Lemma 4 Let us consider a two-player game � = 〈I = {1, 2}, H , u〉 with its graph form
� = 〈H , E, u〉. For every set of vertices C that induces a maximal clique on the graph
〈H , E〉, there is a strategy s1 ∈ S1 such that C = H(s1).

Proof We first show that C ⊂ H(s1) for a given s1 ∈ S1. For this, we consider a strategy
s1 ∈ S1 such that, for all h ∈ C and all h′′ ≤ h such that P(h′′) = 1, we have that
h′′ + s1(h′′) ≤ h. Such strategy exists and it is defined by applying a procedure similar to the
one used in the proof of Lemma 2; we recall that P(h ∩ h′) = 2 for each pair of compatible
outcomes h, h′ ∈ C.

Therefore C ⊆ H(s1). But, from Lemma 3, H(s1) induces a maximal clique and thus
C = H(s1). ��

Lemmas 3 and 4 establish that there exists a bijection between a partition of the set of
strategies of the game and the set of maximal cliques in the graph form. An illustration is
given in Fig. 7b. A similar result is obtained for the set of strategies of the second player on
the complementary graph.

Lemma 5 For every two-player game � = 〈I = {1, 2}, H , P, u〉 with its graph form � =
〈H , E, u〉, there is a bijection between a partition of the set of strategies of the second
player S2 and the set of maximal cliques of the complementary graph 〈H , EC 〉, where EC =
{(h, h′) ∈ H2|h �= h′, (h, h′) /∈ E}.
Proof Given two outcomes h, h′ ∈ H , we have that P(h∩h′) ∈ {1, 2}. Therefore P(h∩h′) =
2 if and only if P(h ∩ h′) �= 1. Lemma 2 thus determines that the graph form of the second
player is complementary to the one of the first player. The result follows from Lemmas 3
and 4. ��

Choosing a strategy for the first player implies picking a maximal clique in the graph
〈H , E〉. Furthermore, one can observe that with an analogous method it is possible to build a
graph for the strategies of the second player. However, thanks to Lemma 5 it is not necessary
to perform further computations, because such graph is complementary to 〈H , E〉.

Enabling Strategy. We observe that the minimal representation of strategies as sets of
outcomes can be obtained by applying the concept of enabling strategy of [19] to games
with perfect information. Given a player i ∈ I and an outcome h ∈ H , an enabling strategy
Si (h) = {si ∈ Si |h ∈ Si } is the set of strategies of player i ∈ I leading to outcome h ∈ H .
Enabling strategies are the minimal representation of the set of strategies with respect to
specific properties of the space of strategies. In games with perfect information and two

Dynamic Games and Applications

outcomes h1, h2 ∈ H , there is only one player i ∈ I such that Si (h1) �= Si (h2). The
previous Lemmas can be obtained by combining this property with the known properties of
enabling strategies (cf. [19]).

As anticipated in Sect. 2, we are interested in identifying Nash equilibria outcomes in pure
strategies. We recall that a Nash equilibrium is a strategy profile in which none of the players
is interested in changing her own strategy unilaterally.

Best responses and outcomes. The standard way to define a best response for an extensive-
form game entails to refer to its equivalent strategic form. In this case, if a player picks a
strategy, the other player will choose a best response, i.e., a strategy such that her utility is
maximized. A Nash equilibrium can be identified as a mutual best response accordingly. We
now provide a connection between this fundamental definition of equilibrium based on the
strategic form and properties of the outcomes in the graph form of the game. In fact, every
designated outcome h corresponds to one or more strategies s1 for the first player identified
by a maximal clique C1 on the graph form which includes h. In turn, for every element
h′ ∈ C1, the second player can choose a strategy s2 whose corresponding set of outcomes C2
on the complementary graph includes h′ ∈ C2. The second player has an incentive to pick the
element within C1 that maximises her utility, a condition that thus h must fulfill in order to
avoid deviations from the second player. A similar argument can be put forward by inverting
the players. Note that a single outcomemay correspond tomultiple strategy pairs. Thus, in the
graph form, determining if an outcome corresponds to a Nash equilibrium means to answer
to the question if there exists at least a pair of maximal cliques respectively on the graph and
on the complementary graph containing this outcome, and such that their intersection is a
mutual best response in the corresponding strategic form.

The best response of the second player leads to the outcome which is most preferred by
the second player within the maximal clique C1 chosen by the first player. If a vertex h ∈ H
corresponds to the outcome of a best response of the second player, two conditions must hold.
First, there must be a maximal clique C1 which includes it, i.e., h ∈ C1, so that the second
player can choose it. Second, such maximal clique C1 should not include all the nodes Xh

which are preferred to h by the second player, so that the second player has an incentive to
choose h and no other outcome. Whether such clique exists is the problem [MC] formalised
hereafter.

Problem 6 (MC) Existence of a maximal clique including h and excluding Xh.
INSTANCE: 〈H , E, h, Xh〉 defining a graph 〈H , E〉, a vertex h ∈ H and a subset of vertices
Xh ⊂ H with h /∈ Xh.
QUESTION: Is there a vertex set C ⊂ H\Xh with h ∈ C that induces a maximal clique on
〈H , E〉?

We would like to know if an outcome h is the realisation of a Nash equilibrium. Hence, a
maximal clique including the corresponding vertex h and excluding Xh = {h′ ∈ H |u2(h′) >

u2(h)} ensures that the first player has a strategy to induce the second player onto the desired
outcome h.

Example In the game of Fig. 6 the second player prefers Xh = {h2, h3, h4} to h = h6. In the
graph of Fig. 7a we observe that there is no maximal clique including h6 and excluding all
the elements of Xh . Therefore h6 cannot correspond to a best response of the second player.

Furthermore, by applying the same arguments on the complementary graph we conclude
that it is possible to determine whether an outcome is the realisation of a best response also of
the first player. Specifically, it is necessary to identify amaximal clique on the complementary

Dynamic Games and Applications

graph such that the vertices corresponding to the outcomes preferred by the first player are
excluded.

Example In the graph of Fig. 7a thefirst player prefers Xh = {h2, h3, h5, h6} to h = h1. There
is no maximal clique on the complementary graph of Fig. 7a, i.e., there is no independent set,
that includes h1 and none of the elements in Xh . Therefore h1 cannot be a best response of
the first player.

Theorem 7 combines these findings and provides a characterisation of a Nash equilibrium
in the graph form.

Theorem 7 Let us consider a two-player game in its graph form � = 〈H , E, u〉 and an
outcome h ∈ H. We consider Xh

1 = {h′ ∈ H |u1(h′) > u1(h)} and Xh
2 = {h′ ∈ H |u2(h′) >

u2(h)}, the sets of outcomes preferred to h, respectively, by the first and the second player.
The outcome h ∈ H is a realisation of a Nash equilibrium if and only if the problem [MC]
has true as answer both providing as input 〈H , E, h, Xh

2 〉 and 〈H , EC , h, Xh
1 〉.

The proof is provided in Appendix B.1. Such result allows us to develop methods that
compute Nash equilibria without listing all the strategies of the players, which are often in
exponential number with respect to the size of the game (cf. Section2). Such methods will
be discussed in the following sections.

3.3 Analysis of theMain Problem and its Complexity

The complexity of identifying a Nash equilibrium outcome on a game in its graph form
depends on the complexity of solving two instances of problem [MC]: one with input
〈H , EC , h, Xh

1 〉 and another with input 〈H , E, h, Xh
2 〉, as defined in the previous section.

In this section, we evaluate the complexity of problem [MC] with input 〈H , E, h, Xh〉 for
a generic graph 〈H , E〉. More specifically, we first define a variant [EC] of problem [MC]
and then we show that the two problems are equivalent, i.e., that a solution of problem [EC]
provides a solution of problem [MC] and conversely.

Let us consider a generic problem [MC] with input 〈H , E, h, Xh〉. First, we argue that
when solving [MC] the problem can be restricted to the neighbourhood of h ∈ H , V h =
{h′, (h, h′) ∈ E}. Indeed, let us suppose that there is a maximal clique induced by a vertex
set C ⊂ H with h ∈ C excluding Xh ⊂ H . Since the clique is maximal, it must hold that,
for every vertex h′ ∈ Xh , there is at least one vertex h ∈ C which is not connected to h′,
i.e., such that (h, h′) /∈ E . Those vertices in Xh who are not in the neighborhood V h always
fulfill this property, as h ∈ C. Therefore, instead of considering all the vertices in Xh , we can
restrict the problem to X = Xh ∩ V h . With this argument, we conclude that the vertex set C
belongs to the neighborhood V h .

Example Consider the graph of Fig. 1a, in which the set C = {h, h2, h3, h4} induces a
maximal clique. The vertices Xh \ V h = {h5, h10} are not connected to h and the ver-
tex H\Xh\V h = {h9} can never belong to the vertex set C that induces the maximal clique.
Therefore we can restrict the problem from H to {h1, h2, h3, h4, h6, h7, h8}.

Let us thus consider a slightly different problem [EC].
Problem 8 (EC) Existence of an excluding clique.
INSTANCE: 〈V , X , E〉 defining a graph 〈V ∪ X , E〉 with V ∩ X = ∅.
QUESTION: Is there a vertex set C ⊂ V that induces a clique on 〈V , E〉 that is maximal in
〈C ∪ X , E〉?

Dynamic Games and Applications

Fig. 1 Equivalence of problems [MC] and [EC]. a Let us consider problem [MC] with H =
{h1, h2, h3, h4, h5, h6, h7, h8, h9, h10} and Xh = {h5, h6, h7, h8, h10}. Amaximal clique that solves [MC]
is C = {h, h2, h3, h4}; b Let us consider problem [EC] with V = {h1, h2, h3, h4} and X = {h6, h7, h8}. A
clique that solves [EC] is C′ = {h2, h3}

Theorem 9 shows that the problem [MC] with input 〈H , E, h, Xh〉 can be solved by
means of problem [EC] with a different input derived by the input of problem [MC].
Example Indeed let us consider the problem [MC] depicted in Fig. 1a and its restriction to
the neighborhood of h of Fig. 1b. The problem [MC] requires to identify a maximal clique
that has no elements in Xh and includes h, such as {h, h2, h3, h4} or {h, h1, h2}. The problem
[EC] requires to identify a vertex set C′ on V = {h1, h2, h3, h4} that induces a clique such
that for all elements in X = {h6, h7, h8} there is at least one element in C′ not connected
to it. Such cliques are {h1}, {h1, h2}, {h2, h3}, {h3, h4} and {h2, h3, h4}. For instance, let us
consider {h2, h3}: the vertex h6 is not connected to h3, while the vertices h7 and h8 are not
connected to h2.

Proposition 9 Let us consider a graph 〈H , E〉, a subset of vertices Xh ⊂ H and a vertex
h ∈ H \ Xh. Let us define V h = {h′|(h, h′) ∈ E}, X = Xh ∩ V h, V = V h\X and
E |V∪X = {(h′, h′′) ∈ E |h′ ∈ V , h′′ ∈ V ∩ X}. The problem [MC] with input 〈H , E, h, Xh〉
has true as answer if and only if the problem [EC] with input 〈V , X , E |V∩X 〉 has.

The proof is provided in Appendix B.2.
We observe that problem [EC] requires to prove the existence of a clique rather than

identifying a maximal clique, as in problem [MC]. Moreover, the input of [EC] is a smaller
graph induced by the neighborhood of one vertex, h, in graph of [MC]. Therefore, from now
on, let us focus on the analysis of [EC]. In the following theorem, we prove that [EC] is
NP-complete. Indeed, we reduce it to the problem of the existence of the dominating clique
[DC], which is known to be NP-complete (cf. [29]).

Problem 10 (DC) Existence of a dominating clique
INSTANCE: A graph 〈H , E〉.
QUESTION: Is there a vertex set C ⊂ H that induces a clique on the graph such that for
every vertex h′′ ∈ H\C there is a vertex h′ ∈ C such that (h′, h′′) ∈ E?

Theorem 11 In a generic graph the problem [EC] is NP-complete.
Proof We present next a polynomial reduction from [DC] to [EC]. The argument of the
proof is illustrated in Fig. 2. We consider the problem [DC] with input 〈H , E〉 and define

two vertex sets V = H̃ and X = ˜̃H , where H̃ and ˜̃H are copies of set H . Let us also define

Dynamic Games and Applications

Fig. 2 Reduction. a Problem [DC] with H = {hA, hB , hC , hD, hE } and solution C = {hB , hD}; b Problem

[CL] with V = H̃ and X = ˜̃H ; the solution is given by C = {h̃ B , h̃D} ⊂ V

a set of edges E ′ = {(i, j)|i, j ∈ V , (i, j) ∈ E} ∪ {(i, j)|i ∈ V , j ∈ X , (i, j) /∈ E}.
We consider the problem [EC] with input 〈V , X , E ′〉. By construction, the input has size
O(|H |2), i.e., it is polynomial in the size of the input of problem [DC]. We prove now that
[DC] admits answer true if and only if the same happens for [EC] with input 〈V , X , E ′〉. If
[DC] has answer true, there exists a vertex set C ⊂ H that: (a) induces a clique on 〈H , E〉;
(b) and such that, for each j ∈ H \ C, there is a i ∈ C such that (i, j) ∈ E . From (a) and the
definition of sets V and E ′, there is a copy of C ⊂ V defining a clique in graph 〈V ∪ X , E ′〉.
Also, from the definition of E ′ and from (b), for each j ∈ X there is a i ∈ C such that
(i, j) /∈ E ′. Therefore C provides also an answer true for [EC].

We now prove that an answer true for [EC] provides an answer true also to [DC]. A
vertex set C ⊂ V that induces a clique on 〈V ∪ X , E ′〉, clearly defines a clique on 〈H , E〉.
It holds that for all j ∈ X there is i ∈ C such that (i, j) /∈ E ′. Since X = H̃ and V = ˜̃H ,

with H̃ and ˜̃H copies of H , we have that for all j ∈ H\C there is a vertex i ∈ C such that
(i, j) ∈ E . Therefore C provides also a solution true for [DC]. ��

On the Graph of an Extensive-Form Game. We have just proved that problem [EC] is
NP-complete for a generic graph. However, the graph generated by an extensive-form game
is not a generic one. Indeed, it is possible to identify a graph that corresponds to no extensive-
form games. The graph 〈H , E〉 of Fig. 3 does not represent any extensive-form game (cf.
Appendix A.5).

4 NewMethods for the Identification of Nash Equilibria

In this section, the theoretical results introduced in Sect. 3 are applied to derive new methods
for the computation of outcomes of Nash equilibria in two-player extensive-form games with
perfect information. Theorem 7 provides a necessary and sufficient condition for an outcome
to be a realisation of a Nash equilibrium. This result is the pillar for the development of
computational methods to the following questions: (i) whether it is possible to enumerate

Dynamic Games and Applications

Fig. 3 Counterexample. Preferences of the players over the outcomes are respectively u1 : hA �1 hC �1
hD �1 hB and u2 : hB �2 hC �2 hA �2 hD

the Nash equilibria and (ii) whether the realisation of Nash equilibria can achieve a value of
utility with a given range of values.

In what follows, we exploit the results of Sect. 3.3 and introduce a linear system that
enables to determine if an outcome is the realisation of a Nash equilibrium. Relying on this
linear system, we introduce a method to enumerate all Nash equilibria outcomes in Sect. 4.1,
a method to provide an upper bound to their utility in Sect. 4.2 and a method to provide the
best or worst Nash equilibrium outcomes for any player in Sect. 4.3. The latter is compared
to the one provided by the optimization problem by [16].

4.1 Nash Equilibrium

The condition to verify if an outcome is the realisation of a Nash equilibrium introduced in
Theorem 7 requires to solve two instances of problem [EC] with input 〈V ∪ X , E〉 such that
V ∩ X = ∅. We recall that the solution obtained by solving the problem allows to identify
some possible outcomes C ⊂ V of a strategy within the set V such that we have the guarantee
that the elements X preferred by the opponent are not included. We provide a formulation
[CL] of problem [EC]:

[CL] : xi + xi ′ ≤ 1, ∀i, i ′ ∈ V , (i, i ′) /∈ E, (CL-1)

∑

i∈V |(i, j)/∈E
xi ≥ 1, ∀ j ∈ X , (CL-2)

xi ∈ {0, 1}, ∀i ∈ V . (CL-3)

Formulation [CL] models any feasible solution of problem [EC]: xi = 1 if and only if
i ∈ C. Constraints (CL − 1) impose that C induces a clique, while constraints (CL − 2)
guarantee that every vertex j ∈ X is not connected to at least one vertex i ∈ C. Any solution
to the linear system [CL] provides a solution to problem [EC] with input 〈V ∪ X , E〉.

Theorem7 imposes to solve two instances of the problem [MC] to determine if an outcome
is the realisation of a Nash equilibrium. We thus exploit the fact that the problem [MC] can
be modeled by formulation [EC] and define a unique linear system [NE] that allows to
determine if an outcome is the realisation of a Nash equilibrium. Let us consider a two-
player game in its graph form � = 〈H , E, u〉 and an outcome h ∈ H . Let us define the
following sets:

Dynamic Games and Applications

• X1 = {h′ ∈ H |(h′, h) /∈ E, u1(h′) > u1(h)}, the set of outcomes compatible with h in
the complementary graph, that are preferred by the first player to h;

• X2 = {h′′ ∈ H |(h′′, h) ∈ E, u2(h′′) > u2(h)}, the set of outcomes compatible with h in
the graph, that are preferred by the second player to h;

• V1 = {h′ ∈ H \ X2|(h′, h) ∈ E}, the set of outcomes compatible with h in the graph,
such that h is preferred to them for the second player;

• V2 = {h′′ ∈ H \ X1|(h′′, h) /∈ E}, the set of outcomes compatible with h in the
complementary graph, such that h is preferred to them for the first player.

The outcome h ∈ H is a realisation of a Nash equilibrium if and only if the system [NE]
provides a solution:

[NE] : xi + xi ′ ≤ 1, ∀i, i ′ ∈ V1, (i, i
′) /∈ E,

xi + xi ′ ≤ 1, ∀i, i ′ ∈ V2, (i, i
′) ∈ E,

∑

i∈V1,(i, j)/∈E
xi ≥ 1, ∀ j ∈ X2,

∑

i∈V2,(i, j)∈E
xi ≥ 1, ∀ j ∈ X1,

xi ∈ {0, 1}, ∀i ∈ V1 ∪ V2.

Given a game� = 〈H , E, u〉, by applying [NE] to every h ∈ H it is possible to enumerate
all the realisations of the Nash equilibria. In the following, we propose an enumeration
algorithm [E A] that iterates over all the outcomes and then solves [NE] for every outcome.

Algorithm 1 [EA] Enumeration algorithm
INPUT: Game in graph form � = 〈H , E, u〉
NE ← ∅
for h ∈ H do � for every outcome of the game

X1 = {h′ ∈ H |(h′, h) /∈ E, u1(h
′) > u1(h)} � vertex sets and excluding sets

X2 = {h′′ ∈ H |(h′′, h) ∈ E, u2(h
′′) > u2(h)} � for player 1 and player 2

V1 = {h′ ∈ H \ X2|(h′, h) ∈ E}
V2 = {h′′ ∈ H \ X1|(h′′, h) /∈ E}
solve [NE] giving 〈V1, V2, X1, X2, E〉 as input � test if h is an outcome of a Nash equilibrium
if system [NE] has a feasible solution then

NE ← NE ∪ {h} � Update the set of Nash equilibria outcomes
end if

end for
OUTPUT: NE

4.2 Upper Bounds for Nash Equilibria

In this section, we compare two methods to compute upper bounds for the utility of the first
player when a Nash equilibrium is played. The most known formulation for extensive-form
games is the one introduced by [16], which provides a Nash equilibrium for zero-sum games.
Recently, this formulation has been proven to provide an upper bound to the utility of the first
player of any Nash equilibrium (cf. [28]). This method is based on the concept of sequence,
which is a vector of actions played by a same player. Given a game � = 〈I,A, H ′, P, u〉
and a history h′ ∈ H ′, we denote by seqi = (hik) a sequence of actions played by player

Dynamic Games and Applications

i according to h′. We write h′ = (seq1, seq2) to show that to every history h′ correspond
two sequences seq1 and seq2. We consider �1 and �2, respectively, the set of all sequences
of the first and second player. Let x ∈ {0, 1}|�1| and y ∈ {0, 1}|�2| be the vectors defining
the probability for a sequence to be played. We define the matrix Ui : �1 × �2 → R

that maps each couple of sequences to the utility of player i : Ui
seq1,seq2 = ui (h) for all

h = (seq1, seq2) ∈ H ; Ui
seq1,seq2 = 0 if h′ = (seq1, seq2) /∈ H . The utilities of the players

can thus be written in the form xTU 1y and xTU 2y. The formulation defining the set of
possible sequences is constrained by the fact that if an action is taken at a node of the game,
such decision must be considered also in the following ones.

All such causal constraints, written Ex = e and Fy = f , respectively, for the first and the
second player, will be built according to the same principle. Finally, the upper bound of any
Nash equilibrium is given by the solution of the following bilevel problem denoted by [V S].

[V S] : uV S
1 = max

x
xTU 1y

s.t . Ex = e,

x ∈ [0, 1]|�1|,
y = argmax

y
xTU 2y

s.t . Fy = f ,

y ∈ [0, 1]|�2|.

The optimization problem [V S] has size O(|H |) (cf. [16]). We now formulate [V S] as
a linear optimization problem. Note that, as anticipated in Sect. 2, we are only interested in
solutions corresponding to pure strategies. Therefore we can add the integral constraints:

x j ∈ {0, 1} ∀ j ∈ �1, (1)

yk ∈ {0, 1} ∀k ∈ �2. (2)

We will also introduce the variable w jk ∈ [0, 1], which allows to linearise the formulation
by rewriting x j · yk = w jk as:

x j ≥ w jk ∀ j ∈ �1, k ∈ �2, (3)

yk ≥ w jk ∀ j ∈ �1, k ∈ �2, (4)

x j + yk ≤ 1 + w jk ∀ j ∈ �1, k ∈ �2, (5)

w jk ∈ [0, 1] ∀ j ∈ �1, k ∈ �2. (6)

In the second level of problem [V S] the optimal u := u2(y) ∈ R is achieved for some
k ∈ �2, i.e., we can write

u = max
k∈�2

⎛

⎝
∑

j∈�1

U 2
jk · x j

⎞

⎠ ,

u ∈ R. (7)

Since only one sequence k ∈ �2 must be chosen, the constraint Fy = f is replaced by
∑

k∈�2

yk = 1. (8)

Dynamic Games and Applications

The constraint Ex = e when written explicitly corresponds to:
∑

j∈�1

El j · x j = 0 ∀l. (9)

We now reformulate the second level of [V S], using a set of linear constraints. Let us denote
by u ∈ R the maximum utility for the second player. Also, we set a large value M > 0 to
use the following classical big-M constraints:

∑

j∈�1

U 2
jk · x j ≤ u, ∀k ∈ �2, (10)

∑

j∈�1

U 2
jk · x j ≥ u − M(1 − yk), ∀k ∈ �2. (11)

The bilevel problem [V S] is then denoted by [V S − L], and written as follows:

[V S − L] : uV S
1 = max

x,y,w

∑

j∈�1

∑

k∈�2

U 1
jk · w jk

s.t . (1 − 11)

Note that adding a constant value to the utility function does not change the solution,
therefore we can assumeU 2

jk > 1 for all j ∈ �1 and k ∈ �2. Under this assumption, we can
add the following inequality:

yk ≤
∑

j∈�1

U 2
jk · x j ∀k ∈ �2, (12)

which is valid for [V S], since yk = 0 ⇐⇒ ∑
j∈�1

U 2
jk ·x j = 0 and yk = 1 ⇐⇒ ∃ j ∈ �1

such that x j = 1.
Let us denote by [V S − L2] the resulting formulation:

[V S − L2] : uV S
1 = max

x,y,w

∑

j∈�1

∑

k∈�2

U 1
jk · w jk

s.t . (1 − 12).

In what follows, we introduce a new algorithm, called [UBA] and described in Algo-
rithm 2, that allows to compute an upper bound of the utility of the first player when a Nash
equilibrium is played. We show that such upper bound is the same as the one provided by
[V S]. The algorithm starts by ordering the outcomes in decreasing order of utility of the first
player. Every outcome is then evaluated by solving problem [EC] with input 〈V1, X2, E〉.
If the existence of a clique is proven for [CL] the algorithm stops and an upper bound is
found. As remarked previously, since the procedure tests a necessary and yet not sufficient
condition, the outcome found is not necessarily a realisation of a Nash equilibrium. Both
[V S] and [UBA] provide the best outcome for the first player that can be a best response of
a strategy of the second player, a necessary condition for the outcome to be a realisation of
a Nash equilibrium. Theorem 12 thus proves that the two methods provide the same upper
bound.

Theorem 12 Consider a game � = 〈I,A, H , P, u〉 and its graph form 〈H , E, u〉. Let uV S
1

and uUBA
1 be the optimal values obtained when [V S] and [UBA] are applied to game �,

then we have uV S
1 = uUBA

1 .

Dynamic Games and Applications

Proof We define the set of all the outcomes that can be a best response of the second player
to a strategy of the first player, BR2 = {h ∈ H |∃s1 ∈ S1, h = argmaxh′∈H(s1) u2(h

′)}.
We show that uV S

1 = uUBA
1 = maxh∈BR2 u1(h). First, we observe that BR2 corresponds

to the set of feasible solutions of [V S] and thus uV S
1 = maxh∈BR2 u1(h). Let us prove that

uUBA
1 = maxh∈BR2 u1(h). Given h ∈ H , X = {h′ ∈ H |(h′, h) ∈ E, u1(h′) > u1(h)} and

V = {h′ ∈ H\X |(h′, h) ∈ E}, let us consider HCL the set of h ∈ H such that problem [CL]
with input 〈V , H , E〉 has answer true. Then we have uUBA

1 = maxh∈HCL u1(h). Moreover,
for all h ∈ HCL let us consider a strategy sh1 ∈ S1 such that V ⊂ H(sh1) and H(sh1)∩ X = ∅.
By definition of HCL for each h ∈ HCL we have h = argmaxh′∈H(sh1) u1(h), which implies

h ∈ BR2. Analogously, if h /∈ HCL there is no s1 ∈ S1 such that h = argmaxh′∈H(s1) u1(h)

and thus h /∈ BR2. Since HCL = BR2, we have uUBA
1 = maxh∈BR2 u1(h). ��

Algorithm 2 [UBA] Upper bound algorithm
INPUT: Game in graph form � = 〈H , E, u〉
H�1 = order(H , �1) � h �1 h′ iff u1(h) ≥ u1(h

′)
index = 0 � Start with the outcome of largest utility for player 1
do

h = H�1 (index) � Select the outcome corresponding to index
uU BA
1 = u1(h)

V1 = {h′ ∈ H \ X2|(h′, h) ∈ E} � vertex set for player 1
X2 = {h′′ ∈ H |(h′′, h) ∈ E, u2(h

′′) > u2(h)} � excluding set for player 1
solve [CL] giving 〈V1, X2, E〉 as input
index = index + 1

while [CL] has no solution
OUTPUT: uUBA

1

4.3 Best andWorst Nash Equilibrium

Note that the algorithms [V S] and [UBA] introduced in Sect. 2.2 do not provide the tightest
upper bound to the utility of the Nash equilibria (cf. Appendix A.6). In this section, we
introduce an algorithm that provides a Nash equilibrium outcome whose utility is the highest
for the first player. The algorithm [BNE] consists in ordering the outcomes from best to
worst with respect to the utility function of the first player and then picking the first of them
that is a realisation of a Nash equilibrium, i.e., for which [NE] admits a feasible solution.
Analogously, it is possible to identify the Nash equilibrium with the lowest utility for the
first player, by ordering in reverse order the outcomes. The algorithm [WNE] is presented
together with [BNE] in Appendix B.3.

5 Numerical Results

To our knowledge, the only method for enumerating the pure Nash equilibria of extensive-
form games is a brute-force transformation of the game in normal form. This approach
requires an enumeration of the exponential number of strategy profiles of the game, which
cannot be tested numerically, unless we limited the size of games to few (less than 20)
outcomes.

Dynamic Games and Applications

For this reason, in this section, we assess the performance of the methods introduced
in Sect. 4 through several series of experiments. To our knowledge, there is no standard
library of extensive-form games in the literature. For this reason, we developed a new library
presented in Sect. 5.1. The methods that provide bounds to the utility of Nash equilibria and
those who enumerate them are analysed separately, respectively in Sect. 5.2 and in Sect. 5.3.
The experimental study was conducted on a Intel Xeon CPU 2.20 GHz with 13 GB RAM.
The algorithms were implemented in Python 3.8. The solver used to solve all Mixed-Integer
Linear Programming problems is GLPK (cf. [30]).

5.1 Library of Extensive-Form Games

Extensive-form games with perfect recall and perfect information have never been cate-
gorised. We thus introduce a new classification of games based on three key features: the
structure of the game-tree, the size of the game and the utility function. This allows to chal-
lenge our algorithms on a wide range of game instances and analyse their efficiency. The
proposed classification will be used to create a new library of extensive-form games. More
precisely, the structure of a game captures the properties of the shape of the game-tree. The
size of the game (i.e., the number of outcomes) allows us to better assess the scalability of
methods. Finally, once structure and size are fixed, the only parameter that varies in a game
is the utility function, which we provide different families of functions for.

Each instance of the dataset is referred to with a specific name encoding the three key
features of the game. Such encoding is shown in Table 1. The games’ structure is encoded as
follows: Rn indicates that the number of actions at every child of a node h′ ∈ H is chosen
uniformly at random U({0, . . . , n · |A(h′)|}), given the constraint that they have on average
n actions; Cn indicates that every node has the same number of actions, with n actions per
node; and finally Un indicates that, at every node, all actions but one lead to an outcome,
with n actions per node. The players’ utility is encoded as follows: R if the utility of an
outcome is chosen uniformly at random U([0, 1]) in the interval [0, 1]; D if the utility is
chosen randomly from a discrete set U({1, . . . , 10}), namely a natural integer between 1 and
10; Z if the game is zero-sum, i.e., at every node h ∈ H the winner is chosen at random
i ∈ {1, 2} and gets ui (h) = 1, while the loser gets 0; A if the game is zero-sum and the
winner has a utility chosen randomly from a discrete set U({1, . . . , 10}); F if the utility is
chosen randomly from U([0, 1]) at every outcome and it is the same for the two players; E
if every utility of every outcome has constant value. The latest value of a label is the size of
the game.

Example An instance of game labeled C4E100 has 100 outcomes, every node has 4 actions
(C) and utility is a constant function (E).

The library is publicly accessible (cf. [31]) and composed of three distinct datasets. Dataset
1 contains 21 extensive-form games which vary in their structure, within the range {R, C ,
U}, and in their size {100, 216, 324, 400, 512, 625, 729}, but not in their utility, which
is always Random R. Dataset 1 has games of smaller size, i.e., small enough to manage
methods already known in the literature, that provide bounds to the utility of Nash equilibria;
Dataset 1 is used in Sect. 5.2. Dataset 2 has 72 extensive-form games which vary in their
structure {R, C , U}, size {256, 729, 1296, 2401} and utility {R, D, Z , A, F , E}. Dataset 3
has 75 extensive-form games of size 729 which vary in structures {R, C , U} and utility {R,
D, Z , A, F}. Dataset 2 and 3 have games of larger size, that are used to assess the method
to enumerate the Nash equilibria outcomes. They are used in Sect. 5.3. Data0set 2 includes

Dynamic Games and Applications

Ta
bl
e
1

L
ab
el
en
co
di
ng

of
th
e
ga
m
es

L
ab
el

St
ru
ct
ur
e

D
efi
ni
tio

n

R
R
an
do

m
E
ve
ry

no
de

ha
s
a
ra
nd

om
nu

m
be
r
of

ac
tio

ns

C
C
om

pl
et
e

E
ve
ry

no
de

ha
s
th
e
sa
m
e
nu

m
be
r
of

ac
tio

ns

U
To

ta
lly

un
ba
la
nc
ed

A
te
ve
ry

no
de

al
lc
hi
ld
re
n
bu
to

ne
ar
e
ou

tc
om

es

L
ab
el

U
til
ity

D
efi
ni
tio

n

R
R
an
do

m
u i

(h
)
∼

U
(0

,
1)
,∀

i
∈{

1,
2},

∀h
∈
H

D
D
is
cr
et
e

u i
(h

)
∼

U
({1

,
2,

3,
..

.,
10

}),
∀i

∈{
1,
2},

∀h
∈
H

Z
Z
er
o-
su
m

u i
(h

)
=

1,
u
j(
h
)
=

0,
i
∼

U
({1

,
2})

,i
�=

j,
∀h

∈
H

A
A
sy
m
m
et
ri
c

u i
(h

)
∼

U
({1

,
2,

3,
..

.,
10

}),
u
j(
h
)
=

0,
i
∼

U
({1

,
2})

,i
�=

j,
∀h

∈
H

F
In
di
ff
er
en
t

u
1
(h

)
=

u
2
(h

)
∼

U
(0

,
1)
,∀

h
∈
H

E
E
qu

al
u i

(h
)
=

1,
∀i

∈{
1,
2},

∀h
∈
H

U
pp

er
ta
bl
e:
co
di
ng

of
th
e
st
ru
ct
ur
e
of

th
e
tr
ee
.L

ow
er

ta
bl
e:
co
di
ng

of
th
e
ut
ili
ty

fu
nc
tio

n

Dynamic Games and Applications

games with different characteristics; it enables us to assess the method on a large variety of
games. Dataset 3 includes 75 games with size 729, gathered in 15 groups, each one with 5
games having the same encoding. The 15 groups are built alternating 3 different structures
{R3 ∗ 729, C3 ∗ 729, U5 ∗ 729} and 5 different utilities ′∗′ ∈ {R, D, Z , A, F}. The utility
E has been discarded, as we show next that it does not need further analysis. The analysis
performed onDataset 3 allows to understand the variability of the results obtained for Dataset
2.

5.2 Bounds to the Utility of Nash Equilibria

We first test the methods introduced in Sect. 4.2 and in Sect. 4.3 on Dataset 1. The reference
methods known in literature, i.e., the branch and bound algorithms used to solve formulations
[V S−L] and [V S−L2], are compared to algorithm [UBA]: they all provide the same upper
bound to the utility of the first player in a Nash equilibrium. We recall that the proposed
algorithms [BNE] and [WNE] provide the tightest (respectively, upper and lower) bounds to
the utility of every Nash equilibrium. Table 2 reports the computation time for every instance
of each algorithm as well as the number of iterations for the three iterative algorithms [UBA],
[BNE] and [WNE].

Comparison of [UBA] vs [V S − L] vs [V S − L2]. First and main result is that the
algorithm [UBA] overcomes the methods relying on [V S − L] and [V S − L2] by some
orders of magnitude. The method [UBA] computes the upper bound to the utility of Nash
equilibria at least > 40 times faster than [V S − L] and [V S − L2]. Second, we highlight the
quality of the valid inequality added in [V S − L2]. Indeed, we observe that it improves the
computation time with respect to [V S − L] in 10 out of 21 instances and reduces of around
30% the computation time in instances like R6R512 and C2R512, which require more than
25 minutes for [V S − L]. Both [V S − L] and [V S − L2] perform 17% to more than 99%
faster on structures C andU than those of type R; we ascribe this to the fact that these games
present fewer nodes and thus require fewer constraints in the linear formulation.

Comparison of [UBA] vs [BNE] vs [WNE]. Algorithm [BNE] allows us to tighten the
upper bound in 4 instances out of 21, thus showing that [UBA], [V S− L] and [V S− L2] do
not always achieve the tightest bound. In Table 2, the few instances in which [BNE] tightens
the bound are underlined, whereas in the other 17 out of 21 instances the number of iterations
does not change. As predicted, [BNE] is slower than [UBA], but still performs more than 6
times faster than both [V S−L] and [V S−L2] in average on this dataset. Algorithm [WNE]
requires a larger computation time than [BNE] in 19 out of 21 instances. In fact, it always
has a larger number of iterations than [BNE]. Indeed, [WNE] first checks the outcomes
with lowest utility for the first player, those are unlikely to correspond to the best response
of the first player. It takes thus far more time to identify an outcome which is a best response
for both players.

5.3 Enumeration of Realisations of Nash Equilibria

In the next experiment, we tested the methods introduced in Sect. 4.1 on Dataset 2 and on
Dataset 3. We have measured the performance of Algorithm [E A] while enumerating the
Nash equilibria outcomes of every instance.

Analysis on Dataset 2. For the space’s sake, in Table 3 we display only the results for
all the games’ instances with size 729. More precisely, for each game, we show how many
outcomes are the realisations of Nash equilibria NE , the average size Xavg of all sets X1 and

Dynamic Games and Applications

Ta
bl
e
2

C
om

pa
ri
so
n
of

th
e
C
PU

tim
e
fo
r
co
m
pu

ta
tio

n
of

al
go

ri
th
m
s
pr
ov
id
in
g
bo

un
ds

to
th
e
ut
ili
ty

of
N
E

G
am

e
C
om

pu
ta
tio

n
tim

e
(s
)

It
er
at
io
ns

la
be
l

Si
ze

St
ru
ct
ur
e

[V
S-
L
]

[V
S-
L
2]

[U
B
A
]

[B
N
E
]

[W
N
E
]

[U
B
A
]

[B
N
E
]

[W
N
E
]

R
4R

10
0

10
0

R
4.
85

3.
69

0.
09

0.
14

0.
98

12
12

69

C
10

R
10

0
10

0
C

0.
32

0.
46

<
0.
01

<
0.
01

0.
10

1
1

30

U
4R

10
0

10
0

U
2.
22

2.
75

0.
02

0.
18

0.
57

29
29

35

R
4R

21
6

21
6

R
51

.3
4

44
.2
3

<
0.
01

<
0.
01

1.
53

2
2

12
4

C
6R

21
6

21
6

C
10

.4
5

22
.8
7

0.
04

0.
38

9.
97

6
7

16
4

U
6R

21
6

21
6

U
19

.4
3

12
.0
3

0.
06

0.
61

2.
24

39
39

17
8

R
5R

32
4

32
4

R
32

4.
76

28
2.
29

0.
04

2.
93

9.
35

5
5

28
7

C
18

R
32

4
32

4
C

2.
11

2.
97

0.
01

0.
28

0.
22

5
5

57

U
18

R
32

4
32

4
U

26
.4
2

25
.3
7

0.
03

1.
48

5.
22

13
13

31
2

R
5R

40
0

40
0

R
51

2.
75

46
1.
24

2.
20

2.
71

9.
49

32
32

33
4

C
20

R
40

0
40

0
C

2.
83

2.
83

0.
03

0.
46

0.
27

12
12

69

U
4R

40
0

40
0

U
23

4.
33

24
8.
02

0.
27

2.
21

5.
68

60
60

34
1

R
6R

51
2

51
2

R
19

18
.3
9

14
69

.5
6

0.
53

4.
12

26
.9
7

47
78

42
8

C
2R

51
2

51
2

C
15

94
.4
7

11
14

.7
6

0.
25

0.
38

16
1.
49

1
1

31
7

U
8R

51
2

51
2

U
19

2.
89

17
6.
96

0.
27

3.
50

16
.6
6

63
89

42
4

R
6R

62
5

62
5

R
>

1
h

>
1
h

0.
11

7.
18

24
.9
7

15
15

55
8

C
5R

62
5

62
5

C
95

.0
95

.9
2

0.
30

2.
08

7.
77

22
22

18
2

U
4R

62
5

62
5

U
81

8.
2

85
4.
45

0.
04

7.
94

29
.9
6

4
4

62
2

R
7R

72
9

72
9

R
>

1
h

>
1
h

11
.1
3

9.
31

24
.7
1

56
56

41
9

C
3R

72
9

72
9

C
10

4.
33

12
6.
89

0.
02

3.
02

32
.7
5

3
3

24
4

U
14

R
72

9
72

9
U

25
5.
96

24
7.
0

0.
17

15
.1
9

29
.9
2

30
45

68
5

E
ve
ry

lin
e
is
an

in
st
an
ce
.R

un
ni
ng

tim
e
is
m
ea
su
re
d
in

se
co
nd
s.
T
im

e
lim

it
is
se
tt
o
1
h
(>

1
h
in
di
ca
te
s
th
at
su
ch

lim
it
is
re
ac
he
d)
.T

he
in
st
an
ce
s
in

w
hi
ch

[B
N
E

]ti
gh

te
ns

th
e

bo
un

d
of

[U
B
A
]a

re
un

de
rl
in
ed

Dynamic Games and Applications

Table 3 Application of algorithm [E A] on games of dataset 2 with size 729

Label Structure Utility NE Xavg ttot tavg tmax

R3R729 R R 4 182.0 115.99 0.16 34.46

R3D729 D 18 163.8 31.92 0.04 7.91

R3Z729 Z 4 91.0 10.06 0.01 2.24

R3A729 A 8 133.4 100.32 0.14 6.63

R3F729 F 12 182.0 83.15 0.11 8.23

R3E729 E 729 0.0 0.48 < 0.01 < 0.01

C3R729 C R 76 182.0 881.46 1.21 4.76

C3D729 D 98 163.7 999.99 1.37 18.79

C3Z729 Z 271 91.1 466.35 0.64 3.64

C3A729 A 90 139.1 1297.1 1.78 9.10

C3F729 F 133 182.0 1039.19 1.43 6.75

C3E729 E 729 0.0 0.46 < 0.01 < 0.01

U5R729 U R 3 182.0 43.63 0.06 8.55

U5D729 D 7 163.9 20.99 0.03 7.24

U5Z729 Z 1 91.0 3.78 0.01 0.02

U5A729 A 1 137.1 44.55 0.06 8.75

U5F729 F 8 182.0 39.94 0.05 7.67

U5E729 E 729 0.0 0.48 < 0.01 < 0.01

Every line is an instance. Computation time is in seconds

X2, the total time required to run the algorithm ttot , the average time tavg and the maximal
time tmax for an outcome of the game. In addition, Fig. 4 displays the average time and the
maximal time required to execute the algorithm on a game outcome, and the percentage of
Nash equilibria identified among all the game’s outcomes.

Impact of the Size on Performance. As expected, the computation time increases with the
size of the game (cf. Fig. 4). Algorithm [E A] iterates over the outcomes and requires to solve
system [NE] for each outcome. When the size of the game increases, on average the size of
system [NE] increases accordingly. However, if the size is fixed, the structure and the utility
function have a fundamental impact on the computation time.

Impact of the Utility Function on Performance. In the degenerate case E , when outcomes
all have same utility value, solving system [NE] gets trivial for each outcome and thus the
computation time of each iteration is negligible (cf. Table 3). Indeed, the sets of outcomes to
be excluded X1 and X2 are empty at every iteration. For such case building the graph is not
even necessary. We observe that the computation time is lower for the case Z , as the sizes of
X1 and X2 are smaller. We cannot infer significant correlations on the other cases (R, D, A,
F) and we thus defer such analysis to Dataset 3.

Impact of the Structure on Performance. The structure of the game influences the average
time necessary to verify if an outcome is the realisation of a Nash equilibrium. Indeed, we
observe in Fig. 4 that in games with the same size those whose nodes have the same number
of children (structure coding C) require more time on average to compute an equilibrium.
This is due to the fact that the neighborhoods of an outcome V1 ∪ X2 and V2 ∪ X1 in the
graph and its complementary have always the same size in both parts of system [NE]. On the
other hand, in games with more asymmetrical structure (structure coding R and U) one of

Dynamic Games and Applications

Fig. 4 Application of algorithm [E A] to dataset 2. Times are in seconds. Structure of the game is identified by
colour and shape: blue circle (Random), red plus (Complete), green cross (totally Unbalanced) (Color figure
online)

Dynamic Games and Applications

Fig. 5 Computation time distribution for [NE] on the outcomes of games belonging to Dataset 3. Every
curve corresponds to the distribution for the outcomes of a single game. Each figure reports on the per-
formance on the 15 games having the same encoding for the utility function, being respectively Random (R),
Discrete (D), Zero-sum (Z), Asymmetric (A) and Indifferent (F). The distribution curves represent each a
structure: Random (R) in blue, Complete (C) in red and Totally Unbalanced (U) in green (Color figure online)

the two graphs is often smaller and thus the corresponding [NE] is much faster to be solved
in practice.

Analysis of Dataset 3. Table 4 shows the average of performances on 5 sample games
for each one of the 15 patterns. The outcomes are chosen with uniform random probability.
Every curve of Fig. 5 shows the computation time distribution of [NE] for an outcome of a
game. The 15 curves provide such result for the 15 games having the same utility coding.
Namely, every line appearing in the plots shows for every game type � = 〈I, H , u〉 the
function f (t) = P(t(h) ≤ t |h ∈ H), i.e., the probability that the algorithm solving system
[NE] takes less than t seconds to determine if h is the realisation of a Nash Equilibrium.

Dynamic Games and Applications

Table 4 Application of algorithms of
[E A] to dataset 3 Label Structure Utility NE ttot tavg tmax

R3R729 R R 17.2 206.61 0.28 7.11

C3R729 C 75.2 883.40 1.21 28.89

U5R729 U 2.0 47.42 0.06 9.72

R3D729 R D 38.6 149.10 0.20 5.39

C3D729 C 101.8 1240.58 1.70 69.77

U5D729 U 8.0 12.96 0.02 4.37

R3Z729 R Z 31.4 70.24 0.10 4.01

C3Z729 C 276.6 654.16 0.90 26.68

U5Z729 U 1.8 4.34 0.01 0.02

R3A729 R A 10.0 250.22 0.34 4.96

C3A729 C 95.4 1523.49 2.10 167.65

U5A729 U 1.8 40.07 0.06 7.74

R3F729 R F 91.4 364.85 0.50 6.86

C3F729 C 132.8 1354.45 1.86 121.96

U5F729 U 8.8 58.53 0.08 7.72

Every line shows the average value of 5 instances having the same label.
All games have size 729. Computation time is in seconds

Impact of the Structure on Performance. These numerical results show empirically that
the structure is the main factor influencing the performance of the algorithm solving system
[NE]. Indeed, on a game with totally unbalanced (U) structure it takes a negligible time
for the vast majority (around 99%) of the outcomes of a game instance (cf. Fig. 5). On the
other hand, on a game with complete (C) structure the algorithm such percentage decreases
to 20 − 50%. The algorithm performs in between the two extremes for a game with random
(R) structure.

Impact of the Utility on Performance. We observe on Table 4 that the best performances
are obtained for zero-sum games (coding utility Z) for the same structure. This is due to
the fact that when the utility is equal to 1 the set of outcomes to be excluded X is empty
(cf. Table 3). One of the two sides of the problem is always trivial. If the game switches
from utility Z to A, i.e., if the player that wins gains a value between 1 and 10 instead
of just 1, the property that makes one of the problems trivial is lost. Indeed, games with
coding A have performances comparable to those with other utility codings (R, D, F). One
might thus assume that increasing the granularity of the utility might make the algorithm
less efficient. However, we do not observe any significant difference in the computation time
while comparing (D) (ui ∼ U({1, . . . , 10})) to (R) (ui ∼ U(0, 1)).

5.4 Obtaining Insights on Nash Equilibria of Extensive-Form Games

To the best of our knowledge, Algorithm [E A] is the first one proposed to enumerate the Nash
equilibria outcomes of an extensive-form game that does not resort to brute force. Besides
the analysis of its complexity, we can also provide further insights of the numerosity of Nash
equilibria in a game.

The number of possible realisations of a Nash equilibrium can vary from 1 to the number
of outcomes of a game. The latter case implies that the utility function is constant (case E).

Dynamic Games and Applications

However, in the generic case the number of Nash equilibria highly depends on the structure
of the game-tree. We observe from Sect. 5.3 that games with a totally unbalanced structure
(U) tend to host fewer Nash equilibria. This is due to the fact that if there is an outcome with
great value to a player, she might choose to stick to it, and the opponent has few options to
build a strategy that redirects her to an outcome that lies deeper in the tree. If an outcome
with great value happens to lie at a very high level of the tree, the lower levels hardly host
other realisations of Nash equilibria. The converse tends to occur as well, i.e., in a generic
game with a complete structure (C) we typically observe many more Nash equilibria than in
the unbalanced case. This follows the intuition that in a complete game structure a player can
find more combination of strategies to convince the opponent to switch her best response to
a different outcome.

6 Conclusions

In this paper, we introduce a new representation for a two-player extensive-form game with
perfect information as a graph of its outcomes. We prove that identifying a Nash equilibrium
outcome of an extensive-form game corresponds to identifying two cliques on such graph
and its complementary. Thanks to this result, we introduce the first method of the literature
to determine if an outcome of an extensive-form game is a realisation of a Nash equilibrium.
Such method allows to define the first algorithm to enumerate the realisations of all Nash
equilibria of an extensive-form game. The algorithm performs very well on a sample dataset
of games of different structures and sizes. Moreover, it is possible to reframe the algorithm so
that it provides any given bound to the utility of all Nash equilibria. Such algorithm performs
significantly better than the most known method in literature, which provides a (not always
the tightest) upper bound to the utility of Nash equilibria.

We foresee several extensions for this work. First, we do not fully exploit the properties
of the graph form to improve the efficiency of the proposed algorithms. Second, it would be
interesting to devise methods to parallelize the computation of the Nash equilibria outcomes
in large instances. Finally, the categorisation of extensive-form games suggests that more
efficient methods can be designed for some specific classes of games. For instance, cus-
tomized algorithms can be written to compute the compatibility of two outcomes. A possible
extension of this results would be eventually to extend the numerical results to larger games
with mixed strategies, with more than two players and with imperfect information.

Appendix A: Examples

A.1 Extensive Form

We consider an example of extensive-form game, whose representation is the tree of Fig. 6.
The game � = 〈I, H , u〉 with two players I = {1, 2} is represented by a tree, which allows
to show all the possible actions. The first player observes no actions ∅ and she picks an
action in the set A(∅) = {a1, a2}. If she picks action a2, the game arrives to the outcome
h1 = (a2) ∈ H . On the other hand, if she picks action a1, the second player observes it and
picks an action from the set A(a1) = {b1, b2}. If the second player picks action b1, she gets
to the outcome h2 = (a1, b1) ∈ H . Analogously it is possible to get all the other outcomes
of the game: h3 = (a1, b2, a3, b3), h4 = (a1, b2, a3, b4), h5 = (a1, b2, a4, b5), h6 =

Dynamic Games and Applications

Fig. 6 An extensive-form game in its representation as a tree.
Preferences. The order of
preference for the first player is:
h6 �1 h3 �1 h5 �1 h2 �1
h1 �1 h4. The order of
preference for the second player
is: h3 �2 h4 �2 h2 �2 h6 �2
h5 �2 h1. Strategies. The two
players choose respectively s1
and s2 as strategies. At nodes ∅
and (a1, b2) the first player
chooses respectively s1(∅) = a1
and s1(a1, b2) = a4. At nodes
(a1), (a1, b2, a3) and
(a1, b2, a4) the second player
chooses respectively
s2(a1) = b1, s2(a1, b2, a3) = b3
and s2(a1, b2, a4) = b6

(a1, b2, a4, b6). The set of outcomes is therefore H = {h1, h2, h3, h4, h5, h6}. The set of
histories is instead H ′ = {∅, h1, (a1), h2, (a1, b2), (a1, b2, a3), (a1, b2, a4), h3, h4, h5, h6}.
The function P maps respectively H ′\H = {∅, (a1), (a1, b2), (a1, b2, a3), (a1, b2, a4)} to
the players acting at such nodes {1, 2, 1, 2, 2}. The utility function u : H → R

2 evaluates the
outcomes. For instance,we can have u(h1) = (2, 0), where u1(h1) = 2 is the evaluation given
to h1 by the first player and u2(h1) = 0 is the one given by the second player. For the game
in Fig. 6 we assume that u(h2) = (3, 4), u(h3) = (8, 11), u(h4) = (1, 9), u(h5) = (5, 1),
u(h6) = (9, 3). The value of the utility allows to understand which outcomes are preferred
by the players. For instance, the second player prefers h3 to h6 because u2(h3) = 11 > 3 =
u2(h6). We write alternatively h �i h′ to show that ui (h) > ui (h′). In the caption of Fig. 6
all the preferences among the outcomes are given, based on the values assigned by the utility
function.

Strategies. In the game of Fig. 6 the first player acts at two different moments in which she
observes respectively ∅ and (a1, b2): we have thus H1 = {∅, (a1, b2)}. According to Defini-
tion 2, a strategy for player 1 is a function that maps every history observed in H1 to an action
that can be chosen by her. In Fig. 6 the choices of the players are marked by thicker arrows.
In the example, the first player picks strategy s1, where s1(∅) = a1 and s1(a1, b2) = a4.
With some abuse of notation, we write s1(a1, b2) instead of s1((a1, b2)) to simplify the nota-
tion. The histories observed by the second player are H2 = {(a1), (a1, b2, a3), (a1, b2, a4)}.
In Fig. 6 the second player picks strategy s2, where: s2(a1) = b1; s2(a1, b2, a3) = b3;
s2(a1, b2, a4) = b6.

Application of Theorem 1. We apply Theorem 1 to the game of Fig. 6. The set of the
outcomes of Nash equilibria is {h2, h3}. If we compute the solution of [ST] for such game, we
get (s1, s2) ∈ S1 × S2, where s1(∅) = a1, s1(a1, b2) = a3, s2(a1) = b2 and s2(a1, b2, a3) =
b3. The realisation of the strategy profile (s1, s2) is h3. Coherently with Theorem 1, the
solution u1(h3) is, indeed, an upper bound for the utility of every outcome in the set of Nash
equilibria {h2, h3}.

Dynamic Games and Applications

Sequences. We consider the framework introduced in Sect. 4.2. The sequences of the
first player are �1 = {∅, (a1), (a2), (a1, a3), (a1, a4)}, while the sequences of the sec-
ond player are �2 = {∅, (b1), (b2), (b2, b3), (b2, b4), (b2, b5), (b2, b6)}. If the first player
chooses action a1, she must choose either action a3 or a4. Therefore the constraint x(a1) =
x(a1,a3)+x(a1,a4) is added to the formulation. Similarly, if the second player chooses action b2,
she must choose at least one action among {b3, b4, b5, b6}. Therefore we add the constraint
y(b2) = y(b2,b3) + y(b2,b4) + y(b2,b5) + y(b2,b6).

A.2 Graph Form

We take into account the game of Fig. 6 with its corresponding graph form in Fig. 7a. Let us
show, for instance, that outcomes h2 and h4 are compatible. We define: s1 ∈ S1 such that
s1(∅) = a1 and s1(a1, b2) = a3; s2 ∈ S2 such that s2(a1) = b1; s′

2 ∈ S2 such that s′
2(a1) = b2

and s′
2(a1, b2, a3) = b4. We have that (s1, s2) �→ h2 and (s1, s′

2) �→ h4: they are therefore
compatible. On the other hand there is no strategy of the first player that can lead to both h2
and h1, because different actions would occur at the beginning of the game, i.e., at node ∅.
With similar arguments, it is possible to build all the graph form of the game.

Strategies. We consider the game of Fig. 6 and a strategy s1 ∈ S1 such that s1(∅) = a1 and
s1(a1, b2) = a4. By definition we have that H(s1) = {h2, h5, h6}, which induces indeed a
maximal clique in the graph of Fig. 7a. Four different strategies are available in S1 to the first
player, since we have two different actions that can be played for every node ∅ and (a1, b2).
There are 3 maximal cliques in graph 〈H , E〉, i.e., those induced by the sets of outcomes
{h1}, {h2, h3, h4} and {h2, h5, h6}, respectively. This small example shows that the graph
form is a less redundant representation of the strategies of the players than the normal form.
In fact, two different strategies induce the set of outcomes {h1}.

A.3 Application of Theorem 7

We consider the game in extensive form of Fig. 8a game which can be solved by direct
inspection of the graph. Indeed, let us enumerate the realisations of Nash equilibria of the
game by applying Theorem7 to every outcome. In this example, the preferences of the players
over the outcomes are respectively u1 : h3 �1 h4 �1 h5 �1 h6 �1 h8 �1 h7 �1 h2 �1 h1
and u2 : h1 �2 h2 �2 h4 �2 h8 �2 h5 �2 h6 �2 h7 �2 h3. In order to apply Theorem 7 we

h1h2

h3 h4 h5 h6

(a) Graph form representation of
the game of Figure A1.

S1 s11 : →�∅ a1; (a1, b2) �→ a3

s21 : →�∅ a1; (a1,b2) �→ a4

s31 : →�∅ a2; (a1, b2) �→ a3

s41 : →�∅ a2; (a1, b2) �→ a4

{h2, h3, h4}

{h2,h5,h6}

{h1}

H(·)

(b) Every strategy for the first player induces a max-
imal clique of the graph.

Fig. 7 Strategies as maximal cliques

Dynamic Games and Applications

Fig. 8 Example. Preferences of the players over the outcomes are respectively: u1 : h3 �1 h4 �1 h5 �1
h6 �1 h8 �1 h7 �1 h2 �1 h1 and u2 : h1 �2 h2 �2 h4 �2 h8 �2 h5 �2 h6 �2 h7 �2 h3

consider the graph 〈H , E〉 of the game depicted in Fig. 8b. By directly inspecting this graph
and its complementary 〈H , EC 〉 (cf. Fig. 8c), we achieve the following results.

• h1 is not an outcome of a Nash equilibrium: h1 is the outcome least preferred by the first
player. There is no strategy of the second player, i.e., there is no maximal clique on the
complementary graph 〈H , EC 〉 which includes h1 alone;

• h2 is not an outcome of a Nash equilibrium: the only maximal cliques on the complemen-
tary graph including h2 are {h1, h2, h5}, {h1, h2, h6} and {h1, h2, h7, h8}, but in none of
these cases h2 is the favourite outcome by the first player. This means that there is no
strategy of the second player such that h2 corresponds to the outcome of the best response
of the first player;

• h3 is not an outcome of a Nash equilibrium: it is the least preferred outcome by the
second player. Any maximal clique on the complementary graph which includes h3 also
includes another outcome which is preferred by the second player to h3;

• h4 is not an outcome of a Nash equilibrium: every maximal clique on the complementary
graph which includes h4 also includes h3, which is preferred by the first player to h4;

• h5 is a possible outcome of a Nash equilibrium: we identify the maximal cliques
{h5, h6, h7} and {h1, h2, h5} respectively on the graph form and its complementary. In
both cases h5 is the preferred outcome, respectively by the second and the first player;

• h6 is not an outcome of a Nash equilibrium: every maximal clique in 〈H , E〉 which
includes h6 also includes h5, which is preferred by the second player to h6;

Dynamic Games and Applications

• h7 is not an outcome of a Nash equilibrium: every maximal clique on 〈H , EC 〉 which
includes h7 also includes h8, which is preferred by the first player to h7;

• h8 is a possible outcome of a Nash equilibrium: we identify the maximal cliques
{h5, h6, h8} and {h1, h2, h7, h8} respectively on the graph 〈H , E〉 and its complementary
〈H , EC 〉. In both cases h8 is the preferred outcome, respectively by the second and the
first player.

The only two outcomes which are possible realisations of Nash equilibria are thus h5 and
h8. It is interesting to notice that they are not Pareto-optimal, since h4 is preferred by both
players. The Subgame Perfect Equilibrium of a game is also a Nash equilibrium, therefore it
must be either of the two outcomes. Indeed, by backward induction it is proven to be h8.

A.4 Formulation of [CL]

Let us consider the graph 〈H , E〉 of Fig. 9 and evaluate h as a possible realisation of a Nash
equilibrium.Wewould like to answer if h is the best response for a player i (it is not necessary
to specify which player in this mock example), i.e. h to be the best outcome of a strategy.
We assume given that h1 �i h and h5 �i h. In order to answer this question, we would like
to solve the problem [MC] with input 〈H , E, h, Xh〉, where Xh = {h1, h5} and h is just a
parameter of the problem. This corresponds to solve the problem [EC]with input 〈V , X , E〉,
where V = {h2, h3, h4} and X = {h1, h5}. We thus look for some elements in V that could
guarantee the existence of a strategy that includes h and none of the elements in X . We apply
the system [CL]. For every vertex i ∈ V let us introduce the variable xi ∈ {0, 1} which is
equal to 1 if vertex i ∈ V is included in the clique. The vertex h2 is neither connected to h3
nor to h4, therefore the constraints x2 + x3 ≤ 1 and x2 + x4 ≤ 1 are added. The only vertex
not connected to h1 is vertex h4, therefore it must be included in the clique: x4 ≥ 1. Both
vertices h2 and h3 are connected to h5, therefore at least one of them must be included in the
clique: x2 + x3 ≥ 1. The system [CL] for the graph of Fig. 9 is thus:

x2 + x3 ≤ 1, � (h2, h3) /∈ E

x2 + x4 ≤ 1, � (h2, h4) /∈ E

x4 ≥ 1, � (h4, h1) /∈ E

x2 + x3 ≥ 1, � (h2, h5) /∈ E, (h3, h5) /∈ E

x2, x3, x4 ∈ {0, 1}.

Fig. 9 Example. System [CL] is
applied to the graph in figure,
with V = {h2, h3, h4} and
X = {h1, h5}

Dynamic Games and Applications

A.5 Graph that Represents No Game

Let us consider the graph 〈H , E〉 of Fig. 3 and show that it is not the graph form of an
extensive-form game. If it were the graph form of an extensive-form game, any preferences
could be assigned by the players to the outcomes, i.e. any utility function u can be chosen.
We consider a utility function such that the preferences over the outcomes are respectively
u1 : hA �1 hC �1 hD �1 hB and u2 : hB �2 hC �2 hA �2 hD . We show that if this
graph were generated by a game, it would have no Nash equilibria. This is a contradiction,
because every extensive-form game has at least one Nash equilibrium. The table of Fig. 3
shows the analysis for every outcome h ∈ {hA, hB , hC , hD}. Every line of the table shows
that the composition of the vertex sets V and X for any pair of problems [EC] given 〈H , E〉
and its complementary 〈H , EC 〉 as input. For no outcome h, i.e. for no pair of problems at
any given line, both problems has answer true. Indeed, neither hB nor hD can be the outcome
of a Nash equilibrium, because they are the least favoured respectively by the first and by
the second player, and there is no maximal clique on 〈H , E〉 and on 〈H , EC 〉 that consists
of the singleton including them, i.e. {hB} and {hD} are not maximal cliques. In problem
[EC] for hD in graph 〈H , E〉 we have that V = ∅, as well as for hB in graph 〈H , EC 〉.
Outcome hA also is not a Nash equilibrium, because the only maximal clique on the graph
which includes it is {hA, hB}, but hB �2 hA. We observe that in problem [EC] defined for
hA in graph 〈H , E〉 we have V = ∅. Finally, outcome hC is not a Nash equilibrium, because
the only maximal clique on the graph defined from 〈H , EC 〉 is {hA, hC }, but hA �1 hC .
Analogously, in problem [EC] defined for hC in graph 〈H , EC 〉 we have V = ∅. Therefore
there is no outcome corresponding to a Nash equilibrium, which is a contradiction. This
graph represents no extensive-form game.

A.6 [VS] does not Provide the Tightest Bound

Let us apply [V S] to the game of Fig. 10a. The sequences are respectively �1 =
{∅, a1, a2, a1a3, a1a4} and �2 = {∅, b1, b2}. The optimal values are xa1 = 1, xa1a3 = 1,

Fig. 10 Upper bound is not a Nash equilibrium. Preferences of the players over the outcomes are respectively:
u1 : h3 �1 h4 �1 h2 �1 h1 and u2 : h1 �2 h4 �2 h2 �2 h3

Dynamic Games and Applications

yb2 = 1 and uV S
1 = u1(h4). Therefore the utility of the first player for outcome h4 provides

an upper bound to the utility of the first player for any Nash equilibrium. However, h4 is not
the realisation of a Nash equilibrium: since h3 �1 h4, the first player would never choose
action a4 over a3 in a Nash equilibrium. The reader can verify, by using Algorithm [E A] on
the graph of Fig. 10b, that h2 is the only realisation of a Nash equilibrium.

Appendix B: Proofs

B.1 Proof of Theorem 7

(i) We prove first that for any Nash equilibrium the two maximal cliques in the statement
do exist. If h is a realisation of a Nash equilibrium (s1, s2) ∈ S1 × S2 we have that for all
s1 ∈ S1 and s2 ∈ S2:

u1(h) = u1(s1, s2) ≥ u1(s1, s2),

u2(h) = u2(s1, s2) ≥ u2(s1, s2).

We consider H(s1) ⊂ H . By Lemma 3, H(s1) forms a maximal clique in graph 〈H , E〉. We
thus define C1 = H(s1). Since (s1, s2) �→ h, we have that h ∈ C1. For each h′ ∈ C1 there is
a strategy s2 ∈ S2 such that (s1, s2) �→ h′. Since h is a realisation of a Nash equilibrium, for
each h′ ∈ C1 we have that u2(h) ≥ u2(h′). Therefore each h′ ∈ C1\Xh

2 and, as a consequence,
the vertex set C1 solves [MC]with input 〈H , E, h, Xh

2 〉. An analogous argument can be used
to show that C2 = H(s2) solves [MC] with input 〈H , EC , h, Xh

1 〉.
(ii) We now prove that, if there are two vertex sets C1 ⊂ H and C2 ⊂ H that solve problem
[MC] for, respectively, 〈H , E, h, Xh

2 〉 and 〈H , EC , h, Xh
1 〉, then h is a realisation of a Nash

equilibrium. By Lemma 4, we have that there are s1 ∈ S1 and s2 ∈ S2 such that H(s1) = C1
and H(s2) = C2. We recall that, since C1 = H(s1), for each s2 ∈ S2 the strategy profile
(s1, s2) �→ h′ ∈ C1. Since C1 ∩ Xh

2 = ∅, we have that h′ /∈ Xh
2 and therefore u2(h

′) ≤ u2(h).
Since {h} = H(s1) ∩ H(s2), the strategy profile (s1, s2) has realisation h satisfying:

u2(s1, s2) = u2(h
′) ≤ u2(h) = u2(s1, s2).

Analogously, we prove that for all s1 ∈ S1:

u1(s1, s2) ≤ u1(s1, s2).

Therefore (s1, s2) is a Nash equilibrium and h is its realisation.

B.2 Proof of Proposition 9

(i) First, let us suppose that the problem [MC] has true as answer, i.e. there is a vertex
set C ⊂ H\Xh with h ∈ C that induces a maximal clique on 〈H , E〉. By construction,
C ⊂ V induces a clique on 〈V ∪ X , E |V∪X 〉. Moreover, the clique is maximal, i.e. there is
no h′′ ∈ H\C such that for all h′ ∈ C we have (h′, h′′) ∈ E . Therefore for all h′′ ∈ X there
is h′ ∈ C such that (h′, h′′) /∈ E and thus (h′, h′′) /∈ E |V∪X .

(ii) Let us suppose now that the problem [EC] has true as answer, i.e. there is a vertex set
C′ ⊂ V that induces a clique on 〈V ∪ X , E |V∪X 〉 such that for all h′′ ∈ X there is h′ ∈ C′
such that (h′, h′′) /∈ E |V∪X . Let us consider C′′ = C′ ∪ {h}, which induces a clique on graph
〈H , E〉. For all h′′ ∈ Xh either (a) h′′ ∈ X and thus there is an element h′ ∈ C′ such that
(h′, h′′) /∈ E or (b) h′′ ∈ Xh\X and thus (h, h′′) /∈ E . Therefore for all h′′ ∈ Xh there is

Dynamic Games and Applications

h′ ∈ C′′ = C′ ∪ {h} such that (h′, h′′) /∈ E . If C′′ induces not only a clique, but a maximal one
on 〈H , E〉 we have the proof. If C′′ induces a non-maximal clique, there is a vertex set C′′′
such that C ′′ ⊂ C′′′ that induces a maximal clique on 〈H , E〉. By construction C′′′ ∩ X = ∅,
which completes the proof.

B.3 Best andWorst Nash Equilibrium

Algorithm 3 [BNE] (WNE) best (worst) Nash equilibrium
INPUT: Game in graph form � = 〈H , E, u〉
H�1 = order(H , �1) � Elements h ∈ H are ordered from best to worst [from worst to best] w.r.t. player
1: h �1 h′ iff u1(h) ≥ u1(h

′) [iff u1(h) ≤ u1(h
′)]

index = 0
do

h = H�1 (index) � Consider outcome h
X1 = {h′ ∈ H |(h′, h) /∈ E, u1(h

′) > u1(h)} � Init vertex sets and excluding sets

X2 = {h′′ ∈ H |(h′′
, h) ∈ E, u2(h

′′
) > u2(h)}

V1 = {h′ ∈ H \ X2|(h′, h) ∈ E}
V2 = {h′′ ∈ H \ X1|(h′′

, h) /∈ E}
solve [NE] giving 〈V1, V2, X1, X2, E〉 as input
index = index + 1

while [NE] has no solution
OUTPUT: h

Author Contributions All the authors contributed equally to this work.

Funding Not applicable.

Data Availability The dataset used in the numerical experiments is available online (cf. [31]).

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval Not applicable.

References

1. Kuhn HW, Tucker AW (1953) Contributions to the theory of games. Princeton University Press, Princeton
2. Long NV (2011) Dynamic games in the economics of natural resources: a survey. Dyn Games Appl

1:115–148
3. Baird DG, Gertner RH, Picker RC (1998) Game theory and the law. Harvard University Press, Cambridge
4. Etesami SR, Başar T (2019) Dynamic games in cyber-physical security: an overview. Dyn Games Appl

9(4):884–913
5. Nash JF Jr (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49
6. Selten R (1965) Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit: teil i: bes-

timmung des dynamischen preisgleichgewichts. Z Gesamte Staatswiss J Inst Theor Econ H 2:301–324
7. Selten R (1978) The chain store paradox. Theory Decis 9(2):127–159
8. Pettit P, Sugden R (1989) The backward induction paradox. J Philos 86(4):169–182
9. Binmore K, McCarthy J, Ponti G, Samuelson L, Shaked A (2002) A backward induction experiment. J

Econ Theory 104(1):48–88

Dynamic Games and Applications

10. Daskalakis C, Goldberg PW, Papadimitriou CH (2009) The complexity of computing a Nash equilibrium.
SIAM J Comput 39(1):195–259

11. Papadimitriou CH (1992) On inefficient proofs of existence and complexity classes. Ann Discret Math
51:245–250. https://doi.org/10.1016/S0167-5060(08)70637-X

12. Lemke CE, Howson JT Jr (1964) Equilibrium points of bimatrix games. J Soc Ind Appl Math 12(2):413–
423

13. Avis D, Fukuda K (1992) A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discret Comput Geom 8(3):295–313

14. Avis D, Rosenberg GD, Savani R, Von Stengel B (2010) Enumeration of Nash equilibria for two-player
games. Econ Theory 42(1):9–37

15. Widger J,GrosuD (2009) Parallel computation ofNash equilibria in n-player games. In: 2009 international
conference on computational science and engineering, vol 1. IEEE, pp 209–215

16. Von Stengel B (1996) Efficient computation of behavior strategies. Games Econ Behav 14(2):220–246
17. Koller D, Megiddo N, Von Stengel B (1996) Efficient computation of equilibria for extensive two-person

games. Games Econ Behav 14(2):247–259
18. Audet C, Belhaiza S, Hansen P (2009) A new sequence form approach for the enumeration and refinement

of all extreme Nash equilibria for extensive form games. Int Game Theory Rev 11(04):437–451
19. Govindan S, Wilson R (2002) Structure theorems for game trees. Proc Natl Acad Sci 99(13):9077–9080
20. Herings PJ-J, Peeters R (2010) Homotopy methods to compute equilibria in game theory. Econ Theory

42(1):119–156
21. Argenziano R, Schmidt-Dengler P (2014) Clustering in-player preemption games. J Eur Econ Assoc

12(2):368–396
22. Selten R, Mitzkewitz M, Uhlich GR (1997) Duopoly strategies programmed by experienced players.

Econom J Econom Soc 65:517–555
23. Hassin R, Yovel U (2015) Sequential scheduling on identical machines. Oper Res Lett 43(5):530–533
24. Fudenberg D, Tirole J (1991) Game theory. The MIT Press, Cambridge
25. Kreps DM, Wilson R (1982) Sequential equilibria. Econom J Econom Soc 23:863–894
26. Fudenberg D, Levine D (1983) Subgame-perfect equilibria of finite-and infinite-horizon games. J Econ

Theory 31(2):251–268
27. Koller D, Megiddo N (1992) The complexity of two-person zero-sum games in extensive form. Games

Econ Behav 4(4):528–552
28. Zappalà P, Benhamiche A, Chardy M, De Pellegrini F, Figueiredo R (2022) A timing game approach

for the roll-out of new mobile technologies. In: 2022 20th international symposium on modeling and
optimization in mobile, Ad hoc, and wireless networks (WiOpt), pp 217–224. https://doi.org/10.23919/
WiOpt56218.2022.9930538

29. Kratsch D, Liedloff M (2007) An exact algorithm for the minimum dominating clique problem. Theor
Comput Sci 385(1–3):226–240

30. Makhorin A (2008) GLPK (GNU linear programming kit). http://www.gnu.org/s/glpk/glpk.html
31. Zappalà P (2023) GT library 1.0. Dataset of extensive-form games. https://doi.org/10.5281/zenodo.

7628367. https://github.com/paolozapp/gtlibrary

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1016/S0167-5060(08)70637-X
https://doi.org/10.23919/WiOpt56218.2022.9930538
https://doi.org/10.23919/WiOpt56218.2022.9930538
http://www.gnu.org/s/glpk/glpk.html
https://doi.org/10.5281/zenodo.7628367
https://doi.org/10.5281/zenodo.7628367
https://github.com/paolozapp/gtlibrary

	Analysis and Computation of the Outcomes of Pure Nash Equilibria in Two-Player Extensive-Form Games
	Abstract
	1 Introduction
	2 Extensive-Form Games
	2.1 Definitions
	2.2 Bounds for Nash Equilibria in Two-Player Games

	3 Graph Form
	3.1 A Representation of Extensive-Form Games as Graphs of Outcomes
	3.2 Characterisation of Nash Equilibria in the Graph Form of the Game
	3.3 Analysis of the Main Problem and its Complexity

	4 New Methods for the Identification of Nash Equilibria
	4.1 Nash Equilibrium
	4.2 Upper Bounds for Nash Equilibria
	4.3 Best and Worst Nash Equilibrium

	5 Numerical Results
	5.1 Library of Extensive-Form Games
	5.2 Bounds to the Utility of Nash Equilibria
	5.3 Enumeration of Realisations of Nash Equilibria
	5.4 Obtaining Insights on Nash Equilibria of Extensive-Form Games

	6 Conclusions
	Appendix A: Examples
	A.1 Extensive Form
	A.2 Graph Form
	A.3 Application of Theorem 7
	A.4 Formulation of [CL]
	A.5 Graph that Represents No Game
	A.6 [VS] does not Provide the Tightest Bound

	Appendix B: Proofs
	B.1 Proof of Theorem 7
	B.2 Proof of Proposition 9
	B.3 Best and Worst Nash Equilibrium

	References

