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Abstract
The paper analyzes some models of a Limit Order Book, determined as a Nash equilibrium
among a large number of traders, in infinite time horizon. We study how the size and shape
of the LOB are related to the expected profit rate of traders posting limit orders, and to the
random distribution of incoming external buy or sell orders. Formulas are derived which
show how the volatility of the stock, and the presence of better informed external agents,
determine (i) an increase in the bid-ask spread and (ii) a liquidity reduction, i.e. a decrease in
the total amount of stocks posted for purchase or for sale. We also analyze models including
“fast” and “slow” traders, that can react more or less quickly to changes in the fundamental
value of the stock.

Keywords Limit order book · Nash equilibrium · Optimal pricing strategy · Bidding game ·
Infinite horizon
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1 Introduction

A bidding game related to a continuum model of the Limit Order Book (LOB) was recently
considered in Ref. [5, 6, 8, 9], proving the existence and uniqueness of a Nash equilibrium
and determining the optimal strategies for the various agents. In the basicmodel, it is assumed
that an external buyer asks for a random amount X > 0 of a given asset. This external agent
will buy the amount X at the lowest available price, as long as this price does not exceed
some (random) upper bound P . One or more sellers offer various quantities of this same
asset at different prices, competing to fulfill the incoming order, whose size is not known a
priori.
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Havingobserved the prices askedbyhis competitors, each sellermust determine anoptimal
strategy, maximizing his expected payoff. Because of the presence of the other sellers and of
the upper bound P , asking a higher price for an asset reduces the probability of selling it.

The models considered in Ref. [5, 6, 8, 9] all have the form of a “one shot game". All
players’ payoffs are completely determined as soon as one single incoming order is received.
The later paper [7] considered a two-sided LOB, where both sell and buy orders are posted.
Moreover, it included a time-dependent model, with a finite number of incoming buy or sell
orders. However, the fundamental value of the stock was always assumed to remain constant
in time.

The present paper is concerned with problems in infinite time horizon, also allowing for
random fluctuations in the fundamental value β = β(t) of the traded asset. A key modeling
assumption is that all traders posting limit orders have the expectation of increasing their
wealth at least at rate γ > 0. More precisely, call

w(t) = [amount of cash owned at time t]
+[amount of stock owned at time t] × [current value of the stock]

the wealth of a trader at any time t ≥ 0. Then, for any 0 < s < t < +∞ the expected wealth
should be

E
[
w(t)

∣∣∣ w(s) = w
]

≥ eγ (t−s)w. (1.1)

If this rate of increase cannot be achieved, agents will simply move away from the given
LOB, and conduct their trading activity on some other platform.

The other key ingredient of the model is the random distribution of incoming buy and sell
orders. Namely: the size of the orders, and the time frequency with which they arrive.Wewill
show that, together with the growth rate γ , this distribution entirely determines the size and
shape of the LOB, in terms of a Nash equilibrium among a large number of traders posting
limit orders. At an intuitive level, if the LOB contains a large number of limit orders, there is
high competition among traders and this drives down their expected profit. As a consequence,
some of the traders will move out, until the holdings of the remaining ones increase exactly
at the desired rate (1.1).

In a later section consider the possibility that better informed external buyers or sellers
may occasionally anticipate random jumps in the fundamental value of the stock. When
this happens, one of the two sides of the LOB can be wiped out, resulting in a loss for the
traders posting limit orders. Compared with the previous model, we show that in this case the
bid-ask spread becomes larger. Moreover, as the volatility of the stock increases, a liquidity
reduction is observed. Namely, the total amount of stock offered on the LOB for buy of for
sale decreases.

Finally, we analyze a model with two groups of traders: “slow" traders, whose profits can
be curtailed by better informed external agents at times when the value of the stock jumps,
and “fast" traders, who can instantly access information and adjust their bids at jump times.
We show that, if traders of the two groups have different expectations γ ′ < γ on the rate of
increase (1.1) of their holdings, they can be simultaneously present on the LOB. In a typical
situation, calling β the current value of the stock, fast traders will post their bids to sell
stock within a range of prices p ∈ [p−, p̂], while slow traders will post their bids at prices
p ∈ [ p̂, p+], with β < p− < p̂ < p+. We also identify cases where either

(1) All fast traders are squeezed out from the LOB, because the competitionwith slow traders
does not allow them to achieve the high growth rate (1.1) that they expect, or
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Fig. 1 Left: an example of tail distribution �b of the size of external buy orders in Eq. (2.1). Center and right:
two possible tail distributions for the maximum acceptable price hb at Eq. (2.2)

(2) All slow traders are squeezed out from the LOB, because their profit is curtailed by (i)
the competition of fast traders and (ii) the losses due to stock volatility combined with
the presence of better informed agents.

The remainder of the paper is organized as follows. Section2 introduces the basic model,
collecting the main assumptions. In Sect. 3 we study the Nash equilibrium profile of the “sell"
and “buy" portions of the LOB, for an asset whose fundamental value remains constant. In
Sect. 4 we describe the modifications needed in the case when the value of the asset has
random jumps. Section5 introduces a model where better informed external agents may
occasionally anticipate random jumps in the fundamental value of the stock. A model with
“fast" and “slow" traders is then analyzed in Sect. 6. Finally, some examples where the LOB
profile can be explicitly computed are worked out in Sect. 7.

Throughout our analysis, as in Ref. [10, 13] we consider a “mean field limit", modeling
a large number of agents. Each trader posts buy or sell orders for an amount of stock which
is small, compared with the overall size of the LOB. For a rigorous derivation of this mean
field limit see Theorem 9.1 in Ref. [5].

For various other models of the LOB considered in the literature we refer to Ref. [1–4,
11]. See also the surveys [12, 14] and references therein.

2 The Basic Model

Weconsider a situation involving an infinite sequenceof incomingorders X1, X2, . . ., arriving
according to a Poisson process. Each can be either a buy order or a sell order. The random
variables X j , j ≥ 1, describing the amount of stock that the external agents want to buy (or
sell), are mutually independent. As in Ref. [9], we assume that the sizes of the incoming buy
or sell orders Xbuy , Xsell are random variables, with tail distributions

P
[
Xbuy > s

]
= �b(s), P

[
Xsell > s

]
= �s(s). (2.1)

In our basic model, the maximum price that a buyer is willing to pay (or the minimum
price that an external seller is willing to accept) is not known a priori. More precisely, calling
β > 0 the current fundamental value of the stock, we assume that the external agent will
agree to the transaction only as long as the price ranges within an interval

[
Qsβ, Qbβ

]
,

where also Qs, Qb are independent random variables (Fig. 1), with 0 < Qs ≤ 1 ≤ Qb,

P
[
Qb > s

]
= hb(s), P

[
Qs < s

]
= hs(s). (2.2)

To fix ideas, throughout the following we shall assume (see Fig. 1)

(H1) The tail distribution functions�b, �s are continuous, strictly decreasing,with�b(0) =
�s(0) = 1, �b(s),�s(s) → 0 as s → +∞.
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Fig. 2 Sketch of the functions Us ,Ub . We here assume β = 1

(H2) The function hb(·) is non-increasing, piecewise continuous with at most one jump at
s = 1 + δ. Similarly, the function hs(·) is non-decreasing, piecewise continuous with
at most one jump at s = 1 − δ′, for some δ, δ′ > 0. Moreover

hb(s) =
{
1 if s ≤ 1,

0 if s > 1 + δ,
hs(s) =

{
1 if s ≥ 1,

0 if s < 1 − δ′.

The arrival times of these incoming orders are assumed to be random. More precisely,
calling 0 = t0 < t1 < t2 < · · · the times when buy orders arrive, we assume that the
differences t j − t j−1 are independent random variables, with probability distribution

P
[
t j − t j−1 > s

] = e−μs . (2.3)

Similarly, calling 0 = t ′0 < t ′1 < t ′2 < · · · the times when sell orders arrive, we assume that
the differences t ′j − t ′j−1 are independent random variables, with probability distribution

P
[
t ′j − t ′j−1 > s

] = e−νs . (2.4)

At any given time, we describe a limit order book in terms of a continuous functionU (·),
as shown in Fig. 2. The following notation will be used:

• β > 0 denotes the fundamental value of the stock. This is assumed to be known by all
agents. One can think of β as the average value at which a unit amount of the stock is
traded on various platforms around the world.

• For p < β, U = Ub(p/β) is the total amount of stock that traders on the LOB bid to
buy at price ≥ p.

• For p > β, U = Us(p/β) is the total amount of stock that traders on the LOB offer to
sell at price ≤ p.

• The maximum bid price pB and the minimum ask price pA are defined as

pB = sup
{
p < β; Ub(p/β) > 0

}
, pA = inf

{
p > β; Us(p/β) > 0

}
.

(2.5)

• p+ is the highest price at which some trader offers to sell stock, while p− is the lowest
price at which some trader offers to buy stock.

• Kb, Ks is the total amount of stock that agents posting orders on the LOB offer to buy
or sell, respectively,
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Fig. 3 Apossible shape of the limit order book,whereφ is the density function at Eqs. (2.7)–(2.8). If the external
order has size X > 0 and is a buy order, all the stocks in the shaded region with price p ∈ [pA, p(X , Q)] as
in Eq. (2.9) will be sold. If the external order is a sell order, all the buy orders in the shaded region with price
p ∈ [p(X , Q), pB ] as in Eq. (2.10) will be executed

According to the above definitions, as shown in Fig. 2 one has

U (p/β) =

⎧
⎪⎨
⎪⎩

0 if p ∈ [pB , pA],
Kb if p ≤ p−,

Ks if p ≥ p+.

(2.6)

WhenU (·) is absolutely continuous w.r.t. Lebesgue measure, for p > β one can consider
the density φ(p) = β−1Us(p/β) of stocks posted for sale at price p. This function satisfies

p2∫

p1

φ(p) dp = Us(p2/β) −Us(p1/β), for all β < p1 < p2. (2.7)

Similarly, the density φ(p) = −β−1Ub(p/β) of the “buy" part of the LOB satisfies

p2∫

p1

φ(p) dp = Ub(p1/β) −Ub(p2/β), for all p1 < p2 < β. (2.8)

Remark 2.1 It is convenient to define the functions Ub and Us in terms of the relative price
p/β. Indeed, thanks to this choicewe obtain formulas forUb(·) andUs(·) that are independent
of the fundamental valueβ of the stock. This is particularly useful when one considersmodels
where β = β(t) varies randomly in time.

An external order of size X is executed as follows (Fig. 3).
CASE 1: A buy order in the amount Xb with maximum acceptable price Qbβ. In this case
the external buyer will take all stocks whose price ranges in the interval

[
β, p(Xb, Qb)

]
,

where

p(X , Q) = max
{
p ∈ [β, Qβ], Us(p/β) ≤ Xb

}
. (2.9)

CASE 2: A sell order in the amount Xs with maximum acceptable price Qsβ. In this case
the external seller will fulfill all the bids whose price ranges in the interval

[
p(Xb, Qb), β

]
,

where

p(X , Q) = min
{
p ∈ [Qβ, β], Ub(p/β) ≤ Xs

}
. (2.10)

In both cases it is understood that, if the sets on the right hand sides of Eqs. (2.9) or (2.10)
are empty, then no stock is bought or sold.
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To obtain a mathematically tractable problem, the following modeling assumptions will
be made.

(A1) The amount of buy or sell orders posted by each individual trader is small, compared
with the total amounts of orders Kb, Ks posted on the LOB.

(A2) At any time t ≥ 0 the LOB is in equilibrium. In other words, posting a “sell" order at
any price p ∈ [pA, p+] yields the same expected growth rate (1.1) to a trader’s wealth,
while while asking a price p /∈ [pA, p+] yields an equal or lesser profit rate. Similarly,
posting a “buy" order at price p ∈ [p−, pB ] yields the same expected growth rate
(1.1), while offering to buy stock at an price p /∈ [p−, pB ] yields an equal or lesser
profit rate.

Remark 2.2 By the analysis in Ref. [5], the assumption (A1) can be justified by taking a
suitable limit, in a model with a large number of small traders. An important consequence of
this assumption is that the expected wealth w(t) of a trader is a linear function of his initial
holdings, in cash or in stock. For this reason, it will be sufficient to analyze the case where
the trader initially holds a unit amount of cash, or a unit amount of stock.

The assumption (A2) requires some explanation. Traders make a profit by buying the asset
at a price p < β and selling it at a price p > β, similarly to a bank that buys and sells foreign
currencies. Their profit increases with the size and frequency of incoming external orders. If
a trader posts a “sell" order at a high price, he will make a larger profit from the sale, but he
will have to wait a longer time before his stock is actually sold. If a second trader asks for
a lower price, his stock will likely be sold more quickly, but the profit margin will be small.
During any given time interval [0, T ], the trader buying and selling stock at prices closer to
the fundamental value β will perform a larger number of transactions, but at each time his
profit margin will be smaller. In the end, the expected growth rate of the wealth of all traders
active on the LOB will be the same.

Because of the competition among traders, when the total amount of asset Ks, Kb posted
on the LOB is large, this will reduce the expected profit of each trader posting limit orders.
An underlying assumption of our model is that there exists a large pool of traders, who can
decide to post limit orders on the given LOB (if this yields the desired expected growth rate
of their wealth), or move away their activity to some other trading platform (if trading on the
given LOB is not sufficiently profitable).

As it will be shown by subsequent analysis, for a given γ > 0 there exist unique sizes
Kb, Ks of the “buy" and “sell" portions of the LOB that yield the expected growth rate γ for
the wealth of all active traders. In particular, the model accounts for a “liquidity reduction",
i.e. the shrinking of the total volume of bids on the LOB, as a result of high volatility of the
stock, combined with the presence of better informed external agents.

Remark 2.3 In a model with finite time horizon t ∈ [0, T ], the players’ strategies depend on
time. Indeed, every player must take into account how much time is left until the end of the
game. On the other hand, the models considered in this paper have infinite time horizon, and
the optimal strategies do not depend explicitly on time.

A key identity, which we use to determine the players’ optimal strategies, is the following.
Let any time interval [0, T ] be given. Consider a trader whose initial wealth is w(0) = w0,
and assume that at a random time t1 ∈ [0, T ] its wealth increases to w1, as a result of a first
transaction. Then, conditional to this event, according to Eq. (1.1) his expected wealth at
time T should be

E
[
w(T )

∣∣∣w(t1) = w1

]
= eγ (T−t1)w1.
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Indeed, the additional growth is due to possible further transactions taking place during the
remaining time interval [t1, T ].

This identity will be repeatedly used to derive explicit formulas for the functionU describ-
ing the shape of the LOB. It is important to observe that these formulas do not depend on the
particular choice of the time T , which is used only as a tool for the analysis.

Remark 2.4 In the literature, a common way to formulate an optimization problem for each
player in infinite time horizon is

maximize: E

⎡
⎣

+∞∫

0

e−γ ∗t w(t) dt

⎤
⎦ , (2.11)

where w(t) is the player’s wealth at time t and γ ∗ > 0 is a discount factor. To add some
novelty (and interest) to the present analysis, instead of Eq. (2.11) we shall assume that each
player strives to achieve the growth rate (1.1). We expect that similar results could also be
proved for a model based on Eq. (2.11).

3 An Asset with Constant Fundamental Value

We first study the case where the fundamental value β of the stock remains constant in time.
As it will be shown later, the same analysis applies to a stock whose random value is a
martingale.

3.1 The“sell" portion of the LOB.

Let the constantsμ, γ > 0 be given, together with the tail distribution functions�b(·), hb(·),
as in Eqs. (2.1)–(2.2).We begin by giving a precise definition ofNash equilibrium for a profile
Us(·) of the “sell" portion of the LOB. Toward this goal, call

Psell =
{
p ≥ β; the function Us(·) is not constant in any neighborhood of p/β

}

(3.1)

the set of prices at which some stock is offered for sale.
Next, fix any time T > 0. Consider a trader who initially holds a unit amount of stock,

so that at time t = 0 his wealth is w(0) = β. Assume that he puts his asset on sale at some
price p > β. Two possibilities can then occur:

(i) During the time interval [0, T ] no external “buy" order arrives. In this case, at time T the
trader’s wealth is still w(T ) = β. By Eq. (2.3) this happens with probability e−μT .

(ii) At some time t1 ≤ T a first “buy" order arrives.

• If the trader sells his unit amount of stock, his wealth increases from β to p. This
happens with probability �b

(
Us(p/β)

)
hb(p/β).

• If the trader does not sells his unit amount of stock is sold, his wealth remains equal
to β. This happens with probability 1 − �b

(
Us(p/β)

)
hb(p/β).

In both cases, during the remaining interval [t1, T ] by Eq. (1.1) the trader’s expected
wealth will increase by the factor eγ (T−t1).
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Recalling that by Eq. (2.3) the probability density of the first arrival time of a buy order is
μe−μt1 , the expected trader’s wealth at the time T is thus computed by

E(p, T ) = β · P[t1 > T
]+

T∫

0

eγ (T−t) ·
[
β + (p − β) �b

(
Us (p/β)

)
hb(p/β)

]
μe−μt dt

= βe−μT + eγ T
[
β + (p − β) �b

(
Us (p/β)

)
hb(p/β)

]
· μ

μ + γ
·
(
1 − e−(μ+γ )T

)
.

(3.2)

Again in view of Eq. (1.1), this expected wealth should be βeγ T .
A concept of Nash equilibrium for the LOB profile Us(·) can now be formulated by

requiring that

(i) For any price p ≥ β, one has E(p, T ) ≤ β eγ T .
(ii) For every price p ∈ Psell at which some bid is made, one has E(p, T ) = β eγ T .

Remarkably, the above conditions do not depend on β, T , but only on the ratio p/β. Indeed,
starting with the inequality

E(p, T ) = β e−μT + βμ

μ + γ

[
1 +

(
p

β
− 1

)
�b
(
Us(p/β)

)
hb(p/β)

] (
eγ T − e−μT )

≤ β eγ T ,

after some simplifications one obtains
(
p

β
− 1

)
�b
(
Us(p/β)

)
hb (p/β) ≤ γ

μ
. (3.3)

This leads to

Definition 3.1 Let the constants μ, γ > 0 be given, together with the tail distribution func-
tions �b(·), hb(·). We say that a profile Us(·) provides a Nash equilibrium for the “sell"
portion of the LOB if

(i) For any price p > β, the inequality (3.3) holds.
(ii) For every price p ∈ Psell at which some bid is made, (3.3) is satisfied as an equality.

To obtain a formula for the profile Us(·) of the “sell" portion of the LOB, we observe that,
by the assumption (H1), the function �b has a well defined, strictly decreasing inverse
�−1

b : ]0, 1] 	→ [0,+∞[ . Motivated by Eq. (3.3) we introduce the function

Vs(ξ)
.= �−1

b

(
γ

μ
· 1

(ξ − 1) hb(ξ)

)
. (3.4)

Here and throughout the sequel, for convenience we adopt the convention

�−1
b (z)

.= 0 if z ≥ 1. (3.5)

We then define (see Fig. 4)

Us(ξ)
.= sup

1<ζ≤ξ

Vs(ζ ). (3.6)

Theorem 3.1 Let the constantsμ, γ > 0 be given, togetherwith the tail distribution functions
�b(·), hb(·), satisfying (H1)–(H2). Then the formulas (3.4)–(3.6) yield the unique profile
Us(·) of the “sell" portion of the LOB which yields a Nash equilibrium.
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Fig. 4 The equilibrium profile of the “sell" part of the LOB, constructed at Eqs. (3.4)–(3.6)

The total amount Ks of stock put on sale on the LOB is a decreasing function of the
expected growth rate γ > 0. In particular, Ks = 0 if

γ > mb μ, mb
.= max

ξ≥1
(ξ − 1)hb(ξ). (3.7)

Proof 1.By the assumptions (H1)–(H2), the right hand side of Eq. (3.6) is a continuous, non-
negative, non-decreasing function of ξ . With the above definition we show that, if Us(p/β)

describes the amount of stock put on sale at price ≤ p, this yields a Nash equilibrium.
Indeed, if p ∈ Psell is a price at which some asset is put on sale, then the equality

Us(p/β) = Vs(p/β) must hold. By the previous analysis, the relation (3.3) is thus satisfied
as an equality.

On the other hand, for every price p > β, either Vs(p/β) is not defined, or elseUs(p/β) ≥
Vs(p/β). In both cases, the inequality (3.3) holds.

2.We now prove uniqueness. Let Ũ be another profile, that also yields a Nash equilibrium
for the “sell" portion of the LOB. As in Eq. (3.1), call

P̃ .= {p ≥ β; Ũ is not constant on a neighborhood of p/β
}
.

If Ũ (ξ1) < Us(ξ1) at some point ξ1 > β, consider the point

ξ ′
1

.= max
{
ξ ≤ ξ1; ξ ∈ Psell

}
,

as shown in Fig. 4 Then

Ũ (ξ ′
1) ≤ Ũ (ξ1) < Us(ξ1) = Us(ξ

′
1) = Vs(ξ

′
1).

Therefore, at the point ξ ′
1 one has
(
ξ ′
1 − 1

)
�b
(
Ũs(ξ

′
1)
)
hb
(
ξ ′
1

)
>

γ

μ
.

This contradicts part (i) of Definition 3.1, showing that Ũ does not yield a Nash equilibrium.
On the other hand, if Ũ (ξ2) > Us(ξ2) at some point ξ2 > β, consider the point

ξ ′
2

.= max
{
ξ ≤ ξ2; ξ ∈ P̃},

as shown in Fig. 4. Then

Ũ (ξ ′
2) = Ũ (ξ2) > Us(ξ2) ≥ Vs(ξ

′
2).

Therefore, at the point ξ ′
2 ∈ P̃ one has

(
ξ ′
2 − 1

)
�b
(
Ũs(ξ

′
2)
)
hb(ξ

′
2) >

γ

μ
.
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This contradicts part (ii) of Definition 3.1, showing that Ũ does not yield a Nash equilibrium.
3. Since �b, �

−1
b are strictly decreasing, the fact that Vs,Us are decreasing functions of

γ follows immediately from the definitions (3.4)–(3.6). In particular

Ks = sup
p>β

Us(p/β) = sup
p>β

Vs(p/β)

is a non-increasing function of γ . 
�
Remark 3.1 In the special case where the maximum acceptable price is deterministic:

hb(s) =
{
1 if s ≤ 1 + δ,

0 if s > 1 + δ,
(3.8)

The formula (3.6) reduces to

Us(p/β) = �−1
b

(
γβ

μ(p − β)

)
, 1 <

p

β
≤ 1 + δ. (3.9)

3.2 The“buy" portion of the LOB.

To analyze the “buy" portion of the LOB, consider a trader who initially holds a unit amount
of cash, and offers to buy stock at price p < β. Fix any time interval [0, T ] and call t ′1 > 0 the
first random time when an external sell order arrives. Recalling (2.4), by the same arguments
used at Eq. (3.2), the expected wealth of this trader at time T is computed by

E
[
w(t)

] = P
[
t ′1 > T

]+
∫ T

0
eγ (T−t ′1) ·

[
1 +

(β

p
− 1

)
�s
(
Ub(p/β)

)
hs(p/β)

]
νe−νt ′1 dt ′1

= e−νT + eγ T
[
1 +

(β

p
− 1

)
�s
(
Ub(p/β)

)
hs(p/β)

]
· ν

ν + γ

(
1 − e−(ν+γ )T

)
.

(3.10)

By Eq. (1.1), this expected value should be eγ T . Calling

Pbuy =
{
p ≤ β; the function Ub(·) is not constant in any neighborhood of p/β

}

(3.11)

the set of prices at which the traders bid to buy stock, by Eq. (3.10) we are led to

Definition 3.2 Let the constantsν, γ > 0begiven, togetherwith the tail distribution functions
�s(·), hs(·). We say that a profile Ub(·) provides a Nash equilibrium for the “buy" portion
of the LOB if

(i) For any price p < β, one has the inequality
(

β

p
− 1

)
· �s

(
Ub(p/β)

) · hs (p/β) ≤ γ

ν
. (3.12)

(ii) For every price p ∈ Pbuy at which some bid is made, Eq. (3.12) is satisfied as an equality.

Retracing the steps in the proof of Theorem 3.1, the “buy" portion Ub(·) of the LOB can
be obtained by setting

Vb(ξ)
.= �−1

s

(
γ

ν
· 1

(ξ − 1) hs(ξ)

)
, (3.13)
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Ub(ξ)
.= sup

ξ≤ζ<1
Vb(ζ ). (3.14)

Here we are again adopting the convention �−1
s (z)

.= 0 for z ≥ 1.

4 An Asset with Fundamental ValueModeled by a Jump Process

In this section we assume that the fundamental value β(t) of the stock is piecewise constant
in time, and jumps at random times 0 < τ1 < τ2 < · · · These times will be modeled by a
Poisson arrival process with rate λ, namely

P
[
τ j − τ j−1 > s

] = e−λs . (4.1)

Setting

β(t) = β j for t ∈ [τ j , τ j+1[, (4.2)

We assume that, at the jump times τ j , the ratios

Z j
.= β j

β j−1
> 0 (4.3)

are independent, identically distributed random variables, with expected value

E[Z ] = η > 0, (4.4)

and tail distribution

P
[
Z ≥ s

] = (s), (4.5)

For some nonincreasing function (·). We assume that, when the fundamental value β(t)
jumps, this immediately becomes common knowledge to all agents. Both portions of the
LOB will thus retain the same shape as before, will all prices being multiplied by the same
ratio Z .

To analyze the “sell" portion of the LOB, we consider the times 0 < t1 < t2 < · · · where
either one of the two following cases occurs:

(i) An external buy order arrives.
(ii) The fundamental value of the stock has a jump.

Since these two events are independent, and occur with frequency μ, λ, respectively, we
now have

P
[
tk − tk−1 ≥ s

] = e−(μ+λ)s . (4.6)

To obtain the profile Us(·) of the “sell" part of the LOB, we argue as in the previous section.
Fix a time interval [0, T ] and consider a trader who initially holds a unit amount of stock,
with fundamental value β0, and puts it on sale at price p > β0. Since his initial wealth is
w(0) = β0, at time T , the expected value of his holdings should be E

[
w(T )

] = eγ Tβ0.
At the first time t1 when either (i) or (ii) occurs, two alternatives can happen:

(1) The value of the stock jumps from β0 to a random value β1. This happens with probability
λ

μ+λ
. In this case, by Eqs. (4.3)–(4.4) at time t1 the expected wealth of the trader is

E
[
w(t1)] = E[β1] = ηβ0 .
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(2) An external “buy" order arrives. This happens with probability μ
μ+λ

. In this case, taking
into account the probability that the trader does or does not sell his asset, as in Eq. (3.2)
we find

E
[
w(t1)] = β0 + (p − β0)�b

(
Us(p/β0)

)
hb(p/β0). (4.7)

In both cases, during the remaining time interval [t1, T ] the expected wealth of the trader
should increase by the factor e(T−t1)γ .

Recalling that by Eq. (4.6) the probability density of the random time t1 is (μ+λ)e−(μ+λ)t ,
combining the above formulas we obtain

E
[
w(T )

] = β0eγ T

= β0 · P[t1 > T
]+

∫ T

0
eγ (T−t) · (μ + λ)e−(μ+λ)t dt

×
{

λ

μ + λ
ηβ0 + μ

μ + λ

[
β0 + (p − β0) · �b

(
Us(p/β0)

)
hb(p/β0)

]}

= β0e
−(μ+λ)T + β0

μ + λ

μ + λ + γ

(
eγ T − e−(μ+λ)T

)

×
{

λη

μ + λ
+ μ

μ + λ

[
1 +

( p

β0
− 1

)
· �b

(
Us(p/β0)

)
hb(p/β0)

]}
.

(4.8)

After some simplifications one obtains

1 +
(

p

β0
− 1

)
�b
(
Us(p/β0)

)
hb(p/β0) = μ + λ(1 − η) + γ

μ
. (4.9)

We thus say that the profileUs(·)of the “sell" portion of theLOBprovides aNashequilibrium
if the conditions (i)–(ii) in Definition 3.1 hold, with Eq. (3.3) replaced by

1 +
(
p

β
− 1

)
�b
(
Us(p/β)

)
hb(p/β) ≤ μ + λ(1 − η) + γ

μ
. (4.10)

Notice that, if λ = 0 or η = 1, this formula reduces to Eq. (3.3).
Concerning the “buy" portion of the LOB, we observe that a change in the fundamental

value β(t) of the stock does not affect the wealth of a trader posting “buy" orders, who does
not own that stock. Therefore, Definition 3.2 remains unchanged also in the case a stock with
variable fundamental value.

The same arguments used in the proof of Theorem 3.1 now yield:

Proposition 4.1 Assume that the fundamental value β(t) of the stock has random jumps as
in Eqs. (4.1)–(4.4), with (η − 1)λ < γ .

(i) The “sell" portion of the LOB is described by Eq. (3.6), where the function Vs is now
defined by

Vs(ξ) = �−1
b

(
γ + (1 − η)λ

μ
· 1

(ξ − 1) hb(ξ)

)
, (4.11)

(ii) The “buy" portion of the LOB is still described by the formulas (3.13)–(3.14).
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Remark 4.1 If the jump process describing the fundamental value of the stock is a martingale,
i.e., if η = 1, then the formula (4.11) reduces to Eq. (3.4).

On the other hand, when η > 1 the right hand side of Eq. (4.11) becomes smaller. In this
case the profile of the “sell" portion of the LOB is the same as in the case of a stock with
constant fundamental value, but where the traders expect the smaller growth rate

γ ′ .= γ + (1 − η)λ < γ.

This can be explained by observing that, if η > 1, traders alreadymake some profit by simply
holding the stock. To achieve the growth rate γ , a smaller additional profit from their trading
activity is required.

We also remark that, if (η − 1)λ ≥ γ , then the agents can achieve a growth rate ≥ γ

of their wealth simply by holding the stock and watching its value increase. In this case the
Eq. (4.11) is not meaningful.

5 AModel with Informed External Agents

The model at Eqs. (4.1)–(4.5) with random jumps in the fundamental value of the stock
becomes more interesting if we include the possibility that an external agent gets hold of the
information before any of the traders has time to react and change the prices posted on the
LOB. As a consequence, at the jump time τ j one has:

• If the fundamental value of the stock increases, i.e. β j > β j−1, then all assets that traders
offered to sell at a price < β j are immediately bought.

• If the value decreases, i.e. β j < β j−1, then all of the assets that the traders offered to buy
at a price > β j are immediately sold.

To simplify the analysis, in the remainder of the paper we shall assume that the maximum
and minimum acceptable prices are deterministic. That means:

hb(s) =
{
1 if s ≤ 1 + δ,

0 if s > 1 + δ,
hs(s) =

{
1 if s ≥ 1 − δ′,
0 if s < 1 − δ′.

(5.1)

Similar results can be proved in the general case, at the price of more lengthy formulas.
Starting with the model at Eqs. (4.1)–(4.5) we assume that, at each time when a jump

occurs, with positive probability ε > 0 an external agent gets hold of the information in
advance. To understand how this new scenario affects the “sell" portion of the LOB, we
consider the random times 0 < t1 < t2 < · · · , where either a buy order arrives, or else the
fundamental value of the stock has a jump. As before, the time increments tk − tk−1 between
one event and the next are i.i.d. exponential random variables, with tail distribution (4.6).

To analyze the LOB profile, fix a time interval [0, T ] and consider a trader who initially
holds a unit amount of stock, and puts it on sale at some price p > β0. His initial wealth is
w(0) = β(0) = β0.

At the first random time t1, three possibilities can now occur:

(1) a buy order arrives.
(2) the fundamental value β of the stock has a jump, and nothing else happens,
(3) β has a jump, and an informed external agent wipes out one side of the LOB,

The corresponding probabilities are

θ1 = μ

μ + λ
, θ2 = (1 − ε)λ

μ + λ
, θ3 = ελ

μ + λ
. (5.2)
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If the first alternative holds, then at time t1 by Eqs. (4.7) and (5.1), the expected wealth
of a trader posting a sell order at price p is computed by

E
[
w(t1)

] = β0 + (p − η0)�b

(
Us(p/β0)

)
. (5.3)

If the second alternative holds, at time t1 the expected wealth is computed by

E
[
w(t1)

] = E[β1] = ηβ0. (5.4)

If the third alternative holds, recalling (4.5) the expected wealth of a trader posting a sell
order at price p is computed by

E
[
w(t1)

] = E
[
min{p, β1}

]
= (p/β0) p − β0

p/β0∫

0

s d(s). (5.5)

In all cases, during the remaining time interval [t1, T ] the expectedwealth of the trader should
increase by the factor e(T−t1)γ . Here and throughout the following, one should be reminded
that the tail distribution function  is decreasing, hence −d(s) yields a positive measure.

In this more general setting, accounting for the possible presence of better informed
external agents, in view of Eqs. (5.3)–(5.5) the formula (4.8) is replaced by

E
[
w(T )

] = β0eγ T

= β0 · P[t1 > T
]+

T∫

0

eγ (T−t1) · (μ + λ)e−(μ+λ)t1 dt1

×
{

μ

μ + λ

[
β0 + (p − β0) · �b

(
Us(p/β0)

)]+ λ(1 − ε)

μ + λ
ηβ0

+ λε

μ + λ

⎡
⎣(p/β0) p − β0

p/β0∫

0

s d(s)

⎤
⎦
}

= β0e
−(μ+λ)T + β0

μ + λ

μ + λ + γ

(
eγ T − e−(μ+λ)T

)

×
{

μ

μ + λ

[
1 +

( p

β0
− 1

)
· �b

(
Us(p/β0)

)]+ λ(1 − ε)η

μ + λ

+ λε

μ + λ

[
(p/β0)

p

β0
−
∫ p/β0

0
s d(s)

]}
.

(5.6)

After some simplifications one obtains

μ

[
1 +

(
p

β0
− 1

)
�b
(
Us(p/β0)

)]+ λ(1 − ε)η + λε

⎡
⎣(p/β0)

p

β0
−

p/β0∫

0

s d(s)

⎤
⎦

= μ + λ + γ.

(5.7)
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Notice that Eq. (5.7) reduces to Eq. (4.9) when ε = 0. Using the identity

− λεη + λε

⎡
⎣(p/β0)

p

β0
−

p/β0∫

0

s d(s)

⎤
⎦ = λε

+∞∫

p/β0

(
s − p

β0

)
d(s) < 0,

(5.8)

by the earlier analysis, from Eq. (5.7) one obtains:

Proposition 5.1 In the above setting, if at each time of jump an informed external agent is
present with probability ε ≥ 0, the “sell" portion of the LOB is described by

Us(p/β) = �−1
b

⎛
⎜⎝ β

p − β
·
⎡
⎢⎣γ + (1 − η)λ

μ
− λε

μ

+∞∫

p/β

(
s − p

β

)
d(s)

⎤
⎥⎦

⎞
⎟⎠ . (5.9)

Note that we are always using the convention (3.5). We observe that here the argument of
�−1

b is a non-increasing function of p. Hence Us(·) is non-decreasing.
Remark 5.1 We recall that the tail distribution function (·) introduced at Eq. (4.5) is non-
increasing. Therefore, the right hand side of Eq. (5.9) is an increasing function of ε. Since
�b, �

−1
b are strictly decreasing, this implies that, if a larger number of informed external

agents are present, the total amount of assets offered for sale on the LOB will decrease.
In the special case where the value of the stock is a martingale, i.e. η = E[Z ] = 1, the

above formula reduces to

Us(p/β) = �−1
b

⎛
⎜⎝ β

p − β
·
⎡
⎢⎣γ

μ
− λε

μ

+∞∫

p/β

(
s − p

β

)
d(s)

⎤
⎥⎦

⎞
⎟⎠ . (5.10)

For ε > 0 fixed, the argument of �−1
b (·) on the right hand side of Eq. (5.10) is an increasing

function of λ. This formula shows how the total amount of stock offered for sale on the LOB
decreases, as the volatility of the stock becomes larger.

An entirely similar formula can be obtained for the “buy" portionUb(·) of the LOB. As in
Eq. (2.4), let ν be the rate at which external “sell" orders arrive, and call β0 the initial value
of the stock. Consider the random times 0 < t ′1 < t ′2 < · · · , where either a sell order arrives,
or else the fundamental value of the stock has a jump.

To analyze the LOB profile, fix a time interval [0, T ] and consider a trader who initially
holds a unit amount of cash, and offers to buy stock at some price p < β0. His initial wealth
is thus w(0) = 1.

At the first random time t ′1, three mutually exclusive possibilities can now occur:

(1) a sell order arrives.
(2) the fundamental value β of the stock has a jump, and nothing else happens,
(3) β has a jump, and an informed external agent wipes out one side of the LOB,

The corresponding probabilities are

θ1 = ν

ν + λ
, θ2 = (1 − ε)λ

ν + λ
, θ3 = λε

ν + λ
. (5.11)
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If the first alternative holds and the trader posted a buy order at price p < β0, then at time
t ′1 his expected wealth is

E
[
w(t ′1)

] = 1 +
(

β0

p
− 1

)
�s

(
Ub(p/β0)

)
. (5.12)

If the second alternative holds, then at time t ′1 the expected wealth of a trader holding cash
does not change:

E
[
w(t ′1)

] = 1. (5.13)

If the third alternative holds and the trader posted a buy order at price p ∈ [
(1−δ′)β0, β0

[
,

at time t ′1 his expected wealth is

E
[
w(t ′1)

] = E

[
min

{β1

p
, 1
}]

= (p/β0) −
p/β0∫

0

s d(s)

≤ (p/β0) + p

β0

[
1 − (p/β0)

] ≤ 1.

(5.14)

In view of Eqs. (5.12)–(5.14), the same arguments used at Eq. (5.6) now yield

E
[
w(T )

] = eγ T

= P
[
t ′1 > T

]+
T∫

0

eγ (T−t) · (ν + λ)e−(ν+λ)t dt

×
{

ν

ν + λ

[
1 +

(β0

p
− 1

)
· �s

(
Ub(p/β0)

)]

+ (1 − ε)λ

ν + λ
+ λε

ν + λ
·
⎡
⎣(p/β0) −

p/β0∫

0

s d(s)

⎤
⎦
}

= e−(ν+λ)T + 1

ν + λ + γ

(
eγ T − e−(ν+λ)T

)

×
{
ν
[
1 +

(β0

p
− 1

)
· �s

(
Ub(p/β0)

)]

+(1 − ε)λ + λε

⎡
⎣(p/β0) −

p/β0∫

0

s d(s)

⎤
⎦
}
. (5.15)

After the usual simplifications, one obtains

ν
[
1 +

(β0

p
− 1

)
· �s

(
Ub(p/β0)

)]+ (1 − ε)λ + λε

⎡
⎣(p/β0) −

p/β0∫

0

s d(s)

⎤
⎦

= ν + λ + γ.
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and hence

Ub(p/β) = �−1
s

⎛
⎝ p

β − p
·
⎡
⎣γ

ν
+ λε

ν

⎛
⎝1 − (p/β) +

p/β∫

0

s d(s)

⎞
⎠
⎤
⎦
⎞
⎠ . (5.16)

By the inequality in Eq. (5.14), the argument of �−1
s (·) on the right hand side of Eq. (5.16)

increases with λε. In particular, for a fixed ε > 0, since�−1
s is a strictly decreasing function,

this shows how the total amount of stock that traders bid to buy on the LOB decreases as the
volatility of the stock grows.

6 Fast and Slow Traders

A key modeling assumption that we have used so far is that agents posting limit orders are
indistinguishable from each other. They all share the same information, and expect that their
trading activity will produce the same growth rate γ in their wealth.

In this last section we analyze a model including different types of agents. Namely: “fast
traders", who can instantly access information about the change in the fundamental value
of the stock and react accordingly, and “slow traders", whose bids may be wiped out by
better informed external agents, at times where the fundamental value of the stock jumps, as
described in Sect. 5.

This entire section will be focused on the “sell" portion of the LOB, since the analysis
of the “buy" portion is similar. We will show that bids from both fast and slow traders can
coexist, but only if the two groups have different expectations on the growth rate of their
wealth. As before, to simplify the analysis we shall assume deterministic acceptable prices
(5.1).

Call β = β(t) the current value of the stock. At the first time τ > t when the value of
the stock has a jump, assume that a better informed external agent shows up with probability
ε > 0. The expected wealth of a trader initially holding a unit amount of stock, and posting
a “sell" order at price p > β will be

⎧⎨
⎩

β · E[Z ] for a fast trader,

(1 − ε)β E[Z ] + βεE
[
min{p/β, Z}

]
for a slow trader.

Similarly, the expected wealth of a trader initially holding a unit amount of cash, and posting
a “buy" order at price p < β will be

⎧
⎨
⎩

1 for a fast trader,

(1 − ε) + εE
[
min{p/β, Z}

]
for a slow trader.

In the following, we call

⎧⎪⎨
⎪⎩

U f ast (s) = amount of stock posted for sale by fast traders at price p ≤ βs,

Uslow(s) = amount of stock posted for sale by slow traders at price p ≤ βs,

U (s) = U f ast (s) +Uslow(s) = total amount of stock posted for sale at price p ≤ βs.

(6.1)
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Before we proceed with the analysis, a convenient definition of “Nash equilibrium" must be
given. Call

P f ast =
{
p ∈ IR; the function U f ast (·) is not constant in any neighborhood of p/β

}
,

(6.2)

Pslow =
{
p ∈ IR; the function Uslow(·) is not constant in any neighborhood of p/β

}
,

(6.3)

respectively the set of prices at which fast traders or slow traders offer to sell their stock. In
view of Eqs. (4.10) and (5.7)–(5.8) we now introduce

Definition 6.1 Let the constants μ, ε > 0 and γ ′ < γ be given, together with the tail
distribution functions �b(·), hb(·), and (·). We say that the two functions U f ast , Uslow

yield a Nash equilibrium for the “sell" portion of the LOB if, setting U = U f ast + Uslow,
the following holds.

(i) For any price p ∈ ]
β, (1 + δ)β

]
, one has the inequality

(
p

β
− 1

)
�b
(
U (p/β)

) ≤ γ + (1 − η)λ

μ
. (6.4)

(ii) For every price p ∈ P f ast , Eq. (6.4) is satisfied as an equality.
(iii) For any price p ∈ ]

β, (1 + δ)β
]
, one has the inequality

(
p

β
− 1

)
�b
(
U (p/β)

)+ λε

μ

∫ +∞

p/β

(
s − p

β

)
d(s) ≤ γ ′ + (1 − η)λ

μ
. (6.5)

(iv) For every price p ∈ Pslow , Eq. (6.5) is satisfied as an equality.

Remark 6.1 According to (i)–(ii), fast traders can achieve a growth of their expected wealth
at rate γ by posting “sell" orders at any price p ∈ P f ast , but not higher than γ by posting
bids at any other price. According to (iii)-(iv), slow traders can achieve a growth of their
expected wealth at rate γ ′ by posting “sell" orders at any price p ∈ Pslow , but not higher
than γ ′ by posting bids at any other price.

We recall that, if only “fast" traders with expected growth rate γ were present, then by
the analysis in Sect. 4 for p ≤ (1 + δ)β the profile of the LOB would be described by

UF (p/β)
.= �−1

b

(
β

p − β
· γ + (1 − η)λ

μ

)
. (6.6)

On the other hand, if only “slow" traders with expected growth rate γ ′ were present, then by
the analysis in Sect. 5 for p ≤ (1 + δ)β, the profile of the LOB would be given by

US(p/β)
.= �−1

b

⎛
⎜⎝ β

p − β
·
⎡
⎢⎣γ ′ + (1 − η)λ

μ
− λε

μ

+∞∫

p/β

(
s − p

β

)
d(s)

⎤
⎥⎦

⎞
⎟⎠ . (6.7)

The general situation, where both groups of traders can be present, is now described (Fig. 5).

Theorem 6.1 In the above setting, for any ε > 0 and 0 < γ ′ < γ , there exists a price p̂ ≥ β

and a Nash equilibrium provided by continuous functions U f ast , Uslow such that
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Fig. 5 In the “sell" portion of the LOB, fast traders post their bids only at prices p ∈ [β, p̂]. Slow traders post
their bids only at prices p ∈ ]

p̂, (1 + δ)β
]

• Fast traders post “sell" orders at prices p ∈ P f ast ⊆ [β, p̂]
• Slow traders post “sell" orders at prices p ∈ Pslow ⊆ [

p̂, β(1 + δ)
]
.

More precisely, one has

U f ast (p/β) =
{
UF (p/β) for β ≤ p ≤ p̂,

UF ( p̂/β) for p ≥ p̂,
(6.8)

Uslow(p/β) =
{
0 for p ≤ p̂,

US(p/β) −US( p̂/β) for p ≥ p̂,
(6.9)

U (p/β) = max
{
UF (p/β) , US(p/β)

}
. (6.10)

The two continuous functions U f ast and Uslow are uniquely determined by the require-
ments (i)–(iv) in Definition 6.1.

Proof 1.We begin by determining a suitable price p̂ and constructing a Nash equilibrium in
the form (6.8)–(6.9). Solving the equation

UF ( p̂/β) = US( p̂/β),

by Eqs. (6.6)–(6.7) one is led to

γ − γ ′ = − λε

+∞∫

p̂/β

(
s − p̂

β

)
d(s). (6.11)

We observe that the function

g(ξ)
.= − λε

+∞∫

ξ

(s − ξ) d(s) (6.12)

is continuous and non-increasing. Indeed, for any ξ < ξ ′ one has

g(ξ) − g(ξ ′) = λε

ξ ′∫

ξ

(s − ξ)
(−d(s)

)+ λε

+∞∫

ξ ′
(ξ ′ − ξ)

(−d(s)
) ≥ 0.

Moreover, the right hand side approaches zero as ξ ′ → ξ .
2. Three possible alternatives must be considered.
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CASE 1: g(1 + δ) < γ − γ ′ < g(1). In this case, by continuity there exists a price
p̂ ∈ ]

β, (1 + δ)β
[
such that g( p̂/β) = γ − γ ′.

We claim that the definitions (6.8)–(6.9) yield a LOB profile in Nash equilibrium. Indeed,
since the function g(·) at Eq. (6.12) is non-increasing, it follows

⎧
⎪⎨
⎪⎩

UF (s) ≥ US(s) if s ≤ p̂/β,

UF (s) = US(s) if s = p̂/β,

UF (s) ≤ US(s) if s ≥ p̂/β.

(6.13)

Consider first a fast trader who puts his asset on sale at some price p ≤ p̂. By Eqs. (6.8)
and (6.10), for p ≤ p̂ we have

U f ast (p/β) = UF (p/β) = U (p/β).

Hence by Eq. (6.6) this will yield an expected growth rate γ of his wealth. On the other hand,
if he were to put assets on sale at some price p > p̂, since now U (p/β) = US(p/β) ≥
UF (p/β), his expected growth rate cannot be larger than γ .

Next, consider a slow trader who puts his asset on sale at some price p ≥ p̂. By Eqs. (6.9)
and (6.10), for p ≥ p̂ we have

Uslow(p/β) = US(p/β) = U (p/β).

Hence by Eq. (6.7) this will yield an expected growth rate γ ′ of his wealth. On the other hand,
if he were to put assets on sale at some price p < p̂, since now U (p/β) = UF (p/β) ≥
US(p/β), his expected growth rate cannot be larger than γ ′.

CASE 2: g(1 + δ) ≥ γ − γ ′. In this case we have UF (s) ≥ US(s) for all s ∈ [1, 1 + δ].
The Nash equilibrium solution is obtained by setting p̂ = β(1 + δ), and hence

U f ast (p/β) = UF (p/β), Uslow(p/β) = 0, for all p > β. (6.14)

Notice that in this case all slow traders are squeezed out from the LOB, because their profit
is curtailed by (i) the competition of fast traders and (ii) the losses due to stock volatility
combined with the presence of better informed agents.

The fact that Eq. (6.14) yields a Nash equilibrium follows immediately from

U f ast ((p/β) = UF (β/p) = U (p/β) ≥ US(p/β) for all p ≥ β.

Indeed, by the analysis in Sect. 4, UF (·) yields an equilibrium profile when only fast traders
are present.

CASE 3: g(1) ≤ γ − γ ′. In this case we have US(s) ≥ UF (s) for all s ∈ [1, 1 + δ]. The
Nash equilibrium solution is obtained by setting p̂ = β, and hence

Uslow(p/β) = US(p/β), U f ast (p/β) = 0, for all p > β. (6.15)

Notice that in this case all fast traders are squeezed out from theLOB, because the competition
with slow traders does not allow them to achieve the high growth rate that they expect.

The fact that Eq. (6.15) yields a Nash equilibrium now follows from

Uslow((p/β) = US(β/p) = U (p/β) ≥ UF (p/β) for all p ≥ β.

Indeed, by the analysis in Sect. 5,US(·) yields an equilibrium profile when only slow traders
are present.

3. It remains to show that the Nash equilibrium is unique. Assume that Ũ f ast , Ũ slow

yield a Nash equilibrium where all fast traders achieve a growth rate γ and all slow traders
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achieve a growth rate γ ′. We claim that this equilibrium profile is the same as the one at Eqs.
(6.8)–(6.9) constructed in the previous steps.

As in Eqs. (6.2)–(6.3), call P̃ f ast and P̃slow the corresponding sets of prices at which fast
and slow traders put stock on sale, respectively. Moreover, set

Ũ (s)
.= Ũ f ast (s) + Ũ slow(s).

According to Definition 6.1, one must have:
{
UF (s) = Ũ (s) if sβ ∈ P̃ f ast

U F (s) ≤ Ũ (s) for all s ∈ [1, 1 + δ], (6.16)

{
US(s) = Ũ (s) if sβ ∈ P̃slow

UF (s) ≤ Ũ (s) for all s ∈ [1, 1 + δ], (6.17)

This already implies

Ũ (s) ≥ max
{
UF (s), US(s)

}
for all s ∈ [1, 1 + δ],

To prove the converse inequality, assume that there exists s̄ such that

Ũ (s̄) > max
{
UF (s̄), US(s̄)

}
.

This trivially implies Ũ (s̄) > 0. Consider the point

s∗ .= min
{
s ≤ s̄; Ũ (s∗) = Ũ (s̄)

}
.

Since Ũ is not constant on any neighborhood of s∗, this implies that either s∗ ∈ P̃ f ast or
s∗ ∈ P̃slow. Observing that

max
{
UF (s∗), US(s∗)

} ≤ max
{
UF (s̄), US(s̄)

}
< Ũ (s̄) = Ũ (s∗),

in both cases we are led to a contradiction.
4. The previous step has shown that

(1) For all s ∈ [1, 1 + δ] one has
Ũ f ast (s) + Ũ slow(s) = max

{
UF (s), UG(s)

}
. (6.18)

(2) Fast traders post their bids only at prices p where UF (p/β) ≥ US(p/β), while slow
traders post their bids only at prices where US(p/β) ≥ UF (p/β).

It remains to show that the above conditions (1)–(2) completely determine the functions
Ũ f ast , Ũ slow. This will be the case if the set

�
.= {

s ∈ [1, 1 + δ]; UF (s) = US(s) > 0
}

(6.19)

contains at most one point.
Assume that, on the contrary, ξ1, ξ2 ∈ �, with ξ1 < ξ2. By step 1 this implies g(ξ1) =

g(ξ2) = γ − γ ′. Since the function g is non-increasing, it follows

γ − γ ′ = g(ξ) = − λε

+∞∫

ξ

(s − ξ) d(s) for all ξ ∈ [ξ1, ξ2]. (6.20)

This leads to a contradiction, because the right hand side can be constant only if (s) = 0
for all s > ξ1. But in this case the right hand side would be zero, while the left hand side is
strictly positive. This completes the proof of uniqueness. 
�
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7 Examples

Example 1 Consider a stock whose fundamental value β remains constant. The computation
of the LOB profile is particularly simple in the case where the random size of incoming “buy"
orders has a negative exponential tail distribution, and the acceptable prices are deterministic:

�b(s) = e−κs, hb(s) =
{
1 if s ≤ 1 + δ,

0 if s > 1 + δ.
(7.1)

In this case, the “sell" portion of the LOB satisfies

e−κUs (p/β) = γβ

μ(p − β)
.

As in Eq. (3.9), we thus obtain

Us(p/β) = 1

κ
ln

(
μ

γ

( p

β
− 1

))
for p ∈ [

pA, (1 + δ)β
]
. (7.2)

Here pA is the price at which the right hand side in Eq. (7.2) vanishes:

γ

μ

(
pA
β

− 1

)
= 1, pA

.=
(
1 + γ

μ

)
β. (7.3)

The total amount of stock put on sale is

Ks = Us(1 + δ) = 1

κ
ln

(
μδ

γ

)
.

It is clear that, as the rate γ of expected growth increases, theminimumask price pA increases,
while the total volume Ks of stock posted for sale on the LOB decreases. If γ ≥ μδ, then
Ks = 0.

Example 2 Let �b, hb be as in Eq. (7.1), but now assume that the fundamental value β(t)
is subject to random jumps, as in Eqs. (4.1)–(4.4). According to Remark 4.1, the profile
�s(·) of the “sell" portion of the LOB will be the same as in the case where β(t) is constant,
replacing the expected growth rate γ with γ ′ = γ + (1 − η)λ.

Example 3 Let�b, hb be again as in Eq. (7.1), and let the fundamental value β(t) of the stock
be a jump process, with jumps occurring at random times τ j as in Eq. (4.1). At each time τ j ,
we now assume that the random variable Z = β j/β j−1 describing the jump can take two
only values: Z+, Z−, with probability θ and 1 − θ respectively. This implies

η = E[Z ] = θ Z+ + (1 − θ)Z−.

In the following we also assume

Z− < 1 < 1 + δ < Z+. (7.4)

Notice that, by the last inequality, if an external informed agent can anticipate an upward
jump in the stock value, then the entire “sell" portion of the LOB will be wiped out. In
particular, Eq. (7.4) implies that on [1+ δ, +∞[ the tail distribution function  has a single
downward jump of size θ . Hence the Stiltjes integral is computed by

−
+∞∫

p/β

(
s − p

β

)
d(s) = θ

(
Z+ − p

β

)
, whenever 1 ≤ p

β
≤ 1 + δ.
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In the present setting we obtain

e−κUs (p/β) =
{

γ + (1 − η)λ

μ
+ λε

μ
θ

(
Z+ − p

β

)}
·
(
p

β
− 1

)−1

.

As in Eq. (5.9), this yields

Us(p/β) = 1

κ

{
ln

(
p

β
− 1

)

− ln

[
γ + (1 − η)λ

μ
+ λε

μ
θ
(
Z+ − p

β

)]}
for p ∈ [

pA, (1 + δ)β
]
. (7.5)

Here pA is the value at which the right hand side of Eq. (7.5) vanishes. An elementary
computation yields

pA = γ + (1 − η)λ + λεθ Z+ + μ

λεθ + μ
,

∂

∂ε
pA = λθ

λεθ + μ
(Z+ − pA) > 0.

This shows that the minimum ask price increases with ε, to compensate for the higher risk.
Setting p = (1 + δ)β, one computes the total amount of assets put on sale on the LOB:

Ks = Us(1 + δ) = 1

κ

{
ln δ + lnμ − ln

[
γ + (1 − η)λ + λεθ(Z+ − 1 − δ)

]}
(7.6)

As expected, this is a decreasing function of ε. Indeed, the higher is the risk for a trader to
lose part of his wealth to a better informed external agent, the smaller will be the number of
traders posting “sell" orders on the LOB.

In the special case where the jump process is a martingale, the above formula reduces to

Ks = 1

κ

{
ln δ + lnμ − ln

[
γ + λεθ(Z+ − 1 − δ)

]}
. (7.7)

By Eq. (7.7) we see that, for any fixed ε > 0, the size Ks of the LOB shrinks as the volatility of
the stock (measured by the frequency λ of the jumps) increases. When the volatility reaches
a value such that

λεθ (Z+ − 1 − δ) ≥ δμ − γ,

posting limit orders becomes too risky, and no trader can remain active on the LOB.

Example 4 Consider again the situation described in Example 3, assuming that the jump
process is a martingale, so that η = E[Z ] = 1. Assume that two groups of traders, slow
and fast, are present, with expected growth rates 0 < γ ′ < γ respectively. By Eq. (7.5), the
shape of a LOB with only slow traders would be

US(p/β) = 1

κ

{
ln

(
p

β
− 1

)
− ln

[
γ ′

μ
+ λε

μ
θ
(
Z+ − p

β

)]}
(7.8)

On the other hand, by Eq. (7.2) the shape of a LOB with only slow traders would be

UF (p/β) = 1

κ

{
ln
( p

β
− 1

)
− ln

(
γ

μ

)}
. (7.9)
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Solving the equation US(ξ) = UF (ξ) for ξ ∈ [1, 1 + δ], we are led to

λεθ(Z+ − ξ) = γ − γ ′. (7.10)

Three cases must be considered:
CASE 1: λε θ

(
Z+ − 1 − δ

) ≥ γ − γ ′.
In this caseUF (ξ) ≥ US(ξ) for all ξ ∈ [1, 1+δ], hence the equilibrium solution is given

by U f ast = UF while Uslow ≡ 0. This is the case where slow traders are pushed out from
the LOB because the risk of losses, due to high volatility and the presence of better informed
agents, is too high.

CASE 2: λε θ
(
Z+ − 1

) ≤ γ − γ ′.
In this caseUS(ξ) ≥ UF (ξ) for all ξ ∈ [1, 1+δ], hence the equilibrium solution is given

by Uslow = US while U f ast ≡ 0. This is the case where fast traders are pushed out from
the LOB, because the competition with slow traders does not allow them to achieve the high
growth rate they expect.

CASE 3: λε θ
(
Z+ − 1 − δ

)
< γ − γ ′ < λε θ

(
Z+ − 1

)
.

In this case the Eq. (7.10) has a solution ξ̂ ∈ ]1, 1 + δ[ . We thus have UF (ξ) ≥ US(ξ)

for ξ ≤ ξ̂ and US(ξ) ≥ UF (ξ) for ξ ≥ ξ̂ . The Nash equilibrium solution is given by Eqs.
(6.8)–(6.9), with p̂ = βξ̂ .

This is the case where both fast and slow traders can be present on the LOB. As the risk
factor λε increases, so does ξ̂ . As a consequence, the amount of fast traders increases while
slow traders decrease.
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