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Abstract
Matrix games under time constraints represent a natural extension of conventional matrix
games. They take into account the additional factor that, apart from the payoff, a pairwise
interaction results in a delay for the contestants before they can engage in subsequent inter-
actions. Each matrix game can be associated with a continuous dynamical system, known
as the replicator equation, which describes the evolution of phenotype frequencies within
the population. One of the fundamental theorems of evolutionary matrix games asserts that
the state corresponding to an evolutionarily stable strategy is an asymptotically stable rest
point of the replicator equation (Taylor and Jonker in Math Biosci 40:145–156, https://doi.
org/10.1016/0025-5564(78)90077-9, 1978; Hofbauer et al. in J Theor Biol 81:609–612,
https://doi.org/10.1016/0022-5193(79)90058-4, 1979; Zeeman in Global theory of dynami-
cal systems. Lecture notes in mathematics. Springer, New York, vol 819. https://doi.org/10.
1007/BFb0087009, 1980). Garay et al. (J Math Biol 76:1951–1973, https://doi.org/10.1086/
681638, 2018) and Varga et al. (J Math Biol 80:743–774, https://doi.org/10.1007/s00285-
019-01440-6, 2020) generalized the statement to two-strategy and, in some particular cases,
three- or more strategymatrix games under time constraints. However, the general applicabil-
ity of this implication has remained an open question. In this paper, we present examples that
demonstrate the negative answer. Moreover, we illustrate, through the rock-paper-scissors
game, that even slight disparities in waiting times can lead to the destabilization of the equi-
librium corresponding to an ESS. Additionally, we establish that a stable limit cycle can
emerge around the unstable equilibrium in a supercritical Hopf bifurcation.
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1 Introduction

Classic evolutionary matrix games, introduced by Maynard Smith and Price [29], describe
populations where individuals compete with each other through pairwise interactions
(Maynard Smith [28], Chapters 6-7 in Hofbauer and Sigmund [20], Chapter 2.3 inMesterton-
Gibbons [30], Chapter 6 in Broom and Rychtár̆ [6]) . After an interaction, contestants receive
payoffs based on their strategies/phenotypes. The payoffs of the consecutive interactions then
determine the (relative) fitness and thereby the evolutionary success of a given phenotype.
However, in many situations, the outcome of an interaction involves not only a payoff, but
also a time period during which contestants must wait before being ready for subsequent
interactions (e.g. to recover from an injury, to handle the payoff (food), to collect energy
after a long fight, etc., Holling [22], Charnov [8], Broom et al. [5], Garay et al. [15], Toupo et
al. [41]). Therefore, a portion of the population is temporarily unable to interact, leading to no
resource intake during the waiting period. This can significantly influence fitness and, con-
sequently, evolutionary outcomes [16, 25]. For instance, in the classical Prisoner’s dilemma,
the ESS strategy is the defector strategy. However, if the waiting time associated with inter-
actions among defectors is long enough, the average intake of defectors may become smaller
than that of cooperators, resulting in the evolutionary stability of the cooperator strategy in
that model. Similarly, if the waiting time after a Hawk-Hawk interaction in the Hawk-Dove
game is sufficiently long, the pure Dove strategy can be ESS even at a low cost of fighting.
These examples well illustrate how the consideration of time constraints in game-theoretical
models can lead to surprising phenomena, underscoring the need for further mathematical
investigations.

Maynard Smith and Price [29] studied monomorphic populations, where each individual
initially possesses the same (pure or mixed) phenotype. In this scenario, Maynard Smith
introduced the following static definition in plain language: “An ESS is a strategy such that,
if all themembers of a population adopt it, then nomutant strategy could invade the population
under the influence of natural selection” [28, p. 10]. This condition implies that the ESS is
consistently favoured by natural selection when the frequency of mutants is low.

The concept of ESS aims to encapsulate the intuitive expectation that an evolutionarily
stable strategymust be resistant to invasion. This static definition proves invaluable in applied
evolutionary game theory, as it allows us to predict evolutionary outcomes without delving
into complex models describing temporal population changes. However, from a theoretical
perspective in evolutionary game theory, we require dynamics that elucidate the temporal
evolution of the population (cf. Introduction in Cressman [10]). To address this, Taylor
and Jonker [36] proposed a polymorphic approach, considering populations composed of
individuals with N distinct, genetically fixed pure phenotypes. The temporal evolution of
the population is then modelled using dynamics, often the replicator equation [20, 36], and
a locally asymptotically stable rest point of the dynamics serves as the end point of the
evolution.

It is a fundamental result in classic evolutionary game theory that, for matrix games, the
corresponding state of an ESS is a locally asymptotically stable rest point of the replicator
equation [21, 36, 44]. This relationship holds not only for matrix games but also for some
cases where the fitness function is not bilinear in the phenotype of the focal individual and
the population’s average strategy. In fact, assuming linearity only in the strategy of the focal
individual is sufficient (see, for example, Thomas [37], Chapter 7.2 in Hofbauer and Sigmund
[20], orCressman et al. [11]).However, for other fitness functions, the validity of an analogous
theorem remains an open question.
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In the case of evolutionary matrix games under time constraints, the fitness function
is neither linear in the strategy of the focal individual nor in the average strategy of the
population. Similarly to the aforementioned classic result, Garay et al. [17] managed to
prove the asymptotic stability of the rest point corresponding to an ESS for two-strategy
games (Corollary 4.3 in Garay et al. [17]). The proof relies on the fact that the set of the
convex combinations of the strategies for which the replicator equation is considered is one-
dimensional. However, the higher-dimensional case remained open, except for some special
cases (Theorem 4.1 in Garay et al. [17], Theorem 4.7 and Theorem 4.9 in Varga et al. [42])
where the corresponding state is either asymptotically stable or at least stable. Nevertheless,
the authors’ conjecture was that the stability does not hold in general.

In this paper, we confirm that the conjecture is true by providing examples ofmatrix games
under time constraints with an evolutionarily stable strategy such that the corresponding state
of the replicator equation is unstable, even in the case of three-dimensional strategies.

One of our examples starts from the rock-paper-scissors game. This game models cyclic
dominance [24, 27, 35] that can result in the cyclic coexistence of three phenotypes [20,
31, 32, 41]. In classic matrix games, the replicator dynamics cannot exhibit limit cycles
([3, 44], Chapter 7.5 in Hofbauer and Sigmund [20]). If periodic solutions exist, there are
infinitely many, enveloping a (non-asymptotically) stable equilibrium point, much like in
the classical rock-paper-scissors game. Moreover, if we replace the zeros along the main
diagonal of the payoff matrix of this game with a parameter ε, the phase portrait corresponds
to a degenerate Hopf bifurcation, as the sign of ε changes [13, 20]. If ε < 0, the equilibrium
point is an asymptotically stable focus. As ε reaches zero, periodic solutions emerge, and
the equilibrium point turns into a non-asymptotically stable center. For ε > 0, the periodic
orbits vanish again, and the equilibrium point becomes an unstable focus. However, the
corresponding monomorphic strategy also loses its evolutionary stability. With increasing
the mathematical complexity of the model, one can anticipate a more intricate behaviour
of the replicator dynamics. Mobilia [31] and Toupo and Strogatz [40] pointed out that even
allowing arbitrarily small mutations can induce a limit cycle in a Hopf bifurcation. Here,
we demonstrate that arbitrary small differences in waiting times can also have a comparable
effect, leading not only to the instability of the equilibrium point but also to the appearance
of a limit cycle during a Hopf bifurcation. All this occurs while the strategy corresponding
to the equilibrium point maintains its evolutionary stability throughout.

2 Preliminaries

We introduce some functions and notation necessary to our calculations. For detailed back-
ground (the heuristic thoughts and the mathematical derivation of the formulas), we refer the
reader to Garay et al. [16] and Garay et al. [17].

We examine the relationship between the evolutionary stability of game theory and the
stability of the replicator dynamics. From a population biology perspective, the dynamic
description is applied to a population in which a finite but arbitrarily large number of pre-
defined phenotypes can occur. This is known as the polymorphic approach. In contrast,
the concept of evolutionary stability applies to a monomorphic population consisting of
individuals with a distinguished resident phenotype, and we investigate what happens when
a mutant phenotype appears. Only one type of mutant can appear at a time, but it can be any
phenotype that differs from the resident.
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Polymorphic Approach

First, we introduce the toolkit for the polymorphic approach. Consider a well-mixed large
population in which individuals compete with each other through pairwise interactions that
can be mathematically described with the help of a game. During the game, a player chooses
from among N pure strategies with certain probabilities determined by the individual’s (heri-
table) phenotype, in other words, his strategy.Mathematically, we describe the set of possible
strategies (phenotypes) using the N -dimensional simplex:

SN = {q = (q1, q2, . . . , qN ) ∈ R
N : q1 + q2 + · · · + qN = 1 and q1, q2, . . . , qN ≥ 0}

(where N is a positive integer andR is the set of real numbers). Then, the pure strategies corre-
spond to the vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),…, eN−1 = (0, 0, . . . , 0, 1, 0),
eN = (0, 0, . . . , 0, 1), and the coordinate qi of a strategyq is the probability that an individual
with phenotype q employs the pure strategy ei in a game.

Let q1,q2, . . . ,qn denote the phenotypes occurring in the population, with frequencies
x1, x2, . . . , xn respectively. From an evolutionary perspective, a central question is how the
state of the population, represented by the frequency distribution x = (x1, x2, . . . , xn),
changes over time. For a mathematical description of this, Taylor and Jonker [36] introduced
the replicator equation or dynamics:

ẋi = xi [Wi (x) − W̄ (x)] (i = 1, 2, . . . , n). (2.1)

where Wi (x) is the fitness of phenotype qi (Taylor and Jonker [36] called it "current growth
rate"), and W̄ (x) = x1W1(x) + · · · + xn Wn(x) denotes the average fitness of the population.
The dynamics assume that the change in frequency of a phenotype is proportional to its
relative fitness.

To proceed, we need to specify the mathematical form of the Wi fitness functions. Let
ai j denote the payoff to a player using pure strategy i while their opponent employs pure
strategy j . This yields an N × N matrix A = (ai j ), which we refer to as the payoff matrix.
With this, the expected payoff for an individual of phenotype qi in the above population is
qi A(x1q1 +· · ·+ xnqn)1 (we assume that the population is large enough to neglect the effect
that an individual cannot interact with itself). In the case of evolutionary matrix games, this
expected payoff also serves as the fitness function Wi (x).

Following the model of Garay et al. [16] or Kr̆ivan and Cressman [25], we also consider
that an interaction has another consequence in addition to the payoff. Specifically, if a player
uses pure strategy i against an opponent using pure strategy j , then the player must wait for
τi j time units before being able to engage in another interaction. (The time of the interaction
itself can be considered as 0 or a part of the τi j time.) During thiswaiting time, the individual
is incapable of interaction and is considered inactive from the perspective of the game. One
can think of this time as necessary for the individual to process the resources acquired during
the interaction or for the individual to recover from any injuries sustained (cf. Holling [22]
or the handling time in optimal foraging theory, Charnov [8] and Garay et al. [14]). After the
waiting period, the player looks for their next opponent. We consider the time taken for this
search to be 1. During the search, the player is capable of interaction and is considered active
in terms of the game. If the player encounters an individual who is inactive, no interaction
occurs between them, resulting in a payoff of 0, but the search time restarts. It is worth noting

1 If a strategy q ∈ SN is multiplied by an N × N matrix M from the right then q should be considered a row
vector while if it is multiplied by M from the left then q should be considered a column vector.
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that the model of Garay et al. [16] is a Markov model in which both the waiting times τi j and
the search time are independent exponentially distributed random variables. However, we
will only use derived formulas in which only their expected values (τi j and 1, respectively)
appear. We assume that the sequence of interactions and searches occurs on a much faster
time scale than the replicator dynamics (cf. Gunawardena [19]), allowing us to assume, from
the perspective of replicator dynamics, that the population is in a stationary equilibrium. In
other words, on the fast time scale, the proportion of inactive individuals is constant, and the
ratio of time spent in an active state for an individual of type qi matches the proportion of
active individuals in the subpopulation of qi individuals. Formally, if we denote this ratio by
�i and T = (τi j )N×N , then:

�i = 1

1 + qi T [x1�1q1 + x2�2q2 + · · · + xn�nqn] (i = 1, 2, . . . , n) (2.2)

The denominator represents the expected value of time between two encounters, while
the numerator represents the time spent searching (in the active state). Matrix T is referred to
as the time constraint matrix. It can be shown that there is only one solution to the system
of equations above for which 0 ≤ �i ≤ 1 for every i (Theorem 1 and Lemma 2 in Garay et
al. [16]).

Since there is no interaction in the inactive state, identifying fitness solely on the basis
of expected payoffs could give a false picture. Even if the expected payoff is high, it can be
misleading if such events rarely occur. To obtain an accurate representation, we must also
consider the time between interactions. Therefore, we interpret fitness as the intake per unit
of time:

Wi (x) = qi A
∑n

j=1 x j� j (x)q j

1 + qi T
∑n

j=1 x j� j (x)q j
. (2.3)

Note that the term in the numerator is just the expected value of payoff in a single inter-
action, whereas the denominator equals the expected value of time between two consecutive
encounters. Theorem 1 in Garay et al. [16] claims that if first the time of observation, then
the population size tends to infinity, while the proportion of individuals of type qi converges
to xi , then the average intake per unit of time for an individual of type qi is described by the
above formula. This demonstrates that our formula used for the Wi fitness can be derived not
only intuitively but also rigorously through mathematical means.2

If we introduce the notation

�̄ = x1�1 + x2�2 + · · · + x3�n (2.4)

2 Garay et al. [16] start from a population consisting of M individuals, where n different phenotypes are
present with numbers M1, M2, . . . , Mn , respectively. The state of the population is described by an M-
dimensional vector s = (s11 . . . , s1M1 |s21, . . . , s2M2 | . . . |sn1, . . . , snMn ), where skl represents the state of
the l-th individual of type qk . skl = 0 if the individual is active, while skl = (i, j) if he is awaiting after an
interaction in which he employed the pure strategy i against the pure strategy j . Since the 0 state corresponds
to searching, skl takes it for a unit duration, whereas a state value of (i, j) is expected to persist for τi j
time units. After τi j time units, skl reverts back to 0. If Yk denotes the number of active individuals of
type qk at a given moment, then the intake of an individual of type qk during a short time interval �t is

given by
(

Mk Yk−1
M−1 qk Aqk + ∑

z �=k
MzYz
M−1 qk Aqz

)
�t , since in a random encounter, the opponent is an active

individual of type qk or qz (z �= k) with probabilities Mk Yk−1
M−1 and Mz Yz

M−1 , respectively. It can be shown that as
the observation time and M successively tend to infinity, the time average of the intake tends to the right hand
side of (2.3). It can also be verified that limM→∞ E[Yk (Yk − 1/Mk )] = �2k , limM→∞ E[YkYz ] = �k�z , and
that the resulting �1, . . . , �n proportions satisfy Eq. (2.2) (see the proof of Theorem 1 in Garay et al. [16]).
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and

h(x) = x1
�1

�̄
q1 + x2

�2

�̄
q2 + · · · + xn

�n

�̄
qn (2.5)

(the former representing the proportion of active individuals in the population, the latter
representing the average strategy of active individuals in the population), then Wi and W̄ can
be rewritten in the following forms:

Wi (x) = �i (x)qi A�̄(x)h(x),

and

W̄ (x) = �̄(x)h(x)A�̄(x)h(x),

respectively.
This shows that our model is indeed a generalization of classical evolutionary matrix

games, since if all τi j times are zero, then �i (x)qi A�̄(x)h(x) simplifies to the formula
qi A

∑
i xiqi used to express fitness in the classical case.

Monomorphic Approach and Evolutionarily Stable Strategy

We will need a precise mathematical formulation of evolutionary stability under time con-
straints and further statements that connect it with the stability of replicator dynamics.

Consider a monomorphic population of individuals with p phenotype. Assume that some
mutant individuals with q phenotype appear in the population. We should stress that only
one type of mutant phenotype can be present in the population at a time. This type is denoted
by q. Let 1− ε and ε be the frequencies of the resident and mutant phenotypes, respectively.
This scenario mathematically corresponds to the above polymorphic situation when n = 2,
q1 = p, q2 = q, x1 = 1 − ε, and x2 = ε. However, to emphasize that p is the resident
and q is the mutant phenotype, we denote the fitness of p as ωp and the fitness of q as ωq.
Accordingly,

ωp(p,q, ε) = pA[(1 − ε)ρpp + ερqq]
1 + pT [(1 − ε)ρpp + ερqq] = ρppA[(1 − ε)ρpp + ερqq],

ωq(p,q, ε) = qA[(1 − ε)ρpp + ερqq]
1 + qT [(1 − ε)ρpp + ερqq] = ρqqA[(1 − ε)ρpp + ερqq],

where ρp(p,q, ε) and ρq(p,q, ε) are the proportions of active individuals among the p and
q individuals, respectively, and they constitute the unique solution of the equation system

ρp = 1

1 + pT [(1 − ε)ρpp + ερqq]
ρq = 1

1 + qT [(1 − ε)ρpp + ερqq]
in the interval [0, 1] (Lemma 2 in Garay et al. [16]).

Definition 2.1 A strategy p∗ is a uniformly evolutionary stable strategy of the matrix game
under time constraints (UESS in short) if there is an ε0 > 0 such that

ωp∗(p∗,q, ε) > ωq(p∗,q, ε)

for any strategy q �= p∗ and 0 < ε < ε0.
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The adverb “uniformly” is used here because ε0 does not depend onq.When ε0 can depend
on q, we refer to p∗ as an ESS without the adverb "uniformly". Clearly, if p∗ is a UESS, it
also satisfies the criteria for an ESS. The converse also holds in the case of classic matrix
games (without time constraints), as shown in Theorem 6.4.1 in Hofbauer and Sigmund [20].
However, in the context of matrix games under time constraints, this equivalence remains an
open question. Although we do not want to deal with this issue in this article, our aim was
to explain the rationale behind employing the term "UESS". This distinction between UESS
and ESS naturally arises when dealing with non-linear fitness functions [4], and UESS is
considered more suitable for describing evolutionary stability in such cases [33].

Our primary objective is to present examples featuring a UESS p∗ where the correspond-
ing state is an unstable rest point of the replicator equation with respect to pure strategies.
Nevertheless, describing this corresponding state is not as straightforward as in the classical
scenario. We must reference certain pivotal statements to grasp the connection between the
monomorphic and polymorphic models.

Relationship Between the Polymorphic and theMonomorphic Approach

We introduce the shorter notations ω(q), ωp(q), ρ(q) and ρp(q) for ωq(p,q, 1), ωp(p,q, 1),
ρq(p,q, 1) and ρp(p,q, 1), respectively. These special quantities describe the initial moment
when individuals of type p start to appear in a population composed exclusively of individuals
of type q. ρ(q) can be explicitly expressed as the unique solution in [0, 1] to the equation

ρ = 1

1 + qT ρq
.

(Lemma 2 in Garay et al. [16]). In particular,

ρ(q) = −1 + √
1 + 4qTq

2qTq
= 2

1 + √
1 + 4qTq

. (2.6)

This immediately implies that functions

ρp(q) = 1

1 + pT ρ(q)q
, (2.7)

ω(q) = qAρ(q)q
1 + qT ρ(q)q

= ρ(q)qAρ(q)q (2.8)

and

ωp(q) = pAρ(q)q
1 + pT ρ(q)q

= ρp(q)pAρ(q)q (2.9)

all have continuous second-order partial derivatives with respect to the coordinates of q =
(q1, q2, . . . , qN ) ∈ SN .

It is clear for classical matrix games that if p = (p1, p2, . . . , pN ) is a strategy then
(x1, x2, . . . , xN ) with xi = pi is the corresponding state in the polymorphic system of pure
phenotypes e1, e2, . . . , eN in the sense that

∑
i xiei = p. Consequently, if p is an ESS, then

it is natural to investigate the stability property of the state (x1, x2, . . . , xN ) with xi = pi for
the replicator equation with respect to e1, e2, . . . , eN . If the replicator equation is considered
for arbitrary strategies q1,q2, . . . ,qn then it is also clear that the corresponding state(s) of p
is (are) the state(s) (x1, x2, . . . , xn) with p = x1q1 + x2q2 + · · · + xnqn , that is, the state(s)
at which the average strategy of the population is p. However, for matrix games under time
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constraints, the situation is generally not so obvious. The answer can be found in the next
lemma of Garay et al. [17], which asserts that the corresponding state is the state at which
the average strategy of active individuals is p. To recall notations h(x) and �̄(x), see (2.4)
and (2.5).

Lemma 2.2 (Garay et al. [17], Corollary 6.3) Consider a population of phenotypes q1,
q2,…,qn ∈ SN . Assume that r = θ1q1 + θ2q2 +· · ·+ θnqn with some θ = (θ1, θ2, . . . , θn) ∈
Sn. If

xi = xi (θ) = ρ(r)
ρqi (r)

θi (i = 1, 2, . . . , n) (2.10)

then h(x) = r where x = x(θ) = (
x1(θ), x2(θ), . . . , xn(θ)

)
, that is, the average strategy

of active individuals in a population of q1, q2,…, qn individuals with frequencies x1(θ),

x2(θ),…, xn(θ) is θ1q1+θ2q2+· · ·+θnqn = r. Moreover, x(θ) is the unique state for which
θi = xi�(x)/�̄(x) (i = 1, 2, . . . , n) holds.

We consider two particular cases. One of them is when n = N = 3, q1 = e1, q2 = e2
and q3 = e3. Let r = (r1, r2, 1 − r1 − r2) = r1e1 + r2e2 + (1 − r1 − r2)e3 be a strategy
from S3. By the previous lemma, there exists a unique3 state x(r) ∈ S3 with h

(
x(r)

) = r,
namely, xi (r) = riρ(r)/ρei (r). So xi (r) has continuous partial derivatives with respect to
the variables r1 and r2. The notation xR(r) is used (“R” refers to “restricted”) if necessary
to emphasize that x(r) is concerned with this case.

The other case is when N = 3, n = 4, q1 = e1, q2 = e2, q3 = e3 and q4 = p∗ :=
(1/3, 1/3, 1/3). Then most of the strategies from S3, namely, the strategies in the interior of
S3 can be expressed in the form θ1e1 + θ2e2 + θ3e3 + θ4p∗ in more than one way. For such a
strategy r, there is thus more than one state x = (x1, x2, x3, x4)with h(x) = r. So it would be
ambiguous to use the notation x(r) for a state with h(x(r)) = r. Therefore we associate the
coefficient-list θ = (θ1, θ2, θ3, θ4) from the convex combination θ1e1+θ2e2+θ3e3+θ4p∗ = r
to the state x = x(θ) = x(θ1, θ2, θ3, θ4) with xi (θ) = θiρ(r)/ρri (r) rather than associating
a strategy r to such a state. If it is necessary to emphasize that x(θ) is concerned with this
case, then we use the notation xE (θ) (“E” refers to “extended”). Observe that if the vector
(x1, x2, 1 − x1 − x3, 0) ∈ S4 is identified with the vector (x1, x2, 1 − x1 − x3) ∈ S3, then
the map xR is just the restriction of the map xE to the set S3.

3 Dynamically Unstable UESS

It is well known in the case of classic evolutionarymatrix games4 that a UESS always implies
the asymptotic stability of the corresponding equilibrium point of the associated replicator
equation ([21, 36, 44] or Theorem 7.2.4 in Hofbauer and Sigmund [20]).

An analogues implication for matrix games under time constraints up to now was just
proved when the the strategy space consists of 2 dimensional strategies. For higher dimen-
sional strategies, however, the question remained open in general [17, 42].

Now we give examples exhibiting UESS with unstable corresponding equilibrium, that
is, the accustomed implication of the classical model does not hold in the more general

3 Theuniqueness trivially follows from the fact that every r = (r1, r2, r3) ∈ S3 is a unique convex combination
of the pure strategies: r = r1e1 + r2e2 + r3e3.
4 It corresponds to the case when each entrance of T is the same, say, 0.
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model of matrix games under time constraints. This shows that considering time effects can
dramatically alter the outcome of evolution.

The strategy space of the examples is

S3 = {(q1, q2, q3) ∈ R
3 : qi ≥ 0, i = 1, 2, 3, and q1 + q2 + q3 = 1}.

In each example, strategy p∗ = (1/3, 1/3, 1/3) is a UESS which is verified in Sections
A.1 and A.2. The corresponding state is x = x(p∗) = xR(p∗) = (

x1(p∗), x2(p∗), x3(p∗)
)

for which h(x) = p∗ (see Lemma 2.2) (recall the notations xR and xE in the second para-
graph after Lemma 2.2). We analyse the replicator Eq. (2.1) for the polymorphic population
consisting of pure phenotypes e1, e2, e3 with frequencies x1, x2 and x3 = 1 − x1 − x2:

ẋ1 = x1[W1(x) − W̄ (x)]
ẋ2 = x2[W2(x) − W̄ (x)]
ẋ3 = x3[W3(x) − W̄ (x)]. (3.11)

We also investigate the replicator equation with respect to the population of q1 = e1,q2 =
e2,q3 = e3 and q4 = p∗ = (1/3, 1/3, 1/3) individuals. This means the extension of the
previous dynamics (3.11) adding a fourth equation:

ẋ1 = x1[W1(x) − W̄ (x)]
ẋ2 = x2[W2(x) − W̄ (x)]
ẋ3 = x3[W3(x) − W̄ (x)]
ẋ4 = x4[W4(x) − W̄ (x)] (3.12)

where x4 describes the frequency of p∗ individuals. The phase space of this dynamics is
S4. The state (1, 0, 0, 0) corresponds to pure strategy e1 in the sense that in this state every
individual follows strategy e1. Similarly, state (0, 1, 0, 0) corresponds to pure strategy e2, state
(0, 0, 1, 0) corresponds to pure strategy e3 and state (0, 0, 0, 1) corresponds to strategy p∗.
Clearly, if the replicator Eq. (3.12) is restricted to the facewith vertices (1, 0, 0, 0), (0, 1, 0, 0)
and (0, 0, 1, 0) we get back the dynamics (3.11). Accordingly, this face contains the state
xE (1/3, 1/3, 1/3, 0) (xp∗ for short) corresponding to the UESS p∗ in which each individual
follows one of the three pure strategies and the average strategy of active individuals is the
UESS p∗. Note that this state is the same as the state xR(p∗) for the replicator equation with
respect to pure strategies e1, e2, e3.

By Lemma 2.2, the segment (the green segment in Figs. 2 and 5) connecting xp∗ with
(0, 0, 0, 1) precisely consists of the states corresponding to the UESS p∗ and the coordinates
of these states are

x E
i

(
u/3, u/3, u/3, (1 − u)

) = (u/3)
ρ(p∗)
ρei (p∗)

(i = 1, 2, 3)

and

x E
4

(
u/3, u/3, u/3, (1 − u)

) = (1 − u)
ρ(p∗)

ρp∗(p∗)
= 1 − u,

respectively, where u runs over the interval [0, 1]. These states are equilibrium points of the
replicator Eq. (3.12) (Lemma 3.2 in Garay et al. [17]). Furthermore, state (0, 0, 0, 1) at which
every individual of the population follows strategyp∗ is a stable (but not asymptotically stable)
rest point of the replicator Eq. (3.12) (Theorem 4.9 in Varga et al. [42]). If the dynamics (3.12)
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is restricted to any of the faces with vertex (0, 0, 0, 1) then state (0, 0, 0, 1) is asymptotically
stable on that face (Theorem 4.7 in Varga et al. [42]).

One of the eigenvalues at every point of the segment is always 0, the other two have zero
real part at a single point of the segment which is denoted by x0 (the upper green point in
Figs. 2 and 5). Above the point (the part of the segment falling between the states x0 and
(0, 0, 0, 1)) both non-zero eigenvalues have negative real parts while under the point (the
part of the segment falling between the states xp∗ and x0) the real parts of the two non-zero
eigenvalues are positive. To find x0 we have analyzed the linearisation of the right hand side
of the dynamical system (3.12) along the segment between xp∗ and (0, 0, 0, 1).

We remark that the local property of equilibrium points and the global behaviour of the
dynamics on the edges of the phase spaces S3 and S4, respectively, are mathematically exact,
the eigenvalues were calculated, whereas the global behaviour in the interior of the phase
spaces and in the interior of the faces of S4 are just based on numerical simulations of the
phase portrait.

3.1 Example 1: Dynamically Unstable UESS in Rock-Paper-Scissors Game

The popular children’s game, the rock-paper-scissors game, describes a game with three pure
strategies where each pure strategy beats precisely another pure strategy (rock beats scissor,
scissors beat paper and paper beats rock). The payoff matrix has the following form

⎛

⎝
0 −a2 b3
b1 0 −a3

−a1 b2 0

⎞

⎠ a1, a2, a3, b1, b2, b3 > 0.

The corresponding replicator equation always has a rest point that is asymptotically stable
(and the corresponding mixed strategy is a UESS) if and only if the determinant b1b2b3 −
a1a2a3 is positive (Theorem 7.7.2 inHofbauer and Sigmund [20]). Otherwise, the rest point is
a (non-asymptotically) stable center (if the determinant is zero) or unstable (if the determinant
is negative). From evolutionary aspect, it models a cyclic dominance [24, 27, 35] which can
result in the coexistence of the three phenotypes [20, 31, 32, 41].

Now we show that arbitrary short waiting times can destabilize a stable coexistence. Let
the payoff matrix A = A(s) and the time constraint matrix T = T (s) be

A = A(s) =
⎛

⎝
0 −2 + s/10 2
2 0 −2 + s/10

a31(s) 2 0

⎞

⎠ , T = T (s) =
⎛

⎝
0 0 0
0 0 0
s 2s 0

⎞

⎠ .

(3.13)

where

a31(s) = −2 + s(
√
9 + 12s − 1)

20
.

Then for any s ∈ (0, s0) with some s0 ≥ 3 strategy p∗ = (1/3, 1/3, 1/3) is a UESS of the
matrix game under time constraints with payoff matrix A(s) and time constraint matrix T (s)
such that the corresponding sate x(p∗) is an unstable rest point of the replicator Eq. (3.11).
The verification can be found in Appendix 1. Note that the determinant of A(s) is positive if
s ∈ (0, 3] so thematrix gamewithmatrix A(s) (s ∈ (0, 3]) has an interior UESS (which tends
to p∗ as s → 0) (see expression (7.34) in Hofbauer and Sigmund [20]) and, consequently, this
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Fig. 1 The phase portrait of the replicator Eq. (3.11) with respect to the pure phenotypes e1, e2 and e3. The
payoff matrix A and the time constraint matrix T are given in (3.13) setting s to be 1. x(p∗) = xR(p∗) is the
state corresponding to strategy p∗ = (1/3, 1/3, 1/3) through Lemma 2.2: x1(p∗) = x2(p∗) = (

√
21−3)/6 ≈

0.263. Although p∗ is a UESS, x(p∗) is an unstable rest point of the replicator equation. The vertices of the
simplex are saddle points and the boundary of the simplex is a heteroclinic cycle which appears to be attractive.
For every state x, there is a composition Qp∗

(x) exhibiting strategy p∗ in the population in state x (see Sect.
3.4 for more explanation). Therefore, a subpopulation in state Qp∗(

x(t)
)
has higher fitness than that of the

whole population. The green segment is the set of states Qp∗(
x(t)

)
-s as x(t) runs over the red orbit (see the

enlargement of the green segment in Fig. 6). Qp∗(
x(t)

)
generally differs from x(p∗). One can intuitively expect

that the population “try” to evolve towards Qp∗(
x(t)

)
rather than x(p∗) but Qp∗(

x(t)
)
varies from moment to

moment which can contribute to the instability of x(p∗) in the example. In the table, we give the real parts of
the eigenvalues of the linearisation of the replicator equation at the rest points indicated in the phase portrait

UESS is an asymptotically stable rest point of the relating replicator equation with respect
to pure strategies ([21, 36, 44] or Theorem 7.2.4 in Hofbauer and Sigmund [20]).

The phase portrait of dynamics (3.11) for s = 1 is depicted in Fig. 1. The three vertices
together with the edges between them form a heteroclinic cycle. The Jacobian matrix of the
right hand side at equilibrium point

x(p∗) = xR(p∗) =
(√

21 − 3

6
,

√
21 − 3

6
, 2 −

√
7

3

)

corresponding to the UESS p∗ = (1/3, 1/3, 1/3) has eigenvalues with positive real part
implying the instability of the rest point. The phase portrait suggests that the solutions tend
to the boundary of the simplex.

The phase portrait of the extended replicator Eq. (3.12) is shown in Fig. 2. On the face
determined by vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), the dynamics agrees with (3.11)
so the phase portrait on it is the same as in Fig. 1.

The solutions in the interior of the face determined by vertices (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 0, 1) start from (1, 0, 0, 0) and end in (0, 0, 0, 1). The situation is similar on the other
two faces.

The state x0 on the segment matching xp∗ with (0, 0, 0, 1) and corresponding to the
UESS p∗ is equal to xE (u0/3, u0/3, u0/3, 1− u0) where u0 = (71+ 9

√
21)/334 ≈ 0.336.

Accordingly, the coordinates of x0 are (x0)1 ≈ 0.089, (x0)2 ≈ 0.089, (x0)3 ≈ 0.159 and
(x0)4 = 1 − u0 ≈ 0.664.
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Fig. 2 The phase portrait of the replicator equation with respect to phenotypes e1, e2, e3 and p∗ =
(1/3, 1/3, 1/3). The payoff matrix A and the time constraint matrix T are given in (3.13) setting s to 1. xp∗ =
(xp∗,1, xp∗,2, xp∗,3, xp∗,4) is the state corresponding to strategy p∗ = (1/3, 1/3, 1/3) through Lemma 2.2 on the

face determined by the vertices (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0): xp∗,1 = xp∗,2 = (
√
21−3)/6 ≈ 0.263,

xp∗,3 = 1 − xp∗,1 − xp∗,2, xp∗,4 = 0. It agrees with x(p∗) in Fig. 1. Every state on the green segment between
(0, 0, 0, 1) and xp∗ corresponds to strategy p∗ through Lemma 2.2. Hence, every point of the segment is a rest
point of the replicator equation. One of the three eigenvalues of the linearisation of the replicator Eq. (3.12) at
these states is zero. At x0, all of the eigenvalues have zero real part. The states on the segment under x0 have
two eigenvalues with positive real part, so they are all unstable though they correspond to the UESS p∗. The
states between x0 and (0, 0, 0, 1) whereas have two eigenvalues with negative real part. The state (0, 0, 0, 1)
is stable (but not asymptotically). In the table, we give the real parts of the eigenvalues of the linearisation of
the replicator equation at the rest points indicated in the phase portrait

3.2 Limit Cycle, Hopf Bifurcation

Previously, we have found that both the game with payoff matrix A(1) and the game under
time constraints with the same payoff matrix and time constraint matrix T (1) have a UESS.
Nevertheless, the stability properties of the corresponding rest points are different. While
the rest point is asymptotically stable in the former case, it is unstable in the latter case, and
the orbits spirally tend to the boundary of the simplex according to the numerical simulation
(Fig. 1). The situation can remind us of a supercritical Hopf bifurcation. Indeed, let

Ã = Ã(σ ) =
⎛

⎝
0 −19/10 2
2 0 −19/10

ã31(σ ) 2 0

⎞

⎠ , T̃ = T̃ (σ ) = T (σ ) =
⎛

⎝
0 0 0
0 0 0
σ 2σ 0

⎞

⎠

(3.14)

where

ã31(σ ) =
√
9 + 12σ − 41

20
.

Here, ã31(σ ) has been chosen such that p∗ = (1/3, 1/3, 1/3) is a UESS for every σ ∈ [0, 1].
Note that Ã(1) = A(1). Therefore, the matrix game under time constraints with matrices
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Fig. 3 The phase portrait of the replicator Eq. (3.11) with respect to the pure phenotypes e1, e2 and e3. The
payoff matrix A and the time constraint matrix T are given right from the phase portrait. x(p∗) = xR(p∗) is
the state corresponding to strategy p∗ = (1/3, 1/3, 1/3) through Lemma 2.2: x1(p∗) = x2(p∗) = 10/(15 +√
1245) ≈ 0.1989. Although p∗ is a UESS (see Appendix A.2.3 ), x(p∗) is an unstable rest point of the

replicator equation. The vertices of the simplex are saddle points and the boundary of the simplex is a repelling
heteroclinic cycle. It seems that there is a stable limit cycle around x(p∗). In the table, we give the real parts of
the eigenvalues of the linearisation of the replicator equation at the rest points indicated in the phase portrait

Ã(1) and T̃ (1) has a UESS such that the corresponding rest point of the replicator equation is
unstablewhile the gamewithmatrices Ã(0) and T̃ (0) has aUESS such that the corresponding
rest point is already asymptotically stable. Further analysis reveals that a supercritical Hopf
bifurcation occurs at σ = (1+√

82)/54 ≈ 0.186 (seeAppendixA.3). So a limit cycle around
the rest point must exist when σ is close to (1 + √

82)/54. For instance, for σ = 19/100, a
limit cycle takes shape according to the numerical simulation. However, the orbits tending
to the limit cycle wind around themselves so tightly that the limit cycle cannot be perceived
easily. Therefore, we give a more spectacular example in Fig. 3.

3.3 Example 2 with a Strict NE and a dynamically Unstable UESS

The payoff matrix A and the time constraint matrix T are the following in this case:

A =
⎛

⎝
−5 449 − 19

√
469 −1

−2 5 3
−204/5 + 2

√
469 1 −2/10

⎞

⎠ , T =
⎛

⎝
45 40 20
1 2 7
0 0 0

⎞

⎠ . (3.15)

Although a similar phase portrait is possible in the classical case (the last element of the
first row in Figure 11 in Zeeman [44], phase portrait 12 in Fig. 6 in Bomze [3]), the unstable
interior rest point corresponds to a UESS. In addition to p∗ = (1/3, 1/3, 1/3), there is a
further UESS, moreover, a strict Nash equilibrium which is impossible in classic matrix
games (see the first paragraph after the proof of Theorem 6.4.1 on p.64 in Hofbauer and
Sigmund [20]). A strategy r is a strict Nash equilibrium if, for every strategy q �= r, the strict
inequality

ρq(r)qAr < ρ(r)rAr (3.16)

holds (Definition 2.2 in Garay et al. [17]). If r is a strict Nash equilibrium, then it is a
pure strategy (Theorem 4.1 in Garay et al. [17]) and a UESS (Theorem 4.1 in Varga et
al. [42]). In the present example, strategy e2 is a strict Nash equilibrium implying that the
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Fig. 4 The phase portrait of the replicator Eq. (3.11) with respect to the pure phenotypes e1, e2 and e3. The
payoff matrix A and the time constraint matrix T are the matrices in (3.15). x(p∗) = xR(p∗) is the state
corresponding to strategy p∗ = (1/3, 1/3, 1/3) through Lemma 2.2: x1(p∗) = (495−4

√
469)/529 ≈ 0.772,

x2(p∗) = (409 + 17
√
469)/5290 ≈ 0.147. Although p∗ is a UESS, x(p∗) is an unstable rest point of the

replicator equation. Among the vertices, only (1, 0, 0) is a saddle point; (0, 1, 0) is asymptotically stable,
moreover, it corresponds to a strict Nash equilibrium while (0, 0, 1) is a source. In addition to the vertices,
x(12) and x(13) are two further rest points on the boundary of the simplex. Both of them are saddle points.
For every state x, there is a composition Qp∗

(x) exhibiting strategy p∗ in the population in state x (see Sect.
3.4 for more explanation). Therefore, a subpopulation in state Qp∗(

x(t)
)
has higher fitness than that of the

whole population. The green curve is the set of states Qp∗(
x(t)

)
-s as x(t) runs over the blue orbit (see the

enlargement of the green segment in Fig. 6). Qp∗(
x(t)

)
generally differs from x(p∗). One can intuitively expect

that the population “try” to evolve towards Qp∗(
x(t)

)
rather than x(p∗) but Qp∗(

x(t)
)
varies from moment to

moment which can contribute to the instability of x(p∗) in the example. In the table, we give the real parts of
the eigenvalues of the linearisation of the replicator equation at the rest points indicated in the phase portrait

corresponding state (0, 1, 0) and (0, 1, 0, 0), respectively, is an asymptotically stable rest
point of the replicator equation with respect to e1, e2, e3 and the replicator equation with
respect to e1, e2, e3,p∗, respectively (Corollary 4.8 in Varga et al. [42]).

To see that e2 is a strict Nash equilibrium, one should check inequality (3.16) with r = e2.
By (2.6) and (2.7) we get ρ(e2) and ρq(e2), respectively. We obtain that

ρ(e2)e2Ae2 − ρq(e2)qAe2 = 3 − 796 q1 + 38
√
469 q1 − 3 q2

2 + 40 q1 + 2 q2
.

Note that q = (q1, q2, 1− q1 − q2) ∈ S3 is a strategy. Thus the denominator 2+ 40q1 + 2q2
is positive for every q. Consequently, in order to prove that e2 is a strict Nash equilibrium, it
is enough to validate that the numerator 3−796q1 +38

√
469 q1 −3q2 > 0 for every q �= e2

which can easily be seen:

3 − 796q1 + 38
√
469 q1 − 3q2 ≥ 3 − 796q1 + 38

√
441 q1 − 3q2 = 3 + 2q1 − 3q2

= 2q1 + 3(1 − q2)

which is positive for every strategy q different from e2. Hence e2 is a strict Nash equilibrium,
as claimed.

Considering the replicator equation with respect to e1, e2 and e3, we find two additional
rest points besides the vertices and the rest point xR(p∗) corresponding to the UESS p∗.
There is a rest point on the edge between states (1, 0, 0) and (0, 1, 0). We denote it by
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Fig. 5 The phase portrait of the replicator equation with respect to phenotypes e1, e2, e3 and p∗ =
(1/3, 1/3, 1/3). The payoff matrix A and the time constraint matrix T are given in (3.15). xp∗ =
(xp∗,1, xp∗,2, xp∗,3, xp∗,4) is the state corresponding to strategy p∗ = (1/3, 1/3, 1/3) through Lemma 2.2
on the face determined by the vertices (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0): xp∗,1 ≈ 0.772, xp∗,2 ≈ 0.147,
xp∗,3 = 1 − xp∗,1 − xp∗,2, xp∗,4 = 0. It agrees with x(p∗) in Fig. 4. Every state on the green segment between
(0, 0, 0, 1) and xp∗ corresponds to strategy p∗ through Lemma 2.2. Hence, every point of the segment is a rest
point of the replicator equation. One of the three eigenvalues of the linearisation of the replicator Eq. (3.12)
at these states is zero. At x0, all of the eigenvalues has zero real part. The states on the segment under x0 have
two eigenvalues with positive real part, so they are all unstable though they correspond to the UESS p∗. The
states between x0 and (0, 0, 0, 1) whereas have two eigenvalues with negative real part. The state (0, 0, 0, 1)
is stable (but not asymptotically). In the table, we give the real parts of the eigenvalues of the linearisation of
the replicator equation at the rest points indicated in the phase portrait

x(12) ≈ (0.689, 0.311, 0). This is an unstable rest point of the dynamics restricted to the
edge, and it is a saddle point of the dynamics with respect to the pure strategies.

The other rest point can be found on the edge between (1, 0, 0) and (0, 0, 1). It is denoted
by x(13) ≈ (0.395, 0, 0.605). This state is asymptotically stable on the edge, but it is a saddle
point of the replicator dynamics with respect to e1, e2 and e3. A separatrix starts from it and
ends in the state (0, 1, 0).

The (interior) solutions on the (1, 0, 0) side of the separatrix start from state x(p∗) =
xR(p∗) and end in (0, 1, 0) except for one that ends in x(12). The (interior) solutions on the
(0, 0, 1) side of the separatrix start from (0, 0, 1) and end in (0, 1, 0) (see Fig. 4).

The coordinates of x(p∗) are

x1(p∗) = 495 − 4
√
469

529
, x2(p∗) = 409 + 17

√
469

5290
, x3(p∗) = 1 − x1(p∗) − x2(p∗).

The phase portrait of the extended replicator Eq. (3.12) is illustrated in Fig. 5. The
restriction of the dynamics onto the face determined by vertices (1, 0, 0, 0), (0, 1, 0, 0) and
(0, 0, 1, 0) is just the replicator equation with respect to pure strategies, so the phase portrait
on that face agrees with that in Fig. 4.
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There exists a rest point on the edge between (0, 1, 0, 0) and (0, 0, 0, 1). It is denoted by
x(24). Its coordinates are x (24)

1 = x (24)
3 = 0, x (24)

2 ≈ 0.2186, and x (24)
4 ≈ 0.7814. The rest

point is unstable with respect to the edge.
It appears that there is a separatrix connecting the rest point x(24) with the rest point x(12)

on the face determined by the vertices (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 0, 1). The separatrix
divides the face into two parts. The (interior) orbits start from x(24) and end in the stable
(moreover asymptotically stable with respect to the face) rest point (0, 0, 0, 1) on the part
falling toward the edge between (1, 0, 0, 0) and (0, 0, 0, 1)while in the asymptotically stable
rest point (0, 1, 0, 0) on the other part of the face.

Also, it seems that a separatrix runs from x(13) to (0, 0, 0, 1) on the face determined by
states (1, 0, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). The orbits in the interior of the face all end
in state (0, 0, 0, 1) but the orbits on the (1, 0, 0, 0) side of the separatrix start from state
(1, 0, 0, 0) whereas those falling on the (0, 0, 1, 0) side of the separatrix start from state
(0, 0, 1, 0).

It seems that there is also a separatrix on the face determined vertices (0, 1, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1) connecting state (0, 0, 1, 0) to x(24). The orbits in the interior
of the face start from (0, 0, 1, 0). The orbits located on the (0, 1, 0, 0) side of the separatrix
run into state (0, 1, 0, 0) while those on the (0, 0, 0, 1) side of the separatrix end in state
(0, 0, 0, 1).

In this case, state x0 is the state xE (u0/3, u0/3, u0/3, 1 − u0) where

u0 = 61518486052 + 3148879999
√
469

131829933359
≈ 0.9839,

so its coordinates are (x0)1 ≈ 0.7596, (x0)2 ≈ 0.1446, (x0)3 ≈ 0.07981 and (x0)4 =
1 − u0 ≈ 0.01607.

3.4 Composition Corresponding to a Strategy q in a Population of State x

In the context of classic matrix games, if p∗ is a UESS then state this UESS is an asymptoti-
cally stable rest point of the replicator equation with respect to pure strategies. The intuitive
explanation says that a subpopulation in state p∗ has a higher mean fitness than the total
population of state x and therefore the population evolves to state p∗. In the morning of
classical evolutionary matrix games [29], however, the implication was not clear; some years
lasted before the discovery of the relation [21, 36, 44].

Our counterexamples show that this classical relation is not self-evident. To help the
intuitive comprehension why the implication does not hold in general in the case of matrix
games under time constraints, it can be worth analysing the composition corresponding to
the UESS in a population of state x.

Lemma 2.2 gives the state x that corresponds to a strategy q in the sense that the mean
strategy of active individuals is just q and the proportion of active individuals equals the
proportion of active individuals in the monomorphic population of q individuals, in short,
h(x) = q and �̄(x) = ρ(q). Motivated by this lemma, take a population of pure strategists
in state x and consider the following composition. If q = q1e1 + q2e2 + q3e3 is a strategy,
then let

�q(x) := ρq
(
h(x)

) = 1

1 + qT
[∑

i
xi�iei

]
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Fig. 6 The neighbourhood of x(p∗) in Fig. 1 and 4 are enlarged. The left figure corresponds to Example 1
while the right one to Example 2. The green curves consist of the states corresponding to p∗ as x(t) runs on
the orbit around x(p∗) in Fig. 1, 4 (red orbit in Fig. 1, blue orbit in Fig. 2), in other words, states Qp∗(

x(t)
)

as defined by (3.17) at q = p∗. If the composition of a subpopulation is Qp∗(
x(t)

)
then the mean strategy of

active individuals of that subpopulation is just p∗. In classic matrix games Qp∗(
x(t)

)
, x(p∗) and p∗ coincide,

but not in the examples. This can contribute to the instability of x(p∗)

and

Qq(x) :=
(

�q(x)
�1(x)

q1
︸ ︷︷ ︸

Qq
1 (x)

,
�q(x)
�2(x)

q2
︸ ︷︷ ︸

Qq
2 (x)

,
�q(x)
�3(x)

q3
︸ ︷︷ ︸

Qq
3 (x)

)

. (3.17)

Observe that

Qq
1(x)�1(x) + Qq

2(x)�2(x) + Qq
3(x)�3(x) = �q(x),

furthermore,

Qq
1(x)�1(x)e1A�̄(x)h(x) + Qq

2(x)�2(x)e2A�̄(x)h(x) + Qq
3(x)�3(x)e3A�̄(x)h(x)

= �q(x)qA�̄(x)h(x) = ρq
(
h(x)

)
qAρ

(
h(x)

)
h(x),

that is, a subpopulation in state Qq(x) corresponds to strategyq in the sense that the proportion
of active individuals in the subpopulation is the same as the probability that a q individual
playing against the population is active and that the mean fitness of the subpopulation is the
same as the fitness of a q individual playing against the population.

The observation shows that Qq(x) is not a fixed composition in general. It varies with x.
In particular, if q = p∗, that is, q is a UESS, then the subpopulation corresponding to the
UESS varies as the state of the population varies (see green curves in Fig. 1, 4, 6 and 7). This
is a distinction from the classical case in which the corresponding composition was just the
same as the strategy [Qq(x) = q] independently of x. This means that composition Qp∗

(x)
generally differs from x(p∗) [in the classical case x(p∗) = Qp∗

(x) = p∗]. It seems that this
slight deviation can be enough to make x(p∗) unstable, as shown by our examples.

4 Discussion

Garay et al. [16] and Kr̆ivan and Cressman [25] incorporated time constraints into the model
of evolutionary matrix games. As they pointed out, time constraints can essentially change
evolutionary outcomes. In this article, we have continued the mathematical analyses started
in Garay et al. [17], Varga et al. [42] on matrix games under time constraints, and we have
demonstrated by two examples that static evolutionary stability does not imply the asymptotic
stability of the corresponding state of the replicator equation in three or higher dimensions.
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Fig. 7 The initial subarc of the orbit x(t) around x(p∗) in Fig. 1, 4 (red orbit in Fig. 1, blue orbit in Fig. 2) and
the corresponding curve drawn by composition Qp∗(

x(t)
)
(green curves). If the composition of a subpopulation

is Qp∗(
x(t)

)
in the population of state x(t) then the mean strategy of active individuals in the subpopulation is

p∗. Therefore, one can intuitively expect that the population evolves towards Qp∗(
x(t)

)
varying from moment

to moment rather than x(p∗) which leads to the instability of x(p∗) in the examples. Each segment connects
the composition Qp∗(

x(t)
)
with the corresponding state x(t)

This is an essential distinction from the case of classical matrix games, where static evolu-
tionary stability implies dynamic stability [21, 36, 44].

Under the influence of time constraints, individuals in the population move between two
states (active and inactive). Since there is no interaction in the inactive state, the duration spent
in it can considerably influence how much a particular individual gains from the resources
allocated through interactions. Furthermore, the time spent in the inactive state depends
on the individual’s strategy. All of this can lead to that individuals of distinct strategies
participate in significantly different numbers of interactions over a given period. Thus, in
interpretingfitness, it is not enough to simply consider the expectedpayoff froman interaction,
but one must also take into account the process of how interactions unfold. In this regard,
matrix games under time constraints share similarities with several recent works in which
various mechanisms govern the relevance of game payoffs for evolutionary success. For
example, in the model of Foley et al. [12], current payoffs depend on past payoffs, leading to
cyclic phenomena in the hierarchy network of the population. Constable et al. [7] introduces
stochastic effects into his evolutionary model. Argasinski and Broom [1] and Argasinski and
Rudnicki [2] link classical game theory with models where individuals can be in different
states (e.g. age-structured population models), so success depends not only on the strategy,
but also on the state. In these models, the payoff derived from the games is only a part of
the process that, similarly to the time-delay in the time-constrained model, determines the
evolutionary dynamics describing the population.

We provided two examples of matrix games under time constraints, wherein the equi-
librium point corresponding to an evolutionarily stable strategy proved to be dynamically
unstable with respect to the replicator dynamics. The first example pertains to the rock-
paper-scissors game, which holds biological relevance in ecology [35], microbiology [24]
or biotechnology [27]. Also, it is used for modelling interactions between cancer cells [39].
In addition to proving that arbitrary small distinctions between waiting times can destabilize
the rest point corresponding to a UESS, we pointed out that a supercritical Hopf bifurcation
can occur, resulting in a stable limit cycle emerging around the unstable rest point. Such a
phenomenon is impossible in classic matrix games ([3, 44], Chapter 7.5 in Hofbauer and
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Sigmund [20]). Mobilia [31] and Toupo and Strogatz [40] obtained a similar result, although
their focus was on investigating the effects of mutations rather than time constraints.

The second example exhibited a strict Nash equilibrium in addition to the dynamically
unstable interior UESS. This is not possible in the classical case either since the existence of
an interior ESS precludes the existence of another Nash equilibrium (see the paragraph after
the proof of Theorem 6.4.1 in Hofbauer and Sigmund [20]).

In classical matrix games, if p∗ is an ESS then state x∗ with x∗
i = p∗

i is an evolution-
arily stable state (Theorem 6.4.1 in Hofbauer and Sigmund [20]) in the population of pure
phenotypes, that is, for some δ > 0

N∑

i

x∗
i Wi (x) >

N∑

i

xi Wi (x) whenever 0 < ||x − x∗|| < δ,

where Wi denotes the fitness of the i-th pure strategy. This condition means that state x∗
exhibits higher fitness in a slightly perturbed state compared to the average fitness of that
perturbed state. Therefore, one can expect that the population is steered back to state x∗.
Indeed, the above relation implies the asymptotic stability of x∗ with respect to the replica-
tor equation ([21, 44], Theorem 7.2.4 in Hofbauer and Sigmund [20]). Motivated by this,
we investigated the composition corresponding to the UESS in a given population of pure
phenotypes. Unlike the classical case, this composition depends on the current state of the
population as depicted in Figs. 6 and 7. In general, it does not coincide with the state corre-
sponding to the UESS. This discrepancy can potentially contribute to the instability of the
state associated with the UESS, as demonstrated in our examples. On the other hand, this
provides only a partial explanation since it is easy to give examples such that the composition
corresponding to the UESS varies with the current state of the population, yet the state corre-
sponding to the UESS is asymptotically stable. Therefore, future investigations are necessary
for a deeper understanding of the stability property of the state corresponding to the UESS.

Finally, analysing the relationship between models on monomorphic and polymorphic
populations can primarily appear to be a mathematical problem. However, it is related to
the question of diversity in biology. In the theory of classic evolutionary matrix games, for
instance, the existence of an interior monomorphic UESS implies stable diversity in poly-
morphic situations through strong stability [9, 10]. Therefore, making clear the difference
between the monomorphic and polymorphic models is an interesting problem from the view-
point of biology, as well.

Appendix A

Lemma (2.2) provides the corresponding polymorphic population for the monomorphic pop-
ulation of a given phenotype. The subsequent lemma describes the reverse direction by
specifying the phenotype for which the monomorphic population corresponds to a polymor-
phic population in a given state.

Lemma A.1 ( Garay et al. [17], Proposition 3.1) Consider a polymorphic population of phe-
notypes q1,q2, . . . ,qn with frequency distribution (x1, x2, . . . , xn). Then �̄(x) = ρ

(
h(x)

)

and ω
(
h(x)

) = W̄ (x), that is, the fitness of an h(x) individual is just the average fitness
W̄ (x) of the phenotypes q1,q2, . . . ,qn in the polymorphic model.

Using the previous lemma, Lemma 2.2 and the definitions of the expressions �i , �̄, h(x),
Wi , W̄ , ρ(q), ρp(q), ω(q), ωp(q) and x(r) (see (2.2), (2.3), (2.4), (2.5), (2.7), (2.8), (2.9)
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and the second paragraph after Lemma 2.2) we gain the following “exchange rule” between
strategies and states.

Corollary A.2 (Exchange rule) Let r be a strategy in S3 and consider the polymorphic popu-
lation of the pure phenotypes e1, e2, e3. Then the following relationships hold:

h
(
x(r)

) = r, x
(
h(x)

) = x,

�i
(
x(r)

) = ρei (r), ρei

(
h(x), ei , 0

) = ρei

(
h(x)

) = �i (x),

�̄
(
x(r)

) = ρ(r), ρ
(
h(x)

) = �̄(x),

Wi (x) = ωei

(
h(x), ei , 0

) = ωei

(
h(x)

)
, ωei (r) = ωei (r, ei , 0) = Wi

(
x(r)

)
,

W̄ (x) = ω
(
h(x)

)
, ω(r) = W̄

(
x(r)

)
.

A.1 How to Find Dynamically Unstable UESS

One of the main difficulties in the analyses of the replicator Eq. (2.1) is that the right hand
side generally cannot be given in explicit form. This is because functions �i defined as
the solution of the equation system (2.2) cannot be explicitly expressed in general and this
problem already arises in three dimensions. We first tried examples in which the explicit
calculation was possible, but this way proved ineffective. Therefore, we had to find a more
systematic procedure to look for examples with UESS such that the corresponding rest point
of the replicator equation is unstable. Here we describe the method used by us. We first quote
the following characterization of UESS (Corollary 3.2 in Varga et al. [42]):

A strategy p∗ is a UESS if and only if there is a δ > 0 such that

ωp∗(p∗,q, 1)
︸ ︷︷ ︸

=ωp∗ (q)

> ωq(p∗,q, 1)
︸ ︷︷ ︸

=ω(q)

whenever 0 < ||p∗ − q|| < δ.
Accordingly, if

f (q1, q2) = f (q) = fp∗(q) = ωp∗(p∗,q, 1) − ωq(p∗,q, 1) = ωp∗(q) − ω(q),(A.18)

then p∗ is a UESS if and only if it is a strict local minimum of f . Note that since f is defined
on S3 which is a 2 dimensional manifold inR3, it can be considered as a two variable function
of q1, q2. It is well-known from multivariable calculus that if

[C1] f ′
q1(p∗

1, p∗
2) = f ′

q2(p∗
1, p∗

2) = 0,

[C2] f ′′
q1q1(p∗

1 , p∗
2) f ′′

q2q2(p∗
1, p∗

2) >
(

f ′′
q1q2(p∗

1, p∗
2)

)2 and
[C3] f ′′

q1q1(p∗
1 , p∗

2) > 0

then p∗ = (p∗
1, p∗

2, 1− p∗
1− p∗

2) is a strict localminimumof f . (see e.g. Theorem 11 of Chap-
ter 14, p. 838 inThomas [38]).Consequently, if [C1], [C2], [C3] hold forp∗ = (1/3, 1/3, 1/3)
with respect to the matrices A and T , furthermore, the state x(p∗) corresponding to p∗ is an
unstable rest point of the replicator equation, then we have found a counterexample.

Consider, therefore, the replicator Eq. (3.11) for the polymorphic population consisting
of pure phenotypes q1 = e1, q2 = e2, q3 = e3 with frequencies x1, x2 and x3 = 1− x1 − x2,
respectively. Since x1 + x2 + x3 = 1 also holds, any two equations of the system determine
the dynamics. It will thus be sufficient to investigate the differential equation system
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ẋ1 = x1[W1(x) − W̄ (x)]
ẋ2 = x2[W2(x) − W̄ (x)]. (A.19)

If p∗ is a NE,5 then the corresponding state x(p∗) is a rest point of the replicator equation
(Lemma 3.2, Garay et al. [17]). Since (1/3, 1/3, 1/3) is a UESS, which implies that it
is a NE too (see the paragraph before Definition 2.2 in Garay et al. [17]), it follows that
x(1/3, 1/3, 1/3) is a rest point of the replicator equation.

We would like x(1/3, 1/3, 1/3) to be unstable. This holds if the Jacobian matrix of the
right hand side of (A.19) has a positive eigenvalue at x(1/3, 1/3, 1/3). It can be easily checked
for a function of two variables that if the characteristic polynomials of the Jacobian matrix
is λ2 + bλ + c (where λ is the variable), then the Jacobian matrix has a positive eigenvalue
if and only if

[C4] b < 0 or c < 0

(see, for example, Chapter 4.3 in Kong [26]).
Conditions [C1]-[C4] provide equations and inequalities for the entrances of the payoff

matrix A and the time constraint matrix T . Solving them, one can find appropriate matrices
A and T for which there is a UESS p∗ but the corresponding state x(p∗) is unstable with
respect to the replicator equation.

In connection with [C4] we should avoid the explicit calculation of functions �i (i =
1, 2, 3) because, as mentioned, it is generally not possible. Fortunately, we only need the sign
of the coefficients of the characteristic polynomial of the Jacobianmatrix at the corresponding
state x(p∗) and this can be calculated. Applying Corollary A.2, rewrite (A.19) as follows.

ẋ1 = h1(x)
ρ
(
h(x)

)

ρe1
(
h(x)

)
[
ω1

(
h(x)

) − ω
(
h(x)

)]

ẋ2 = h2(x)
ρ
(
h(x)

)

ρe2
(
h(x)

)
[
ω2

(
h(x)

) − ω
(
h(x)

)]
, (A.20)

where h1, h2 is just the first two components of h, that is, h(x) = (
h1(x), h2(x), 1− h1(x)−

h2(x)
)
. If

R1(q1, q2) = q1
ρ(q)

ρe1(q)
[ω1(q) − ω(q)]

R2(q1, q2) = q2
ρ(q)

ρe2(q)
[ω2(q) − ω(q)],

then the Jacobian matrix of the right hand side of (A.20) takes the following shape:

(
∂q1 R1

(
h1(x), h2(x)

)
∂q2 R1

(
h1(x), h2(x)

)

∂q1 R2
(
h1(x), h2(x)

)
∂q2 R2

(
h1(x), h2(x)

)
)(

∂x1h1(x) ∂x2h1(x)
∂x1h2(x) ∂x2h2(x)

)

.

We need the Jacobian at state x(1/3, 1/3, 1/3). We therefore express x as a function of q
and then apply the well-known inverse function theorem (see e.g. Theorem 9.22 and (49) in
Chapter 9 (p. 181) in Rudin [34]) to the function h(x). We obtain that

5 A strategy p∗ is called Nash equilibrium for the matrix game under time constraints (NE in short) if the
inequality ωp∗ (p∗) ≥ ωq(p∗) holds for any strategy q ∈ SN (Definition 2.2 in Garay et al. [17]).
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(
∂x1h1(x) ∂x2h1(x)
∂x1h2(x) ∂x2h2(x)

)

x=x(1/3,1/3,1/3)
=

[(
∂q1x1(q) ∂q2 x1(q)

∂q1x2(q) ∂q2 x2(q)

)

q=(1/3,1/3,1/3)

]−1

=

(
∂q2 x2(q) −∂q2 x1(q)

−∂q1x2(q) ∂q1x1(q)

)

q=(1/3,1/3,1/3)

det

[(
∂q1x1(q) ∂q2 x1(q)

∂q1x2(q) ∂q2 x2(q)

)

q=(1/3,1/3,1/3)

] ,

(A.21)

where, of course, the determinant in the denominator of the rightmost side should differ from
zero. The rightmost expression already can be calculated, and this is enough for our purpose.

As regards dynamics (3.12), one can calculate the linearisation of the right hand side
similar to that done in (A.21) for replicator Eq. (3.11). Note that, nevertheless, one should
use the maps

θ �→ xE (θ) and x �→
(

θ1(x)
︷ ︸︸ ︷

x1
�1(x)
�̄(x)

,

θ2(x)
︷ ︸︸ ︷

x2
�2(x)
�̄(x)

,

θ3(x)
︷ ︸︸ ︷

x3
�3(x)
�̄(x)

,

θ4(x)
︷ ︸︸ ︷

x4
�4(x)
�̄(x)

)

=: θ(x), (A.22)

respectively, in this case rather than the maps p �→ xR(p) and x �→ h(x). Accordingly, we
rewrite dynamics (3.12) ẋi = xi [Wi (x) − W̄ (x)] (i = 1, 2, 3, 4) as

ẋi = θi (x)
ρ
(
h(x)

)

ρei

(
h(x)

)
[
ωei

(
h(x)

) − ω
(
h(x)

)]
(i = 1, 2, 3, 4).

[Note that h(x) = θ1(x)e1 + θ2(x)e2 + θ3(x)e3 + θ4(x)p∗ by (2.5) and (A.22).] Also,
the functions Ri (i = 1, 2, 3) should be given as the functions of the coefficient-list θ =
(θ1, θ2, θ3, θ4), that is,

Ri (θ1, θ2, θ3) = θi
ρ
(
p(θ)

)

ρei

(
p(θ)

)
[
ωei

(
p(θ)

) − ω
(
p(θ)

)]
(i = 1, 2, 3)

wherep(θ) = p(θ1, θ2, θ3) = θ1e1+θ2e2+θ3e3+(1−θ1−θ2−θ3)p∗ (since θ1+θ2+θ3+θ4 =
1, variable θ4 can be dropped). Then, similar to (A.21), we can calculate the Jacobian matrix
along the segment uxp∗ + (1−u)(0, 0, 0, 1), u ∈ [0, 1]. After having linearisation along this
segment, we compute the related characteristic polynomials λ3 + b(u)λ2 + c(u)λ + d(u).
Since one of the eigenvalues is zero at each point of the segment,6 it follows that d(u) = 0 for
any u ∈ [0, 1]. Therefore, the other two eigenvalues should be the zeros of the polynomial
λ2 + b(u)λ + c(u). The formulas for b(u) and c(u), respectively, are not too “beautiful”
(we, too, have used Wolfram Mathematica 12), but, after analysing them, one can see that
b(0) = c(0) = 0 and c(u) > 0 for u ∈ (0, 1]. Hence, the real part of the zeros can be
zero only if b(u) = 0. b(u) has the form (b11 − b12u)/(b22u2 − b21u + b20) or u(b11 −
b12u)/(b22u2−b21u+b20)where coefficients bi j are non-negative, b12 > b11 and b20 > b21.
We infer that the denominator is positive for any u ∈ [0, 1] so, if u ∈ (0, 1], the sign of b(u)

agrees with the sign of the expression b11 − b12u which is positive if 0 < u < b11/b12,
negative if b11/b12 < u ≤ 1 and 0 if u = b11/b12. It follows (recall condition [C4] too)
that the real parts of the two non-zero eigenvalues are positive if 0 < u < b11/b12, 0 if
u = b11/b12 and negative if b11/b12 < u ≤ 1. The state belonging to u = b11/b12 is x0.
The states belonging to u-s between 0 and b11/b12 forms the segment between xp∗ and x0

6 This is because every point of the segment is a rest point of the dynamics (3.12).
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while the states belonging to u-s between b11/b12 and 1 form the segment between x0 and
(0, 0, 0, 1) (see Figs. 2 and 5).

A.2 Conditions [C1]-[C4] for the Examples

In the previous section, we identified some conditions that can be used for seeking examples
with dynamically unstable UESS. Here, we check the conditions for the examples of the arti-
cle. Since the expressions that arise in the calculation are rather huge, we used Mathematica
12 to calculate them and we only give rounded values in the most cases.

A.2.1 Conditions [C1]-[C4] for Example 1 with s = 1

First, we consider the special case when s = 1. Then one can check that

a31(1) =
√
21 − 41

20
≈ −1.821.

A straightforward calculation yields condition [C1]. For the second order derivatives we
obtain:

f ′′
q1,q1(1/3, 1/3) ≈ 0.1685 f ′′

q2,q2(1/3, 1/3) ≈ 0.06844 f ′′
q1,q2(1/3, 1/3) ≈ 0.05584

from which we get conditions [C2] and [C3]:

f ′′
q1,q1(1/3, 1/3) f ′′

q2,q2(1/3, 1/3) ≈ 0.01153 > 0.003119 ≈ [ f ′′
q1,q2(1/3, 1/3)]2.

Condition [C4] is true with

b = 93 − 22
√
21

150
≈ −0.05211 < 0 and c = 1506 − 274

√
21

375
≈ 0.6677.

A.2.2 Conditions [C1]-[C4] for Example 1 with s ∈ (0, 3]

Note the following simplification. It is clear that f (p∗
1, p∗

2) = 0 and

ρ(q) = 2

1 + √
1 + 4qTq

≥ 2

1 + √
1 + 4 · 6 = 1

3
> 0.

It follows that f has a strict minimum at p∗ if and only if f̂ (q1, q2) := f (q1, q2)/ρ(q) has
a strict minimum at p∗, so it is enough to check [C1]-[C3] for f̂ .
Calculating the first order derivatives, we can see that [C1] is valid. For [C2], we get that

f̂ ′′
q1,q1(1/3, 1/3) f̂ ′′

q2,q2(1/3, 1/3) − f̂ ′′
q1,q2(1/3, 1/3)

2

= f̂ ′′
q1,q1(1/3, 1/3, s) f̂ ′′

q2,q2(1/3, 1/3, s) − f̂ ′′
q1,q2(1/3, 1/3, s)2 = num1(s)

den1(s)
,

where

num1(s) = 13824 s2
11∑

k=0

ck(s) sk

with
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c0(s) = 531441 (3 + √
9 + 12s),

c1(s) = 177147 (75 + 23
√
9 + 12s),

c2(s) = 19683 (2391 + 665
√
9 + 12s),

c3(s) = 183708 (501 + 124
√
9 + 12s),

c4(s) = 6561 (16381 + 3507
√
9 + 12s),

c5(s) = 5832 (12804 + 2249
√
9 + 12s),

c6(s) = 243 (113127 + 13849
√
9 + 12s),

c7(s) = 2673 (839 − 105
√
9 + 12s),

c8(s) = −81 (24873 + 4667
√
9 + 12s),

c9(s) = −27 (26307 + 2863
√
9 + 12s),

c10(s) = −63 (1281 + 79
√
9 + 12s),

c11(s) = −2433 − 49
√
9 + 12s.

and

den1(s) = 25 (3 + √
9 + 12s)5 (3 + 2s + √

9 + 12s)5·
· (
9(

√
3 + √

3 + 4s) + 2s2(4
√
3 + √

3 + 4s) + 6 s (3
√
3 + 2

√
3 + 4s)

)2

It is easy to see that den1(s) > 0, if s ≥ 0. Also, since c5(s) + s c6(s) > s3 |c8(s)| +
s4 |c9(s)|, c4(s) > s6 |c10(s)|, c3(s) > s8 |c11(s)| and c7(s) > 0 providing that s ∈ (0, 3], it
immediately follows that num1(s) > 0 if s ∈ (0, 3]. Therefore [C2] is valid for s ∈ (0, 3].

Furthermore,

f̂ ′′
q1,q1(1/3, 1/3) = f̂ ′′

q1,q1(1/3, 1/3, s) = 9
√
3 + 8

√
3s − 9

√
3 + 4s

10
√
3 + 4s

.

Since

9
√
3 + 8

√
3s − 9

√
3 + 4s =

(
9
√
3 + 8

√
3s

)2 − 92(3 + 4s)

9
√
3 + 8

√
3s + 9

√
3 + 4s

= 92 · 3 + 82 · 3s2 + 2 · 72 · 3s − 92(3 + 4s)

9
√
3 + 8

√
3s + 9

√
3 + 4s

,

we infer that f̂ ′′
q1,q1(1/3, 1/3) > 0 for any s > 0, so [C3] holds if s ∈ (0, 3].

To verify [C4], we simplify the calculation again using the fact that ρ(q) ≥ 1/3 > 0 and
that the orbits of an autonomous differential equation system do not change if each equation
is multiplied by the same positive function (Exercise 4.1.3 in Hofbauer and Sigmund [20]).
Therefore, we can use differential equation system

ẋi = hi (x)
1

ρei

(
h(x)

)
ωi

(
h(x)

) − ω
(
h(x)

)

ρ
(
h(x)

) (i = 1, 2) (A.23)

instead of differential equation system (A.20). If the characteristic polynomials of (A.23) at
x(p∗) is λ2 + b̂λ + ĉ then [C4] is valid if b̂ < 0 or ĉ < 0. We obtain that
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b̂(1/3, 1/3) = b̂(1/3, 1/3, s) = s
(−11 − 19

√
9 + 12s + 2s(7 + √

9 + 12s)
)

180(2 + 3s)

≤ s
(−11 − 19

√
9 + 12s + 42 + 6

√
9 + 12s

)

180(2 + 3s)
= s

(
31 − 13

√
9 + 12s

)

180(2 + 3s)

≤ s(31 − 39)

180(2 + 3s)
< 0

if s ∈ (0, 3] and so [C4] is also true.
In summary, [C1]-[C4] hold if s ∈ (0, 3] which imply that p∗ is a UESS such that the

corresponding state x(p∗) is an unstable rest point of the replicator dynamics with respect to
pure strategies for any s ∈ (0, 3].

A.2.3 Conditions [C1]-[C4] for the Example in Fig. 3

If we calculate the first order derivatives of function f in (A.18) we can see that condition
[C1] holds. For the second order derivatives, we get

f ′′
q1,q1(1/3, 1/3) ≈ 0.5786 f ′′

q2,q2(1/3, 1/3) ≈ 0.0275 f ′′
q1,q2(1/3, 1/3) ≈ 0.1251

from which we obtain that conditions [C2] and [C3] also hold:

f ′′
q1,q1(1/3, 1/3) f ′′

q2,q2(1/3, 1/3) ≈ 0.01591 > 0.01565 ≈ [ f ′′
q1,q2(1/3, 1/3)]2.

Condition [C4] holds with

b = 37140 − 1099
√
1245

164679
≈ −0.009945 and

c = 5(272941 − 150
√
1245)

5599086
≈ 0.239.

A.2.4 Conditions [C1]-[C4] for Example 2

Calculating the first order derivatives of the function f in (A.18) at q = (1/3, 1/3) we get
that both of them are zero so condition [C1] is valid. The second order derivatives are

f ′′
q1,q1(1/3, 1/3) ≈ 0.2808 f ′′

q2,q2(1/3, 1/3) ≈ 0.03263 f ′′
q1,q2(1/3, 1/3) ≈ −0.08918.

Hence, we infer that conditions [C2] and [C3] are also satisfied:

f ′′
q1,q1(1/3, 1/3) f ′′

q2,q2(1/3, 1/3) ≈ 0.009163 > 0.007952 ≈ [ f ′′
q1,q2(1/3, 1/3)]2.

Condition [C4] holds with

b = −4707833609 + 217368843
√
469

385839375
≈ −0.00105 < 0 and

c = 37(−6522761117 + 301243109
√
469)

1929196875
≈ 0.02076.
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A.3 Supercritical Hopf Bifurcation

Here we check that a Hopf bifurcation occurs as σ runs from 0 to 1 in the replicator equation
associated to the game with payoff matrix Ã(σ ) and time constraint matrix T̃ (σ ) defined in
(3.14).

For this purpose, consider a two dimensional system:

ẋ = r1(x, y, σ ) (A.24)

ẏ = r2(x, y, σ )

where σ ∈ (σ1, σ2) is a parameter, r1 and r2 are continuously differentiable at least five
times. Assume that (x∗, y∗) is an equilibrium point for every σ ∈ (σ1, σ2) and there is a
σ0 ∈ (σ1, σ2) such that the Jacobian of the right hand side has purely imaginary eigenvalues
that is r1(x∗, y∗, σ ) = r2(x∗, y∗, σ ) = 0 and the eigenvalues of

(
∂xr1(x∗, y∗, σ0) ∂yr1(x∗, y∗, σ0)
∂xr2(x∗, y∗, σ0) ∂yr2(x∗, y∗, σ0)

)

are ±iβ(σ0) with β(σ0) > 0. Denote by B(σ ) the Jacobian
(

∂xr1(x∗, y∗, σ ) ∂yr1(x∗, y∗, σ )

∂xr2(x∗, y∗, σ ) ∂yr2(x∗, y∗, σ )

)

.

Then the right hand side can be rewritten in the following form:
(

r1(x, y, σ )

r2(x, y, σ )

)

= B(σ )

(
x − x∗
y − y∗

)

+
(

s1(x, y, σ )

s2(x, y, σ )

)

where si (x∗, y∗, σ ) = ∂x si (x∗, y∗, σ ) = ∂ysi (x∗, y∗, σ ) = 0 (i = 1, 2).
If α(σ) ± iβ(σ) are the eigenvalues of B(σ ) and

(
k1(σ )

k2(σ )

)

± i

(
�1(σ )

�2(σ )

)

are the corresponding eigenvectors, then let

P(σ ) :=
(

k1(σ ) − �1(σ )

k2(σ ) − �2(σ )

)

.

Introduce the new variables u, v such that
(

u
v

)

= P(σ )−1
(

x − x∗
y − y∗

)

and let
(

s̃1(u, v, σ )

s̃2(u, v, σ )

)

= P−1(σ )

(
s1

(
k1(σ )u − �1(σ )v + x∗, k2(σ )u − �2(σ )v + y∗, σ

)

s2
(
k1(σ )u − �1(σ )v + x∗, k2(σ )u − �2(σ )v + y∗, σ

)
)

Using variables u, v, the system (A.24) is transformed into the following form
(

u̇
v̇

)

=
(
α(σ) −β(σ)

β(σ ) α(σ )

)(
u
v

)

+
(

s̃1(u, v, σ )

s̃2(u, v, σ )

)

.

Consider the so-called Lyapunov coefficient as follows:
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L = ∂3u s̃1 + ∂u∂2v s̃1 + ∂2u ∂v s̃2 + ∂3v s̃2 + 1

β(σ0)
[∂uv s̃1 · (∂2u s̃1

+∂2v s̃1) − ∂uv s̃2 · (∂2u s̃2 + ∂2v s̃2) − ∂2u s̃1∂
2
u s̃2 + ∂2v s̃1∂

2
v s̃2] (A.25)

where the partial derivatives are taken at (u, v, σ ) = (0, 0, σ0)
The following theorem ensures the occurrence of a supercritical Hopf bifurcation at σ0.

Theorem A.3 (Theorem 3.1.3 in Wiggins [43] or Theorem 3.4.2 in Guckenheimer and
Holmes [18]) Using the above notation, assume that the function α(σ) is differentiable,
β(σ) is continues, α(σ0) = 0, α′(σ0) �= 0 and β(σ0) �= 0. If L < 0 then a supercritical
Andronov-Hopf bifurcation occurs at σ = σ0, that is,

• if α′(σ0) > 0 then (x∗, y∗) is an asymptotically stable rest point for σ < σ0 while
unstable for σ > σ0, with an asymptotically stable periodic orbit around (x∗, y∗) for
σ > σ0;

• if α′(σ0) < 0 then (x∗, y∗) is an asymptotically stable rest point for σ > σ0 while
unstable for σ < σ0, with an asymptotically stable periodic orbit around (x∗, y∗) for
σ < σ0.

We apply the previous theorem for our example. Again, since expressions arising in
calculations are huge, we usedMathematica 12.We start from replicator Eq. (3.11) associated
with payoff matrix Ã(σ ) and time constraint matrix T̃ (σ ) defined in (3.14). Since x3 =
1 − x1 − x2, the third equation can be neglected. If x = x1 and y = x2 then r1(x, y, σ ) =
x[W1(x) − W̄ (x)] and r2(x, y, σ ) = y[W2(x) − W̄ (x)]. We get that

σ0 = 1 + √
82

54
≈ 0.1862

The characteristic polynomial at σ0 is

96641 − 10619
√
82

450
+ λ2.

It immediately follows that α(σ0) = 0 and β(σ0) �= 0. In general, the characteristic polyno-
mial is λ2 + b(σ )λ + c(σ ) with

c(σ ) = 177(−3 + √
9 + 12σ) + σ

(
1773 − 709

√
9 + 12σ + 2σ(3258 + 2145σ − 830

√
9 + 12s)

)

600σ 3(2 + 3σ)

and

b(σ ) = 9 − 3
√
9 + 12σ + σ

(
75 − 23

√
9 + 12σ + 6σ(17 − 3

√
9 + 12σ)

)

60σ 2(2 + 3σ)

Since

b(σ0)
2 − 4c(σ0) = −4c(σ0) = − 4

450

(
96641 − 10619

√
82

)
< 0,

it follows that b(σ )2 −4c(σ ) < 0 also holds in a neighbourhood of σ0. For such σ -s we have
that α(σ) = −b(σ )/2 and so we get that

α′(σ0) = −b′(σ0)
2

= 2(3230
√
82 − 29069)

5265
≈ 0.06834 �= 0

For the Lyapunov coefficient (A.25), we obtain an enormous expression, so here we give a
rounded value:

L = −0.0638681 < 0.
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(Note that the precise value is not interesting but the sign which is negative according to
Mathematica 12.) In summary, the assumptions of Theorem A.3 are satisfied, implying that
supercritical Hopf bifurcation occurs at σ0.
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