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Abstract
In this study, we mathematically demonstrate that heterogeneous networks accelerate the
social learning process, using a mean-field approximation of networks. Network heterogene-
ity, characterized by the variance in the number of links per vertex, is effectively measured
by the mean degree of nearest neighbors, denoted as 〈knn〉. This mean degree of nearest
neighbors plays a crucial role in network dynamics, often being more significant than the
average number of links (mean degree). Social learning, conceptualized as the imitation of
superior strategies from neighbors within a social network, is influenced by this network
feature. We find that a larger mean degree of nearest neighbors 〈knn〉 correlates with a faster
spread of advantageous strategies. Scale-free networks, which exhibit the highest 〈knn〉, are
most effective in enhancing social learning, in contrast to regular networks, which are the
least effective due to their lower 〈knn〉. Furthermore, we establish the conditions under which
a general strategy A proliferates over time in a network. Applying these findings to coordina-
tion games, we identify the conditions for the spread of Pareto optimal strategies. Specifically,
we determine that the initial probability of players adopting a Pareto optimal strategy must
exceed a certain threshold for it to spread across the network. Our analysis reveals that a
higher mean degree 〈k〉 leads to a lower threshold initial probability. We provide an intu-
itive explanation for why networks with a large mean degree of nearest neighbors, such
as scale-free networks, facilitate widespread strategy adoption. These findings are derived
mathematically using mean-field approximations of networks and are further supported by
numerical experiments.
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1 Introduction

In reality, human decision-making often deviates from perfect rationality, with a tendency
to imitate strategies from our neighbors. Research by [30] and [15] illustrates this through
the gradual adoption of more productive hybrid corn in the U.S., following a distinct spatial
pattern. This adoption process, characterized by an S-curve, exemplifies the diffusion of
superior strategies via imitation within social networks.

Social networks possess intriguing characteristics that have prompted extensive research.
Classic studies [20, 24, 33] reveal the ’small world’ phenomenon, where individuals in social
networks are connected through a surprisingly small number of intermediaries. Contrary to
previous assumptions of randomness, many social networks differ significantly from regular
and random networks.

Scale-free social networks, typifying heterogeneous networks, include diverse real-world
examples such as mathematical collaboration networks [16], citation networks [29], com-
munication networks [6, 10, 13], and so forth. These networks often exhibit small-world
properties, characterized by short path lengths and high clustering coefficients, a measure of
local link density.

The relationship between network structure and the game highlights the importance of
spatial or social structure of populations, represented as graphs, in shaping the evolution of
cooperation and other strategies within evolutionary games. A comprehensive review can
be found in the review by [3]. Population structure is modeled as a graph, where vertices
represent individuals, and edges indicate interactions for game payoffs and competition for
reproduction. This structural representation fundamentally influences evolutionary outcomes
by determining the interactions and competitive dynamics among individuals. The conditions
under which a strategy, such as cooperation, is evolutionarily successful are derived from
the benefit-to-cost ratio of cooperative behavior and the degree of the graph, which repre-
sents the number of connections per individual. Different update rules, which govern the
mechanisms by which individuals reproduce and replace others, can lead to different evolu-
tionary outcomes on the same graph structure, highlighting the complexity of the dynamics.
Furthermore, considering separate graphs for interactions and replacements reveals intricate
dynamics where the evolution of cooperation can depend on both the structure of interac-
tions (who plays the game with whom) and the structure of competition (who competes with
whom for reproduction). The network structure plays a crucial role in evolutionary games by
shaping the interaction and competition patterns among individuals, which, in turn, influence
the evolutionary viability of different strategies. The specific outcomes depend on the net-
work’s characteristics, the rules governing strategy update and the nature of the game itself.
Comprehensive reviews on complex networks are available in [2, 8, 9, 12, 14, 17, 26, 34], and
others. Studies [1, 5, 21, 25] have explored social learning processes. Our work adds a new
dimension by considering complex network structures like degree distribution and network
heterogeneity.

The structure of underlying networks significantly influences outcomes in networkmodels.
Scale-free networks, in particular, have substantial effects due to their heterogeneous nature.
This paper focuses on how network heterogeneity impacts outcomes by studying scale-free
networks.

We address key questions about the influence of social network structures on learning
processes from neighbors and the role of network heterogeneity. Our study involves a game
on a social network where each player interacts only with adjacent players. Our model, based
on imitation, is social learning through social networks.



Dynamic Games and Applications

2 Scale-Free Networks Enhance Social Learning Process

2.1 TheModel of Social Learning

We explore a learning process based on imitation within social networks, focusing on how
different network structures influence the spread of effective strategies. We analyze a simple
game where consistently choosing one strategy is more advantageous than the other. This
choice is a result of the social learning process. In our game model, each player, located at a
network vertex, interacts only with adjacent players. The payoff matrix for this game is:

( H E

H (a + c, a + c) (b + c, a)

E (a, b + c) (b, b)

)
, (1)

assuming a + c > b and a ≥ b. All parameters are not necessarily positive. Here, choosing
strategy H is always more beneficial than E by a constant c. Players earn their total payoff G
from these games, and the overall payoff T combines a baseline payoff and the game-derived
payoff, scaled by a factor w.

The strategy update follows an imitation dynamic, where players are likely to adopt the
majority strategy of their neighbors or a strategy yielding a better payoff. This dynamic
ensures that the more effective strategy gradually but consistently spreads over time.

2.2 The Update Rule of the Strategies

Initially, a fraction r of players adopt strategy H , while the rest choose E . Strategy updates
occur at each time step, where a randomly selected player imitates the strategy of adjacent
players based on their total payoffs. Figure1 illustrates this update rule, demonstrating how
the strategy spread can be viewed as a learning process through local social interactions.

We aim to understand how the speed of strategy spread varies with different network
structures.

2.3 Notations Used

We define the network size as N , the mean degree as 〈k〉, and the mean degree of nearest
neighbors as 〈knn〉. The latter is crucial for network dynamics and differs from the mean
degree in non-regular networks. We apply the mean-field approximation from our previous
studies [18, 19], where the degree of a randomly chosen vertex is approximated by 〈k〉,
and that of its nearest neighbor by 〈knn〉. Let qX |Y (k1, k2) denote the conditional probabil-
ity of finding an X-player, given that the adjacent vertex is occupied by a Y-player, and
that the degrees of the X-player and the Y-player are k1 and k2, respectively. We define
qnnX |Y := qX |Y (〈knn〉, 〈knn〉). Figure2 schematically represents this approximation. We also
introduce various probabilities and conditional probabilities to describe the network’s strat-
egy distribution, using the pair approximationmethod [22]. Our approach extends themethod
developed in [18] to analyze the spread of strategies in general uncorrelated networks, leading
to Eq. (38).
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Fig. 1 Update rule of the game: the shaded circle represents a randomly chosen player who will adopt the
strategy of adjacent players (H or E) based on a probability proportional to their total payoffs

Fig. 2 Mean-field approximation scheme: a shows a randomly chosen vertexwithmean degree 〈k〉, surrounded
by vertices with degree 〈knn〉. b depicts neighboring vertices with degree 〈knn〉, also surrounded by vertices
with the same degree in the mean-field model

2.4 The Case of a General Payoff Matrix

While our primary interest lies in the specific payoff matrix outlined in Eq. (1), we extend
our analysis to a general payoff matrix involving strategies A and B, represented as:

( A B

A (x, x) (y, z)

B (z, y) (s, s)

)
(2)
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2.5 The Change in the Probability of Strategy A

Following the approach in our previouswork [18], we examine the scenariowhere a randomly
chosen player, initially adopting strategy B, switches to strategy A. This change results in
an increase in the probability of strategy A, denoted as pA, by 1/N . In the mean-field
approximation, where the degrees of nearest neighbors are represented by 〈knn〉, the payoffs
f A and fB for neighboring A and B players are calculated as follows:

f A = 1 − w + w
[
(〈knn〉 − 1)qnnA|Ax + ((〈knn〉 − 1)qnnB|A + 1)y

]
, (3)

fB = 1 − w + w
[
(〈knn〉 − 1)qnnA|Bz + ((〈knn〉 − 1)qnnB|B + 1)s

]
. (4)

The probability of a configuration where a randomly chosen B-player is surrounded by
kA A-neighbors and kB B-neighbors is given by:

(qA|B)kA (qB|B)kB
〈k〉!

kA!kB ! . (5)

In this configuration, the probability of the B-player switching to strategy A is:

kA fA
kA fA + kB fB

. (6)

Thus, the probability that a B-player is randomly chosen and updates their strategy from
B to A, resulting in an increase in pA by 1/N , is:

pB
∑

kA+kB=〈k〉
(qA|B)kA (qB|B)kB

〈k〉!
kA!kB !

kA fA
kA fA + kB fB

. (7)

Conversely,when anA-player is randomly chosen and switches to strategyB, pA decreases
by 1/N . The payoffs gA and gB for neighboring A and B players in this case are:

gA = 1 − w + w
[
((〈knn〉 − 1)qnnA|A + 1)x + (〈knn〉 − 1)qnnB|Ay

]
, (8)

gB = 1 − w + w
[
((〈knn〉 − 1)qnnA|B + 1)z + (〈knn〉 − 1)qnnB|Bs

]
. (9)

The probability of a configuration where the randomly chosen A-player is surrounded by
kA A-neighbors and kB B-neighbors is:

(qA|A)kA (qB|A)kB
〈k〉!

kA!kB ! . (10)

In this configuration, the probability of the A-player switching to strategy B is:

kBgB
kAgA + kBgB

. (11)

Therefore, the expected change in pA per time step in the mean-field approximation is
given by:

E[�pA] = 1

N
pB

∑
kA+kB=〈k〉

(qA|B)kA (qB|B)kB
〈k〉!

kA!kB !
kA fA

kA fA + kB fB

− 1

N
pA

∑
kA+kB=〈k〉

(qA|A)kA (qB|A)kB
〈k〉!

kA!kB !
kBgB

kAgA + kBgB
. (12)
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Similarly, considering the scenario where a player with degree 〈knn〉 is randomly cho-
sen to change their strategy, we derive the change in pnnA per time step in the mean-field
approximation as:

E[�pnnA ] = 1

N
pnnB

∑
kA+kB=〈knn〉

(qnnA|B)kA (qnnB|B)kB
〈knn〉!
kA!kB !

kA fA
kA fA + kB fB

− 1

N
pnnA

∑
kA+kB=〈knn〉

(qnnA|A)kA (qnnB|A)kB
〈knn〉!
kA!kB !

kBgB
kAgA + kBgB

. (13)

2.6 The Change in Conditional Probabilities

The dynamics of the probabilities pA and pnnA , as outlined in Eqs. (12) and (13), are influenced
by the conditional probabilities qA|A and qnnA|A. We explore the dynamics of these conditional
probabilities.

First, we consider the scenario where qA|A increases. This occurs when a B-player, chosen
randomlywith probability pB , updates their strategy toA. Let kA and kB represent the number
of neighboring A-players and B-players to the chosen B-player, respectively, satisfying kA +
kB = 〈k〉. The likelihood of this configuration is:

〈k〉!
kA!kB ! (qA|B)kA (qB|B)kB . (14)

The probability of the B-player switching to A is:

kA fA
kA fA + kB fB

. (15)

Thus, the increase in qA|A is:

�+ = kA
pAN 〈k〉 + O(w). (16)

The expected increase in qA|A per time step in the mean-field approximation is:

∑
kA+kB=〈k〉

kA
pA〈k〉N pB

〈k〉!
kA!kB ! (qA|B)kA (qB|B)kB

kA fA
kA fA + kB fB

. (17)

Conversely, when an A-player is randomly chosen (probability pA) and switches to B,
qA|A decreases. The probability of this configuration is:

〈k〉!
kA!kB ! (qA|A)kA (qB|A)kB . (18)

The probability of the A-player switching to B is:

kBgB
kAgA + kBgB

. (19)

Thus, the decrease in qA|A is:

�− = kA
pAN 〈k〉 + O(w). (20)
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The expected decrease in qA|A per time step in the mean-field approximation is:

∑
kA+kB=〈k〉

kA
pA〈k〉N pA

〈k〉!
kA!kB ! (qA|A)kA (qB|A)kB

kBgB
kAgA + kBgB

. (21)

Combining these cases, the expected change in qA|A per time step in the mean-field
approximation is:

E[�qA|A] =
∑

kA+kB=〈k〉

kA
pA〈k〉N pB

〈k〉!
kA!kB ! (qA|B)kA (qB|B)kB

kA fA
kA fA + kB fB

−
∑

kA+kB=〈k〉

kA
pA〈k〉N pA

〈k〉!
kA!kB ! (qA|A)kA (qB|A)kB

kBgB
kAgA + kBgB

. (22)

For qnnA|A, we consider the case where the degree of the randomly chosen vertex is 〈knn〉.
The expected change in qnnA|A per time step in the mean-field approximation is:

E[�qnnA|A] =
∑

kA+kB=〈knn〉

2kA
pnnA 〈knn〉N pnnB

〈knn〉!
kA!kB ! (q

nn
A|B)kA (qnnB|B)kB

kA fA
kA fA + kB fB

−
∑

kA+kB=〈knn〉

2kA
pnnA 〈knn〉N pnnA

〈knn〉!
kA!kB ! (q

nn
A|A)kA (qnnB|A)kB

kBgB
kAgA + kBgB

. (23)

This analysis provides insights into the dynamics of conditional probabilities within the
network, crucial for understanding the spread of strategies in social learning processes.

2.7 The Speed of the Spread of General Strategy A

Through detailed calculations and expansion of Eqs. (12), (13), (22) and (23), and considering
the continuous time limit, we arrive at the following equations:

d

dt
pA = 〈k〉 − 1

〈k〉N pAB
(
Ix x + Iy y − Iz z − Iss

)
w + O(w2), (24)

d

dt
pnnA = 〈knn〉 − 1

〈knn〉N pAB
(
I nnx x + I nny y − I nnz z − I nns s

)
w + O(w2), (25)

d

dt
qA|A = 1

〈k〉NpA
pAB

[
1 + (〈k〉 − 1)qA|B − qA|A

] + O(w), (26)

d

dt
qnnA|A = 2

〈knn〉NpnnA
pAB

[
1 + (〈knn〉 − 1)qnnA|B − qnnA|A

]
+ O(w), (27)
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where

Ix : = (〈knn〉 − 1)qnnA|A(qA|A + qB|B) + qA|A,

Iy : = (〈knn〉 − 1)qnnB|A(qA|A + qB|B) + qB|B ,

Iz : = (〈knn〉 − 1)qnnA|B(qA|A + qB|B) + qA|A,

Is : = (〈knn〉 − 1)qnnB|B(qA|A + qB|B) + qB|B ,

(28)

I nnx : = (〈knn〉 − 1)qnnA|A(qnnA|A + qnnB|B) + qnnA|A,

I nny : = (〈knn〉 − 1)qnnB|A(qnnA|A + qnnB|B) + qnnB|B ,

I nnz : = (〈knn〉 − 1)qnnA|B(qnnA|A + qnnB|B) + qnnA|A,

I nns : = (〈knn〉 − 1)qnnB|B(qnnA|A + qnnB|B) + qnnB|B .

(29)

We confirm that E[�pA] is of the order O(w), while E[�qA|A] is of the order O(w0).
To derive Eq. (24), we employed the mean-field relation qX |Y pY = pXY = pY X =

qY |X pX . This relation is justified as follows: In the mean-field approximation, the pair prob-
ability pXY is given by:

pXY =
∑

knn,k qX |Y (knn, k)P(knn, k)p(k)pY (k)kN

N 〈k〉 (30)

= qX |Y pY N 〈k〉
N 〈k〉 = qX |Y pY , (31)

where P(knn, k) is the probability of a vertex pair having degrees k and knn, p(k) is the
probability of a vertex having degree k, pY (k) is the probability of a vertex with strategy Y
and degree k, and qX |Y (knn, k) is the conditional probability of a vertex with strategy X and
degree knn given a neighboring vertex with strategy Y and degree k.

Thus, pXY = qX |Y pY holds in the mean-field approximation, and similarly, pY X =
qY |X pX holds. Therefore, the mean-field relation qY |X pX = pY X = pXY = qX |Y pY is
valid.

Due to this relation, the O(w0) term in Eq. (24) vanishes.
We now have the following system of equations from Eqs. (24)–(27):

ṗA = F1(pA, q A|A, qnnA|A)w + O(w2),

ṗnnA = F2(p
nnA, q A|Ann)w + O(w2),

q̇A|A = F3(pA, qA|A, qnnA|A) + O(w),

q̇nnA|A = F4(p
nnA, q A|Ann) + O(w).

(32)

Since ṗA and ṗnnA are of order O(w), while q̇A|A and q̇nnA|A are of order O(w0), the
conditional probabilities qA|A and qnnA|A converge much faster than pA and pnnA . Thus, we can
assume that q̇A|A = 0 and q̇nnA|A = 0 always hold. In other words, the system converges to
the slow manifold given by F3 = 0 and F4 = 0. From F3 = 0 and F4 = 0, we have:

1 + (〈k〉 − 1)qA|B − qA|A = 0,

1 + (〈knn〉 − 1)qnnA|B − qnnA|A = 0.
(33)

Using the mean-field relations and Eqs. (33), the probabilities of strategies pA, pB , pnnA ,
pnnB , and the conditional probabilities qA|A, qB|A, qB|B , qA|B , qnnA|A, qnnB|A, qnnB|B , and qnnA|B can
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be expressed in terms of only pA and pnnA as follows:

(〈k〉 − 1)qA|A = (〈k〉 − 1)pA + pB , (34)

(〈k〉 − 1)qB|B = (〈k〉 − 1)pB + pA, (35)

(〈knn〉 − 1)qnnA|A = (〈knn〉 − 1)pnnA + pnnB , (36)

(〈knn〉 − 1)qnnB|B = (〈knn〉 − 1)pnnB + pnnA . (37)

Proposition 1 The expected change of the probability pA for the general payoff matrix in a
unit time step �t is derived using Eq. (24), (34)–(37):

E[�pA] = 1

N
Pr

(
�pA = 1

N

)
− 1

N
Pr

(
�pA = − 1

N

)

� 〈k〉 − 2

〈k〉(〈k〉 − 1)N
pA(1 − pA)

[
α pA + β pnnA + γ

]
w�t, (38)

where

α := (x − y − z + s)(〈k〉 − 2), (39)

β := (x − y − z + s)〈k〉(〈knn〉 − 2), (40)

γ := (x − y − z + s) + (x − y)〈k〉 + 〈k〉〈knn〉(y − s). (41)

This proposition outlines the speed E[�pA] of the spread of strategy A with the general
payoff matrix given by Eq. (2).

2.8 The Speed of the Spread of the Better Strategy H

We have already derived the expected change E[�pA] in pA per unit time step as Eq. (38) for
a general payoff matrix. Now, we apply this to the specific payoff matrix of social learning
in Eq. (1). Let pH denote the probability that a randomly chosen player adopts strategy H .
The expected change E[�pH ] in the probability pH per unit time step �t is given by:

E[�pH ] � 〈k〉 − 2

(〈k〉 − 1)N
pH (1 − pH ) [a − b + 〈knn〉c]w�t

=: msl(pH , 〈k〉, 〈knn〉)�wt . (42)

Here, msl(pH , 〈k〉, 〈knn〉) represents the speed of spread of the better strategy H . The
superscript sl in msl stands for social learning. This speed satisfies the following conditions:

∂msl

∂〈k〉 > 0, (43)

∂2msl

∂〈k〉2 < 0, (44)

∂msl

∂〈knn〉 > 0. (45)

Based on these conditions, we propose the following:

Proposition 2 The expected speed E[�pH ] of the spread of the better strategy H increases
with the mean degree 〈k〉 and the mean degree of nearest neighbors 〈knn〉 in the mean-field
approximation.
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Comparing two networks, network 1 and 2, with the same network size N , number of
links L , and initial probability of strategy H , but different mean degrees of nearest neighbors
〈knn〉, we find that the network with a greater 〈knn〉 enhances social learning more effectively.
This is captured by the difference in the speed of spread of strategy H between the two
networks, denoted as �msl

12:

�msl
12 : = msl(pH , 〈k〉, 〈k1nn〉) − msl(pH , 〈k〉, 〈k2nn〉)

= 〈k〉 − 2

〈k〉 − 1

1

N
pH (1 − pH )

[〈k1nn〉 − 〈k2nn〉
]
c. (46)

Given that 〈knn〉 = σ 2+〈k〉2
〈k〉 in uncorrelated networks, where σ 2 is the variance of the

degree distribution, we have:

∂msl

∂(σ 2)
= ∂〈knn〉

∂(σ 2)

∂msl

∂〈knn〉 > 0. (47)

Thus, we conclude with the following proposition:

Proposition 3 The more heterogeneous the network is, the more it enhances the speed of the
social learning process in the mean-field approximation.

Considering three representative networks-a regular network, a random network, and a
scale-free network-with the same mean degree, we find that scale-free networks enhance
social learning the most, while regular networks do the least. This is summarized in the
following lemma:

Lemma 1 Among three representative networks with the same mean degree, scale-free net-
works enhance social learning the most, and regular networks the least, in the mean-field
approximation.

Furthermore, if the mean degree 〈k〉 is large enough such that (〈k〉 − 2)/(〈k〉 − 1) ≈ 1,
the speed of the spread of the better strategy is primarily influenced by the mean degree of
nearest neighbors 〈knn〉, as stated in the following proposition:

Proposition 4 If the mean degree 〈k〉 is sufficiently large, the speed msl of the spread of the
better strategy H is approximately given by:

msl ≈ 1

N
pH (1 − pH ) [a − b + 〈knn〉c] . (48)

Therefore, in networks with a large mean degree 〈k〉, the mean degree of nearest neighbors
〈knn〉 becomes the critical factor influencing the speed of the spread of the better strategy in
the mean-field approximation.

2.9 Numerical Simulation for Social Learning in Scale-Free Networks

To validate the theory that network heterogeneity enhances social learning, we conducted
numerical simulations on scale-free networks. These networks were constructed using a
preferential attachment mechanism, known as the Barabási–Albert (BA) model [7, 11]. The
construction process is as follows:

1.We start with a complete network of K vertices, where every vertex is connected to every
other vertex. 2. A new vertex with m links is added to the existing network. The probability
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Fig. 3 The spread of the better strategy: the graph demonstrates that a more heterogeneous network facilitates
the spread of the better strategy. These numerical experiments also support Proposition 4 and Eq. (47). The
network size is N = 3000, the mean degree is 〈k〉 = 10, w=5 × 10−4, and the payoff parameters are
(a, b, c) = (1.5, 1, 10). The y-axis represents the number of H players at the end of the simulation, while
the x-axis shows the mean degree of nearest neighbors 〈knn〉, indicating the extent of network heterogeneity.
Note that while 〈knn〉 varies, the connection density 〈k〉 remains constant across different networks

of this new vertex connecting to an existing vertex i is proportional to (ki + A)/
∑

j (k j + A),
where ki is the degree of vertex i . 3. This process is repeated until the network reaches the
desired size.

For our simulations, we used m = 5, K = m + 1, and a network size of N = 3000. The
mean degree across all networks was 〈k〉 = 10. We varied the exponent γ of the scale-free
network to be 2.1, 2.2, 2.4, and 3, respectively. Initially, 750 players were randomly assigned
as H players, and the remaining 2250 were E players. Each player’s strategy was updated
according to the rule described in Sect. 2.2. Each simulation ran for 15, 000 time steps, after
which we recorded the number of H players. This process was repeated 100 times for each
network to calculate the average number of H players and the averagemean degree of nearest
neighbors 〈knn〉. The game’s payoff parameters were set as a = 1.5, b = 1, and c = 10, with
w = 5 × 10−4.

The results, illustrated in Fig. 3, confirm that network heterogeneity significantly enhances
social learning, aligning with our theoretical predictions.

3 Understanding the Enhancement of Social Learning in Scale-Free
Networks

In Sect. 2, we established that scale-free networks significantly enhance social learning. This
section delves into the reasons behind this phenomenon, focusing on the role of hub players
in these networks.

3.1 Model Overview

To elucidate this, we examine a model where players’ payoffs are independent of their
neighbors’ strategies, yet a learning network exists to indicate who learns from whom. This
scenario, essentially not a game in the traditional sense, represents a specific case of the
general payoff matrix [Eq. (2)]. We consider two strategies, U and V , with U yielding a
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Fig. 4 Strategy update example: this figure illustrates how a player’s strategy is updated. The shaded circle
represents a randomly chosen player, whose strategy change is influenced by the total payoffs of adjacent
players adopting strategies U and V

higher payoff (u) than V (v), assuming u > v. If we express the payoff using the payoff
matrix, it is

( U V

U (u, u) (u, v)

V (v, u) (v, v)

)
. (49)

The strategy update rule remains the same as previously described, with players likely to
adopt the majority strategy among neighbors or the one with a better payoff.

Initially, a fraction r of players adopt strategyU , while the rest opt for V . The network in
this model lacks degree-degree correlation, similar to our earlier discussions.

3.2 Strategy Update Example

An example of strategy updating is depicted in Fig. 4. Here, the total payoff for players
adopting strategy U around a randomly chosen player is denoted as TU = 2(1 − w + wu),
and similarly, TV = 2(1− w + wv) for strategy V . The probability of the randomly chosen
player switching from V to U in the next step is TU/(TU + TV ).

3.3 Speed of Strategy Spread

Let pU and pV represent the probabilities of a randomly chosen player adopting strategiesU
and V , respectively. The speed of strategyU ’s spread, denoted as E[�pU ], is approximately
given by Eq. (A.20) in the appendix as:

E[�pU ] ≈ u − v

N

〈k〉 − 2

〈k〉 − 1
pU (1 − pU )w�t . (50)
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This equation indicates that the speed of social learning is independent of the mean degree
of nearest neighbors 〈knn〉 in this model, where only the learning network exists and payoffs
depend solely on individual strategies. Conversely, when both the learning network and the
game network exist, the speed of social learning is influenced by 〈knn〉.

3.4 Proposition and Implications

We propose the following:

Proposition 5 In a learning network where payoffs depend only on individual strategies,
the speed of spreading a superior strategy increases with the network’s mean degree 〈k〉.
However, this speed is not influenced by the mean degree of nearest neighbors 〈knn〉 in the
mean-field approximation.

This finding suggests that the enhancement of social learning in scale-free networks is not
due to the learning network’s scale-free nature per se, but rather because the game network is
scale-free. In such networks, hub players, who have a significant payoff difference between
strategies, are more inclined to adopt the superior strategy. Consequently, their neighboring
players are likely to follow suit, leading to a rapid spread of the better strategy through these
influential hub players.

3.5 Numerical Validation of Proposition 5

To verify whether network heterogeneity impacts the social learning process, particularly
when the learning network exists and payoffs depend solely on individual strategies, we
conducted numerical simulations on scale-free networks.

3.5.1 Simulation Setup

The construction of scale-free networks and the parameters used are identical to those in
Sect. 2.9. Specifically, we utilized networks with a mean degree of 〈k〉 = 10 and a size of
N = 3000. Four distinct networks were simulated, each characterized by different values of
the exponentγ : 2.1, 2.2, 2.4, and 3. Initially, 750 playerswere designated asU strategists,with
the remaining 2250 adopting strategy V . Strategy updates followed the previously outlined
rule, with simulations running for 15,000 time steps.

3.5.2 Simulation Parameters and Procedure

The payoff parameters were set at u = 10 and v = −10, withw = 5×10−3. Each simulation
was repeated 100 times for every network to ensure reliability. The primary focus was on the
final count ofU players and the average mean degree of nearest neighbors 〈knn〉 across these
repetitions.

3.5.3 Results and Implications

The results, depicted in Fig. 5, demonstrate that network heterogeneity does not significantly
influence the social learning process under the given conditions. This finding aligns with the
expectations set forth in Proposition 5.
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Fig. 5 Impact of network heterogeneity on strategy spread: this figure illustrates the results of numerical
simulations, supporting Proposition 5. It shows that the spread speed of the superior strategy is not significantly
influenced by network heterogeneity. The scale-free networks used in the simulation have a consistent network
size (N = 3000) and mean degree (〈k〉 = 10), with varying mean degrees of nearest neighbors 〈knn〉. The
y-axis represents the final count of U players, and the x-axis reflects the mean degree of nearest neighbors,
indicating network heterogeneity

4 Coordination Game: Threshold Probability for Strategy Spread in
Networks

In exploring a coordination game with imitation dynamics on networks, we first analyze
the game with a general payoff matrix to determine the conditions under which a particular
strategy, denoted as A, proliferates across the network.

Threshold Initial Probability for Strategy Spread.
We denote pnnA as the probability that a player adjacent to a randomly chosen player

adopts strategy A. In the mean-field approximation, the degree of such a neighboring player
is represented by 〈knn〉. The expected change in the probability pnnA over a unit time step �t
is derived using Eqs. (25), (34)–(37). The detailed calculation, akin to Eq. (38), yields:

E[�pnnA ] ≈ 〈knn〉 − 2

〈knn〉(〈knn〉 − 1)N (〈knn〉) p
nn
A (1 − pnnA )

[
(αnn + βnn)p

nn
A + γnn

]
w�t, (51)

where αnn, βnn, and γnn are defined based on the payoff matrix elements and 〈knn〉.
Threshold Conditions for Strategy Spread.

We define r := pA(t = 0) as the initial probability of adopting strategy A. The condition
for strategy A to spread over the network is determined by whether m(r , rnn) > 0. The
threshold conditions, depending on the payoff matrix elements, are as follows:

• If x − y − z + s > 0, the threshold condition is:

r >
−(x − y − z + s) − 〈k〉(x − y + (y − s)〈knn〉)

(x − y − z + s)[〈k〉(〈knn〉 − 1) − 2] , (52)

〈knn〉(y − s) > y − x . (53)

• If x − y − z + s = 0, the condition becomes:
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• If x − y − z + s < 0, the threshold condition is:

r <
−(x − y − z + s) − 〈k〉(x − y + (y − s)〈knn〉)

(x − y − z + s)[〈k〉(〈knn〉 − 1) − 2] . (54)

Proposition on Strategy Spread.
We propose that a strategy spreads over the network as time progresses if the initial proba-

bility of a player adopting the strategy exceeds (or does not exceed) the threshold probabilities
as outlined in Eqs. (52)–(54), within the framework of the mean-field approximation. Addi-
tionally, we explore the impact of network heterogeneity on these thresholds, particularly in
the limit as 〈knn〉 → ∞.

4.1 Coordination Game: Payoff Matrix and Strategy Spread Dynamics

In this section, we delve into a coordination game characterized by a specific payoff matrix
and analyze the dynamics of strategy spread within network structures.

4.1.1 Payoff Matrix of the Coordination Game

The coordination game under consideration is defined by the following payoff matrix:

( R P

R (d, d) (e, 0)

P (0, e) ( f , f )

)
. (55)

Players choose between strategies R and P , with the payoff parameters satisfying d + e > f
and f > d > e > 0. This scenario corresponds to the case where x − y − z + s > 0. The
optimal strategy pair is (P, P), with Nash equilibriums at (R, R) and (P, P). Strategy R is
risk-dominant over P .

4.1.2 Threshold Initial Probability for Strategy Spread

The initial probability r for a player to adopt strategy R plays a crucial role. If r satisfies the
following condition:

r >
−(d − e + f ) − (e − f )〈k〉〈knn〉 − (d − e)〈k〉

(d − e + f )[〈k〉〈knn〉 − 〈k〉 − 2] (=: rth), (56)

then strategy R proliferates over time. Conversely, if r is below this threshold, the Pareto
optimal strategy P becomes dominant.

In the context of significant network heterogeneity (i.e., 〈knn〉 → ∞), the threshold
condition simplifies to:

r >
f − e

d − e + f
. (57)

This implies that the expected payoffs for adopting strategies R and P become equivalent.
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4.1.3 Impact of Network Heterogeneity on Strategy Spread

The relationship between network heterogeneity and the spread of the Pareto optimal strategy
is influenced by the sign of e + (d − f )(1 + 〈k〉). Specifically:
1. If e+(d− f )(1+〈k〉) > 0, increasing network heterogeneity lowers the threshold initial

probability, favoring the spread of the Pareto optimal strategy.
2. Conversely, if e+(d− f )(1+〈k〉) < 0, the result is reversed, favoring the risk-dominant

strategy.

Additionally, as the mean degree 〈k〉 rises, the threshold for the Pareto optimal strategy’s
spread decreases, regardless of the sign.

4.1.4 Proposition on Strategy Spread in Networks

We propose that the network’s heterogeneity plays a significant role in determining the
spread of strategies. In networks with a sufficiently large mean degree 〈k〉, the mean degree
of nearest neighbors 〈knn〉 predominantly influences the spread of the risk-dominant strategy
R.

4.1.5 Scenario Where Risk Dominant Strategy is Also Pareto Optimal

In our previous discussions,we considered scenarioswhere the risk dominant strategydiffered
from the Pareto optimal strategy. We now turn our attention to a scenario where the risk
dominant strategy is also the Pareto optimal. This situation arises under the conditions d+e >

f , d > f , and d > e > 0, where strategy R is both risk dominant and Pareto optimal.

Threshold Initial Probability for Strategy Spread. In this unique scenario, the threshold ini-
tial probability for the spread of strategy R is governed by the same equation as before
[Eq. (56)]. However, the condition e + (d − f )(1 + 〈k〉) > 0 is always satisfied, leading to
an interesting outcome: as network heterogeneity increases, the threshold initial probability
for strategy R also rises. This indicates that network heterogeneity, in this case, acts as a
barrier to the spread of strategy R, despite its dual status as both the risk dominant and Pareto
optimal.

Impact of Mean Degree and Network Heterogeneity. The role of the mean degree 〈k〉 is also
noteworthy. Since ∂rth

∂〈k〉 > 0, an increase in the mean degree similarly raises the threshold
initial probability for strategy R. This contrasts with scenarios where the risk dominant and
Pareto optimal strategies are distinct, where the influence of the mean degree and the mean
degree of nearest neighbors can diverge. In this unique case, however, both factors align in
their impact on strategy spread.

In summary, when the risk dominant strategy also represents the Pareto optimal
choice, both network heterogeneity and the mean degree of the network play a rein-
forcing role in determining the threshold for strategy proliferation. This highlights the
nuanced interplay between network characteristics and strategy dynamics in coordination
games.
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Fig. 6 Coordination game simulation on a random network: this figure validates the theoretical threshold
[Eq. (56)] through numerical experiments on a random network. The network parameters are N = 1000,
〈k〉 = 10, and w = 5× 10−4. The payoff matrix is as per Eq. (58). The y-axis represents the final probability
of P players, while the x-axis shows the initial probability of adopting the Pareto optimal strategy P . The
dashed line marks the theoretical threshold

4.2 Numerical Validation of the Theoretical Threshold in theMean-Field
Approximation

To validate the theoretical threshold derived in the mean-field approximation, we conducted
numerical simulations of a coordination game.The game’s payoffmatrix is defined as follows:

( R P

R (10, 10) (8, 0)

P (0, 8) (12, 12)

)
. (58)

Simulation Setup. The simulations were executed on both a random network and a scale-free

network, as illustrated in Figs. 6 and 7. The scale-free networks were constructed using the
BA model, similar to the approach in Sect. 2.9. In each simulation step, a player is selected
at random to update their strategy based on the defined rules. The simulation concludes after
40,000 time steps, at which point we record the proportion of players adopting strategy P .

Simulation Repetition andAveraging.Each simulationwas repeated 100 times, and the results
were averaged. A data point above the 45-degree line in the figures indicates that strategy
P has successfully spread across the network over time. The simulations demonstrate that
when the initial probability surpasses the theoretical threshold, the prevalence of strategy P
is higher at the end of the simulation than at the beginning, confirming the validity of the
mean-field approximation threshold.

Figures and Interpretation These simulations corroborate the theoretical findings, demon-
strating that the mean-field approximation provides an accurate prediction of the threshold
for strategy spread in coordination games on both random and scale-free networks.

4.3 Facilitating the Spread of Pareto Optimal Strategy

Previously, we analyzed scenarios where the initial probability of adopting a strategy was
independent of a player’s network degree. We now explore how the strategic positioning of
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Fig. 7 Coordination game
simulation on a scale-free
network: this figure confirms the
theoretical threshold [Eq. (56)]
for a scale-free network.
Parameters include N = 1500,
〈k〉 = 10, w = 5 × 10−4, and
γ = 3. The payoff matrix follows
Eq. (58). The y-axis shows the
final probability of P players,
and the x-axis represents the
initial probability of adopting
strategy P . The dashed line
indicates the theoretical threshold

players, particularly on hub vertices, can influence the spread of the Pareto optimal strategy.
Specifically, we examine the impact when hub vertices are more likely to adopt strategy P
initially.

Threshold Derivation for Differing Probabilities. To illustrate this, we derive the threshold
condition for the case where r 
= rnn. Following a similar approach as before, we consider
the general payoff matrix and establish the threshold r for different probabilities r and rnn,
representing the likelihood of strategy R being adopted by vertices of varying degrees.

Threshold Conditions.

• Positive Case: If x − y − z + s > 0, the threshold is defined as:

r >
−(x − y − z + s)〈k〉(〈knn〉)rnn − (x − y − z + s) − (x − y)〈k〉 − (y − s)〈k〉〈knn〉

(x − y − z + s)(〈k〉 − 2)

=: r th. (59)

• Neutral Case: If x − y − z + s = 0, the condition becomes:

〈knn〉(y − s) > y − x . (60)

• Negative Case: If x − y − z + s < 0, the threshold is:

r <
−(x − y − z + s)〈k〉(〈knn〉)rnn − (x − y − z + s) − (x − y)〈k〉 − (y − s)〈k〉〈knn〉

(x − y − z + s)(〈k〉 − 2)
.

(61)

Impact of Hub Vertices. In scenarios where x − y − z + s > 0, a key relationship emerges:

∂r th

∂rnn
= −〈k〉(〈knn〉 − 2)

〈k〉 − 2
< 0. (62)

This relationship implies that as the initial probability of hub vertices adopting strategy
P increases, the overall threshold probability for strategy P to spread across the network
decreases.

Proposition for Strategy Spread.

Proposition 6 In a coordination game, increasing the initial probability of hub vertices adopt-
ing the Pareto optimal strategy P leads to a lower threshold probability for the widespread
adoption of strategy P across the network, as per the mean-field approximation.
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Fig. 8 Comparison and confirmation of Proposition 6: the proposition is substantiated by the numerical
simulations. The proposition implies that the spread of the Pareto optimal strategy is facilitated when players
on hub vertices initially adopt this strategy. The dots represent the simulation results from Fig. 7, where the
initial probability of adopting a strategy was independent of the players’ network degree. The crosses represent
the simulation where hub players are more likely to be P players initially. The network parameters include a
scale-free network with a size of N = 1500, a mean degree of 〈k〉 = 10, w = 5 × 10−4, and an exponent
γ = 3. The payoff matrix follows Eq. (58). The y-axis shows the probability of players adopting strategy P
at the end of the simulation, while the x-axis represents the initial probability of adopting strategy P . The
45-degree line is also included for reference

This proposition suggests that strategically positioning players on hub vertices to adopt
the Pareto optimal strategy can significantly enhance its spread across the network.

4.4 Numerical Validation of Proposition 6

To validate Proposition 6, we conducted a numerical simulation on a scale-free network,
using the payoff matrix detailed in Eq. (58). The simulation results are depicted in Fig. 8.
Initially, players adopting strategy P were strategically placed on vertices in descending
order of their degree, until the ratio of P players to the total network size N matched the
initial probability 1 − r . The strategy updates continued for 40, 000 time steps.

Simulation Results. The outcomes of this simulation are represented by crosses in Fig. 8. For
comparison, we also present results from a previous simulation (illustrated in Fig. 7) where
the initial probability of adopting a strategy was not influenced by the players’ network
degree. These results are indicated by dots in the figure.

Interpreting the Results. The crosses consistently appear above the dots, signifying that the
simulation supports Proposition 6. This outcome suggests that when players on hub vertices
initially adopt the Pareto optimal strategy, it significantly enhances the strategy’s spread
across the network.

5 Understanding How a LargeMean Degree of Nearest Neighbors
Facilitates Strategy Spread in Networks

This section aims to provide an intuitive understanding, using a mean-field perspective, of
why networks with a large mean degree of nearest neighbors (〈knn〉) are conducive to the
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Fig. 9 Intuitive understanding andmean-field perspective: a Illustrates a randomly chosen vertex (representing
ordinary vertices) and its nearest neighbors. The degree of the randomly chosen vertex is the mean degree
〈k〉, while the degrees of the nearest neighbors are the mean degree 〈knn〉. bDepicts neighboring vertices with
degree 〈knn〉, each surrounded by vertices also having a degree of 〈knn〉, in the mean-field model

spread of a strategy. This understanding is crucial for comprehending various phenomena
observed in highly heterogeneous networks, such as scale-free networks.

Understanding Ordinary Vertices. To comprehend network-wide phenomena, it is essential
to first understand what occurs at ordinary vertices. The state of these vertices is influenced
by their surrounding vertices. As shown in Fig. 9a, in the mean-field model, the degrees
of vertices surrounding an ordinary vertex are represented by the mean degree of nearest
neighbors, 〈knn〉.

Regular Network of 〈knn〉. In Fig. 9b, the vertices with a degree of 〈knn〉 are also encircled by
vertices of the same degree, forming a regular network. This setup allows for the resolution
of states on vertices with degree 〈knn〉, under the assumption that the expected values, such
as the probability of adopting a certain strategy, are determined by the degree of the vertices
in the mean-field model.

Strategy Spread Dynamics. Consider a scenario with two strategies, A and B. If it is deter-
mined that strategy A dominates in the regular network of degree 〈knn〉 (as in Fig. 9b), then
the vertices with degree 〈knn〉 in Fig. 9a will likely adopt strategy A. Consequently, the strat-
egy of ordinary vertices with degree 〈k〉 is influenced by the strategies of their surrounding
vertices with degree 〈knn〉. Thus, the prevailing strategy in the entire network is essentially
dictated by the dynamics within the regular network of degree 〈knn〉.

Impact of 〈knn〉. The larger the degree 〈knn〉 of this regular network, the more effectively a
strategy propagates across the network. This insight explains why networks with a substantial
mean degree of nearest neighbors, 〈knn〉, are particularly effective in facilitating the spread
of a strategy.
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6 Conclusion

6.1 Summary

This paper has demonstrated that networks with heterogeneous degree distributions, particu-
larly scale-free networks, significantly enhance social learning processes. The study focused
on how network structures, perceived as social local interactions, influence social learning.

The model investigated players located at network vertices, engaging in games only with
their immediate neighbors and deriving payoffs from these interactions. Players adopted
strategies based on weak selection rules, leading to a gradual spread of more advantageous
strategies across the network. This process, akin to the well-known S-curve, was analytically
examined using themean-field approximation of network structures, as introduced in previous
works [18, 19].

Key findings include:

• Networks with a larger mean degree of nearest neighbors (〈knn〉) accelerate the spread of
superior strategies, a phenomenon termed ’social learning’.

• The mean degree (〈k〉) also influences social learning, but its impact diminishes in net-
works with sufficiently high mean degrees.

• Among various network types, scale-free networksmost effectively enhance social learn-
ing, attributed to their high network heterogeneity.

The study also explored a coordination game on networks, deriving the threshold initial
probability for the spread of Pareto optimal strategies. It was shown that networks with a high
probability of hub vertices initially adopting Pareto optimal strategies are more conducive to
the spread of these strategies.

6.2 More Discussion

We demonstrate how a scale-free network structure enhances social learning. Evolutionary
games are viewed as social learning processes, where effective strategies spread through
imitation dynamics. Foundational works likeMaynard Smith and Price [23] show that spatial
structures in these games can foster cooperative behavior. Studies [4, 28, 31, 32, 35] explore
the interplay between evolutionary games, coevolution, and networks.

This paper mathematically derives the speed of strategy diffusion in evolutionary games
with general payoff matrices and mean-field approximations of heterogeneous networks. We
show that network heterogeneity facilitates the spread of effective strategies. We also exam-
ine coordination games, revealing the relationship between network heterogeneity, network
structures, and the spread of Pareto optimal strategies. These findings are validated through
numerical simulations.

We conclude that scale-free networks significantly enhance social learning. Additionally,
we investigate coordination games on networks, examining how network structure influences
outcomes.We identify the threshold initial probability for the spread of Pareto optimal strate-
gies and demonstrate how network heterogeneity determines this threshold. Our analysis also
shows that Pareto optimal strategies spread more effectively when players on hub vertices
initially adopt these strategies. We employ mean-field approximations for networks, a crucial
tool for approximate computations in complex network models.

The mean degree of nearest neighbors (〈knn〉) emerges as a critical factor in network-
based models, often overshadowing the influence of the mean degree. This paper emphasizes
that 〈knn〉 is a more significant determinant of network behavior than the mean degree. The
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concept of ’determining networks’ - virtual networks surrounding vertices with degree 〈knn〉
- is introduced to illustrate this point. In the mean-field model, these determining networks,
conceptualized as regular networkswith degree 〈knn〉, are pivotal in influencing network-wide
phenomena.

6.3 Future Research Directions

While the mean-field approximation offers valuable insights, it does not account for degree-
degree correlations known to exist in real networks. Future research should aim to incorporate
these correlations into the mean-field model and extend the analysis to include pair approx-
imations of game strategies. This advancement would provide a more comprehensive
understanding of complex network dynamics and their implications for social learning and
other network-based phenomena.

Appendix A. Derivation of E[�pU] in Sect. 3

Appendix A.1. Change in the Probability of Strategy U

We examine the dynamics of the mean-field probability pU , representing the likelihood of a
player choosing strategy U . The analysis begins with scenarios where a V -player switches
to strategy U , thereby increasing pU by 1/N . In the mean-field model, a randomly chosen
player has a degree of 〈k〉.

Consider a V -player surrounded by kU U -players and kV V -players (〈k〉 = kU + kV ).
The probability of this V -player adopting strategy U in the next time step is:

(1 − w)kU + wukU
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.1)

The likelihood of encountering a V -player with kU U -neighbors and kV V -neighbors is:

〈k〉!
kU !kV ! (qU |V )kU (qV |V )kV . (A.2)

Thus, the probability that pU increases by 1/N in the next time step, under mean-field
approximation, is:

Pr

(
�pU = 1

N

)
= pV

∑
kU+kV =〈k〉

〈k〉!
kU !kV ! (qU |V )kU (qV |V )kV

(1 − w)kU + wukU
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.3)

Conversely, consider a U -player switching to strategy V , decreasing pU by 1/N . The
probability for this change, given a U -player with kU U -neighbors and kV V -neighbors, is:

(1 − w)kV + wvkV
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.4)

The likelihood of this scenario is:

〈k〉!
kU !kV ! (qU |U )kU (qV |U )kV . (A.5)
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Therefore, the probability that pU decreases by 1/N in the mean-field approximation is:

Pr

(
�pU = − 1

N

)
= pU

∑
kU+kV =〈k〉

〈k〉!
kU !kV ! (qU |U )kU (qV |U )kV

(1 − w)kV + wvkV
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.6)

Combining these probabilities, the expected change in pU in continuous time, under
mean-field approximation, is:

d

dt
pU = 1

N
Pr

(
�pU = 1

N

)
− 1

N
Pr

(
�pU = − 1

N

)

= 1

N
pV

∑
kU+kV =〈k〉

〈k〉!
kU !kV ! (qU |V )kU (qV |V )kV

(1 − w)kU + wukU
(1 − w)kU + wukU + (1 − w)kV + wvkV

− 1

N
pU

∑
kU+kV =〈k〉

〈k〉!
kU !kV ! (qU |U )kU (qV |U )kV

(1 − w)kV + wvkV
(1 − w)kU + wukU + (1 − w)kV + wvkV

.

(A.7)

Appendix A.2. Change in Conditional Probability

To understand the dynamics of the mean-field probability pU , we need to examine the behav-
ior of the conditional probability qU |U in the mean-field approximation.

Firstly, consider a scenario where a V -player, chosen randomly (with probability pV ),
switches to strategy U . Let kU and kV denote the number of U -players and V -players,
respectively, neighboring this V -player (kU + kV = 〈k〉). The probability of this V -player
adopting strategy U is:

(1 − w)kU + wukU
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.8)

In this case, the conditional probability qU |U increases by approximately kU
pU 〈k〉N , as pU

changes by an order of O(w).
The likelihood of encountering this configuration is:

pV
(1 − w)kU + wukU

(1 − w)kU + wukU + (1 − w)kV + wvkV
. (A.9)

The probability of a V -player having kU U -neighbors and kV V -neighbors is:

〈k〉!
kU !kV ! (qU |V )kU (qV |V )kV . (A.10)

Secondly, consider aU -player (chosen with probability pU ) switching to strategy V . The
probability of this change, given kU U -neighbors and kV V -neighbors, is:

(1 − w)kV + wvkV
(1 − w)kU + wukU + (1 − w)kV + wvkV

. (A.11)

In this scenario, qU |U decreases by approximately kU
pU 〈k〉N .

The likelihood of this configuration is:

pU
(1 − w)kV + wvkV

(1 − w)kU + wukU + (1 − w)kV + wvkV
. (A.12)
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The probability of a U -player having kU U -neighbors and kV V -neighbors is:

〈k〉!
kU !kV ! (qU |U )kU (qV |U )kV . (A.13)

Combining these scenarios, the expected change in qU |U in continuous time, under mean-
field approximation, is:

d

dt
qU |U =

∑
kU+kV =〈k〉

kU
pU 〈k〉N pV

〈k〉!
kU !kV ! (qU |V )kU (qV |V )kV

× (1 − w)kU + wukU
(1 − w)(kU + kV ) + w(ukU + vkV )

−
∑

kU+kV =〈k〉

kU
pU 〈k〉N pU

〈k〉!
kU !kV ! (qU |U )kU (qV |U )kV

× (1 − w)kV + wvkV
(1 − w)(kU + kV ) + w(ukU + vkV )

.. (A.14)

Appendix A.3. Speed of Spread of Better Strategy U

To determine the speed at which the better strategyU spreads across the network, we perform
detailed calculations and expansions ofEqs. (A.7) and (A.14). In the continuous time limit and
under the mean-field approximation, we derive the expected changes in pU (the probability
of choosing strategy U ) and qU |U (the conditional probability):

ṗU = u − v

〈k〉N (〈k〉 − 1)pUV
(
qU |U + qV |V

)
w + O(w2), (A.15)

q̇U |U = pUV

〈k〉NpU

[
1 + (〈k〉 − 1)(qU |V − qU |U )

] + O(w). (A.16)

While ṗU changes at the order of O(w), q̇U |U does so at the order of O(w0). Given the
smallness ofw, Eq. (A.16) converges much faster than Eq. (A.15). Therefore, we can assume
that q̇U |U = 0 is always true, leading to:

1 + (〈k〉 − 1)(qU |V − qU |U ) = 0. (A.17)

Using the mean-field relation pUV = qU |V pV = qV |U pU (as detailed in Sect. 2.7) and
Eq. (A.17), we derive:

(〈k〉 − 1)qU |U = (〈k〉 − 1)pU + pV , (A.18)

(〈k〉 − 1)qV |V = (〈k〉 − 1)pV + pU . (A.19)

Consequently, the expected change in the probability of adopting the better strategy U
per unit time step, under the mean-field approximation, is:

E[�pU ] ≈ u − v

N

〈k〉 − 2

〈k〉 − 1
pU (1 − pU )w�t . (A.20)

This equation represents the speed at which strategy U spreads through the network.
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