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Abstract
In the paper we present a model of discrete-time mean-field game with multiple populations
of players. Its main result shows that the equilibria obtained for the mean-field limit are
approximate Markov–Nash equilibria for n-person counterparts of these mean-field games
when the number of players in each population is large enough. We consider two payoff cri-
teria: β-discounted payoff and total payoff. The existence of mean-field equilibria for games
with both payoffs has been proven in our previous article, hence, the theorems presented here
show in fact the existence of approximate equilibria in certain classes of stochastic games
with large finite numbers of players. The results are provided under some rather general
assumptions on one-step reward functions and individual transition kernels of the players.
In addition, the results for total payoff case, when applied to a single population, extend the
theory of mean-field games also by relaxing some strong assumptions used in the existing
literature.

Keywords Mean-field game · Discrete time · Multiple-population game · Stationary
mean-field equilibrium · Markov mean-field equilibrium · Discounted payoff · Total payoff

Mathematics Subject Classification 91A15 · 91A13 · 91A10

1 Introduction

The paper is the continuation of article [18], where we have presented a model of discrete-
time mean-field game with multiple populations of players. In the paper we have provided
the results about the conditions guaranteing existence of Markov or stationary equilibria in
such games for two payoff criteria: β-discounted payoff and total payoff. These theorems
were the first to deal with the problem of the existence of equilibrium in mean-field games
with several populations in the discrete time setting, extending also some of the theory for
single population discrete-time mean-field games. As mean-field games are only meant to
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serve as an approximation of real-life situations, where the populations of agents are large,
but finite, it is crucial to complete the equilibrium-existence results for the class of games
under investigation by the results showing that the equilibria obtained for the mean-field
limit are approximate Markov–Nash equilibria for n-person counterparts of these mean-field
games when the number of players in each population is large enough. This type of theorems
have been provided for the single population case for different variants of the discrete-time
mean-field game model in [10–14, 16, 17]. In this article, we build upon the theory presented
in [11] to show that also in our case theMarkov (or stationary) mean-field equilibria obtained
in [18] are approximate equilibria in finite-player counterparts of the mean-field game when
the number of players in each population goes to infinity.

The organization of the paper is as follows: In Sect. 2 we present the model of the discrete-
time mean-field games with several populations of the players and its counterparts with finite
number of players. In Sect. 3 we introduce some notation used in the remainder of the article.
In Sect. 4 we give all the assumptions used in our theorems. Sections5 contains all the main
results of the article. We end with some concluding remarks in Sect. 6.

2 TheModel

2.1 Multi-populationMean-Field GameModel

A multi-population discrete-time mean-field game is described by the following objects:

• We assume that the game is played in discrete time, that is t ∈ {1, 2, . . .}.
• The game is played by an infinite number (continuum) of players divided into N popu-

lations. Each player has a private state s, changing over time. We assume that the set of
individual states Si is the same for each player in population i (i = 1, . . . , N ), and that
it is a nonempty closed subset of a locally compact Polish space S.1

• Avectorμ = (μ1, . . . , μN ) ∈ �N
i=1�(Si ) of N probability distributions overBorel sets2

of Si , i = 1, . . . , N , is called a global state of the game. Its i-th component describes
the proportion of i-th population, which is in each of the individual states.
We assume that at every stage of the game each player knows both his private state and
the global state, and that his knowledge about individual states of his opponents is limited
to the global state.

• The set of actions available to a player from population i in state (s, μ) is given by
Ai (s), with A := ⋃

i∈{1,...,N },s∈Si Ai (s) – a compact metric space. For any i , Ai (·) is a
non-empty compact valued correspondence such that

Di := {(s, a) ∈ Si × A : a ∈ Ai (s)}
is a measurable set. Note that we assume that the sets of actions available to a player only
depend on his private state and not on the global state of the game.

• The global distribution of the state-action pairs is denoted by τ = (τ 1, . . . , τ N ) ∈
�N

i=1�(Di ). Again, it gives the distributions of state-action pairs within the population
divided into subpopulations i = 1, . . . , N .

1 As it can be clearly seen, the model encompasses in particular the situation when the state space for each
population is the same and equal to S.
2 Here and in the sequel, for any set X , �(X) denotes the set of probability distributions over the σ -algebra
of Borel subsets of X , B(X).
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• Immediate reward of an individual from population i is given by a measurable function
r i : Di × �N

i=1�(Di ) → R. r i (s, a, τ ) gives the reward of a player at any stage of the
game when his private state is s, his action is a and the distribution of state-action pairs
among the entire player population is τ .

• Transitions are defined for each individual separately with stochastic kernels Qi : Di ×
�N

i=1�(Di ) → �(Si ) denoting transition probability for players from i-th population.
Qi (B | ·, ·, τ ) is product-measurable for any B ∈ B(Si ), any τ ∈ �N

i=1�(Di ) and
i ∈ {1, . . . , N }.

• The global state at time t + 1, μt , is given by the aggregation of individual transitions of
the players done by the formula

μi
t+1(·) = �i (· | τt ) :=

∫

Di
Qi (· | s, a, τt )τ

i
t (ds × da).

As it can be clearly seen, the transition of the global state is deterministic.

A sequenceπ i = {π i
t }∞t=0 of functionsπ i

t : Si → �(A), such thatπ i
t (B | ·) is measurable

for any B ∈ B(A) and any t , satisfying π i
t (A

i (s) | s) = 1 for every s ∈ Si and every t , is
called aMarkov strategy for a player of population i . A function f i : Si → �(A), such that
f i (B | ·) is measurable for any B ∈ B(A), satisfying f i (Ai (s) | s) = 1 for every s ∈ Si is
called a stationary strategy. The set of all Markov strategies for players from i-th population
is denoted byMi while that of stationary strategies by F i . As in MDPs, stationary strategies
can be seen as a specific case of Markov strategies that do not depend on t . In the paper we
never consider general (history-dependent) strategies.

Next, let �i
t (π

i , μi ) denote the state-action distribution of the i-th population players
at time t in the mean-field game corresponding to the distribution of individual states in
population i , μi and a Markov strategy for players of population i , π i ∈ Mi , that is

�i
t (π

i , μi )(B) :=
∫

B
π i
t (da | s)μi (ds) for B ∈ B(Di ).

The vector (�1
t (π

1, μ1), . . . , �N
t (πN , μN ))will be denoted by�t (π, μ). When we use this

notation for stationary strategies, we skip the subscript t .
Given the evolution of the global state, which depends on the strategies of the players

in a deterministic manner, we can define the individual history of a player α (from any
given population i) as the sequence of his consecutive individual states and actions h =
(sα

0 , aα
0 , sα

1 , aα
1 , . . .). By the Ionescu-Tulcea theorem (see Chap. 7 in [2]), for any Markov

strategies πα of player α and σ 1, . . . , σ N of other players (including all other players of the
same population), any initial global state μ0 and any initial private state of player α, s, there
exists a unique probability measure P

s,μ0,Q,πα,σ on the set of all infinite individual histories
of the game H = (Di )∞ endowed with Borel σ -algebra, such that for any B ∈ B(Si ),
E ∈ B(A) and any partial history hα

t = (sα
0 , aα

0 , . . . , sα
t−1, a

α
t−1, s

α
t ) ∈ (Di )t × Si =: Ht ,

t ∈ N,

P
s,μ0,Q,πα,σ (h ∈ H : sα

0 = s) = 1, (1)

P
s,μ0,Q,πα,σ (h ∈ H : aα

t ∈ E | hα
t ) = πα

t (E | sα
t ),

P
s,μ0,Q,πα,σ (h ∈ H : sα

t+1 ∈ B | (hα
t , aα

t )) = Qi (B | sα
t , aα

t , τt ), (2)

with state-action distributions defined by τ
j
0 = �

j
0(σ

j , μ
j
0), τ

j
t+1 = �i

t (σ
j ,� j (· | τt )) for

t = 1, 2, . . . and j = 1, . . . , N .
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For β ∈ (0, 1), the β-discounted reward3 for a player α from population i using policy
π i ∈ Mi when other players use policies σ j ∈ M j (depending on the population j they
belong to) and the initial global state is μ0, with the initial individual state of player α being
si0 is defined as follows:

J iβ(si0, μ0, π
i , σ ) = E

si0,μ0,Q,π i ,σ
∞∑

t=0

β t r i (sit , a
i
t , τt ),

where τ
j
0 = �

j
0(σ

j , μ
j
0), τ

j
t+1 = �

j
t (σ

j ,� j (· | τt )) for t = 1, 2, . . . and j = 1, . . . , N .
To define the total reward in our game let us distinguish one state in S, say s∗, isolated

from S \{s∗} and assume that Ai (s∗) = {a∗} independently of i ∈ {1, . . . , N } for some fixed
a∗ isolated from A \ {a∗}. Moreover, let us assume that s∗ ∈ Si for i = 1, . . . , N . Then the
total reward of a player from population i using policy π i ∈ Mi when other players apply
policies σ = (σ 1, . . . , σ N ) and the initial global state is μ0, with the initial individual state
of player α being si0, is defined in the following way:

J i∗(si0, μ0, π
i , σ ) = E

si0,μ0,Q,π i ,σ
T i−1∑

t=0

r i (sit , a
i
t , τt ),

where τ
j
0 = �

j
0(σ

j , μ
j
0), τ

j
t+1 = �

j
t (σ

j ,� j (· | τt )) for t = 1, 2, . . . and j = 1, . . . , N ,
while T i is the moment of the first arrival of the process {sit } to s∗. The total reward is
interpreted as the reward accumulated by the player over the whole of his lifetime. State s∗
is an artificial state (so is action a∗) denoting that a player is dead. μ0 corresponds to the
distribution of the states across the population when he is born, while si0 is his own state when
he is born. The fact that after some time the state of a player can become again different from
s∗ should be interpreted as that after some time the player is replaced by some new-born one.

Finally we define the solutions we will be looking for:

Definition 1 Stationary strategies f 1 ∈ F1, . . . f N ∈ FN and a global stateμ ∈ �N
i=1�(Si )

forma stationarymean-field equilibrium in theβ-discounted rewardgame if for any i , si0 ∈ Si ,
and every other stationary strategy of a player from population i , gi ∈ F i

J iβ(si0, μ, f i , f ) ≥ J iβ(si0, μ, gi , f )

and if μ0 = μ, then μt = μ for every t ≥ 1 if strategies f 1, . . . , f N are used by all the
players.

Markov strategies π1 ∈ M1, . . . πN ∈ MN and a global state flow (μ∗
0, μ

∗
1, . . .) ∈

(�N
i=1�(Si ))∞ form a Markov mean-field equilibrium in the β-discounted reward game if

for any i , si0 ∈ Si , and every other Markov strategy of a player from population i , σ i ∈ Mi

J iβ(si0, μ0, π
i , π) ≥ J iβ(si0, μ0, σ

i , π)

and if μ0 = μ∗
0 implies μt = μ∗

t for every t ≥ 1 if strategies π1, . . . , πN are used by all the
players.

Similarly,

3 Herewe replace the superscript α used to define themeasureP
s,μ0,Q,πα,σ by i , as the situation is symmetric

within the population.
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Definition 2 Stationary strategies f 1 ∈ F1, . . . f N ∈ FN and a global stateμ ∈ �N
i=1�(Si )

form a stationary mean-field equilibrium in the total reward game if for any i , s0i ∈ Si , and
every other stationary strategy of a player from population i , gi ∈ F i

J i∗(si0, μ, f i , f ) ≥ J i∗(si0, μ, gi , f ).

Moreover, if μ0 = μ, then μt = μ for every t ≥ 1 if strategies f 1, . . . , f N are used by all
the players.

Markov strategies π1 ∈ M1, . . . πN ∈ MN and a global state flow (μ∗
0, μ

∗
1, . . .) ∈

(�N
i=1�(Si ))∞ form aMarkov mean-field equilibrium in the total reward game if for any i ,

t , sti ∈ Si and every other Markov strategy of a player from population i , σ i ∈ Mi ,

J i∗(sit , μ∗
t ,

tπ i , tπ) ≥ J i∗(sit , μ∗
t ,

tσ i , tπ),

with t a denoting for any infinite vector a = (a0, a1, . . .), the vector (at , at+1, . . .). Moreover,
ifμ0 = μ∗

0, thenμt = μ∗
t for every t ≥ 1 if strategies π1, . . . , πN are used by all the players.

2.2 n-Person Counterparts of a Mean-Field Game

The n-person games that will be approximated by our model are discrete-time n-person
stochastic games as defined in [6]. Below we define n-person stochastic counterparts of the
mean-field game for the multi-population case.

• There are n players in the game belonging to N populations. The number of players in
population i is denoted by ni , with

∑N
i=1 ni = n. Hence, the state space is �N

i=1(S
i )ni

while an arbitrary state in the game can be denoted by s = (s1, . . . , sN ) with si =
(si1, . . . , s

i
ni ) for i = 1, . . . , N . We shall also use the notation n := (n1, . . . , nN ) with

n → ∞ standing for ni → ∞ for i = 1, . . . , N . Similarly as in the case of themean-field
game, the set of actions available to the kth player in population i in state s is given by
Ai
(
sik
)
. An arbitrary action of the kth player in population i will be denoted by aik and an

arbitrary profile of actions of all the players by a = (a1, . . . , aN )with ai = (ai1, . . . , a
i
ni )

for i = 1, . . . , N .
• We assume that for each i the initial values in the vector si are i.i.d. vectors coming from

an arbitrary known distributionμ∗i
0 . To simplify the notation we will write that the vector

of initial distributions of states for each player is μ∗
0 or simply that s0 ∼ μ∗

0 to denote
that.

• Empirical state-action distribution in the game is defined as

τ(s, a) = (τ 1(s, a), . . . , τ N (s, a))

with τ i (s, a) = 1
ni

∑ni
k=1 δ(sik ,a

i
k )
, i = 1, . . . , N .

• Individual immediate reward of kth player from population i , r i,kn : �N
j=1(D

i )ni → R,
i = 1, . . . , N , k = 1, . . . , ni is defined for any profile of players’ states s and any profile
of players’ actions a by

r i,kn (s, a) := r i
(
sik, a

i
k, τ (s, a)

)
.

• The transition probability Qn : �N
j=1(D

i )ni → �(Sn) can be defined for any s and a
by the formula (for the clarity of exposition we write it only for Borel rectangles, which
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obviously defines the product measure):

Qn(B
1
1 × . . . × B1

n1 . . . × BN
1 × . . . × BN

nN | s, a)

:= Q1 (B1
1 | s11 , a11, τ (s, a)

)
. . . Q1 (B1

n1 | s1n1 , a1n1 , τ (s, a)
)

. . . QN
(
BN
1 | sN1 , aN1 , τ (s, a)

)
. . . QN

(
BN
nN | sNnN , aNnN , τ (s, a)

)
.

• In n-person game we assume that the players are limited to policies depending on their
own state, that is each player from population i uses Markov policies from the set Mi

or (more specifically) stationary policies from F i .
• The functional maximized by each player is either his β-discounted reward reward or

his total reward. The definitions of both are slight modifications of those for mean-field
models. The β-discounted reward of kth player in population i is defined for any initial
state s0 and any profile of policies of all the players π as

J k,iβ,n(s0, π) = E
s0,Qn ,π

∞∑

t=0

β t r i,kn (st , at ),

with P
s0,Qn ,π denoting the measure on the set of all infinite histories of the game corre-

sponding to s0, Qn and π defined with the help of the Ionescu-Tulcea theorem similarly
as in case of the mean-field game.
Similarly, the total reward of kth player in population i is defined for any initial state s0
and any profile of policies of all the players π as

J i,k∗n (s0, π) = E
s0,Qn ,π

T i
k −1∑

t=0

r i,kn (st , at ),

with T i
k denoting the moment of the first arrival of the process {sik,t } to s∗.

• Finally, the solutionwewill be looking for in n-person counterparts of the stochastic game
is a variant of Nash equilibrium, the standard solution concept used in the stochastic game
literature:

Definition 3 A profile of strategies π ∈ �N
i=1

(
Mi
)ni is a Markov–Nash equilibrium in the

n-person discounted-reward game if

E

[
J k,iβ,n(s0, π) | s0 ∼ μ∗

0

]
≥ E

[
J k,iβ,n(s0, [π−i,k, π̂

i
k]) | s0 ∼ μ∗

0

]
(3)

for any π̂ i
k ∈ Mi , and i ∈ {1, . . . , N }, k ∈ {1, . . . , ni }.

The notation [π−i,k, π̂
i
k] denotes here and in the sequel the profile of policies π with the

policy of kth player in population i replaced by π̂ i
k . If (3) is true up to some ε > 0, we say

that π is an ε-Markov–Nash equilibrium.
In case of the total reward, we will further reduce the requirements for our approximate

solution. We will say that a profile of strategies π ∈ �N
i=1

(
Mi
)ni is an (ε, T )-Markov–

Nash equilibrium in the n-person total-reward game if for t ∈ {0, . . . , T }, i ∈ {1, . . . , N },
k ∈ {1, . . . , ni } and π̂ i

k ∈ Mi :

E

[
J k,i∗n (μt ,

tπ) | s0 ∼ μ∗
0

]
≥ E

[
J k,i∗n (μt , [tπ−i,k,

t π̂ i
k]) | s0 ∼ μ∗

0

]
− ε
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3 Preliminaries

As we have written, we assume that S and A are metric spaces. The metric on S will be
denoted by dS while that on A by dA. Whenever we relate to a metric on a product space, we
mean the sum of the metrics on its coordinates. Some of the assumptions presented below
will be given with respect to the moment function w0 : S → [1,∞), that is a continuous
function satisfying

lim
n→∞ inf

s∈S\Kn
w0(s) = ∞

for some sequence {Kn}n≥1 of compact subsets of S. Moreover,

w0(s) ≥ 1 + dS(s, s0)
p (4)

for some p ≥ 1 and s0 ∈ S.
In order to study both bounded and unbounded one-stage reward functions, we define the

following function:

w :=
{
1, if each ri is bounded
w0, otherwise

For any function h : S → R we define its w-norm as

‖h‖w := sup
s∈S

∣
∣
∣
∣
h(s)

w(s)

∣
∣
∣
∣ .

Whenever we speak of functions defined on a product of S and some other space, their
w-norm is defined similarly, with the help of the same function w.

By Bw(S) we denote the space of all real-valued measurable functions from S to R with
finite w-norm. and by Cw(S) – the space of all continuous functions in Bw(S). Clearly, both
Bw(S) and Cw(S) are Banach spaces. The same can be said of Bw(S × A) and Cw(S × A)

– the spaces of bounded and bounded continuous functions from S × A to R with finite
w-norm.

Analogously, for any finite signed measure μ on S, we define the w-norm of μ as

‖μ‖w = sup
g∈Bw(S),‖g‖w≤1

∣
∣
∣
∣

∫

S
g(s)μ(ds)

∣
∣
∣
∣ .

It should be noted that in case w ≡ 1, ‖μ‖w is the total variation distance (see e.g. [8],
Section 7.2).

There are two standard types of convergence of probability measures which are used in the
paper: the weak convergence denoted by ⇒ and the strong (or setwise) convergence denoted
by → and defined (for any Borel space (X ,B(X))) by

μn → μ ⇐⇒ μn(B) → μ(B) for any B ∈ B(X).

It is known (see e.g. [9], Theorem 6.6) that the weak topology can be metrized using the
metric

ρ(μ, ν) :=
∞∑

m=1

2−m
∣
∣
∣
∣

∫

S
φm(s)μ(ds) −

∫

S
φm(s)ν(ds)

∣
∣
∣
∣ ,

where {φi }i≥1 is a sequence of continuous bounded functions from S to R whose elements
form a dense subset of the unit ball in C(S). Strong convergence topology is in general not
metric.



Dynamic Games and Applications

Next, let

�w(S) :=
{

μ ∈ �(S) :
∫

S
w(s)μ(ds) < ∞

}

.

It has been shown in [11] that �w(S) can be metrized using the metric

ρw(μ, ν) := ρ(μ, ν) +
∣
∣
∣
∣

∫

S
w(s)μ(ds) −

∫

S
w(s)ν(ds)

∣
∣
∣
∣

It can be shown that under (4) �w(S) with metric ρw is a Polish space (see [3, 11] for more
on that). We will use the topology defined by this metric (called w-topology in the sequel)
as the standard topology on �w(S).

We will also use the notation

�w(S × A) :=
{

τ ∈ �(S × A) :
∫

S×A
w(s)τ (ds × da) < ∞

}

with analogously defined metrics also denoted by ρ (metric defining weak convergence) and
ρw (w-metric) as well as similar notation for subsets of S or S × A.

Whenever we speak about continuity of correspondences, we refer to the following defi-
nitions:
Let X and Y be two metric spaces and F : X → Y , a correspondence. Let F−1(G) = {x ∈
X : F(x) ∩ G �= ∅}. We say that F is upper semicontinuous iff F−1(G) is closed for any
closed G ⊂ Y . F is lower semicontinuous iff F−1(G) is open for any open G ⊂ Y . F is said
to be continuous iff it is both upper and lower semicontinuous. For more on (semi)continuity
of correspondences see [7], Appendix D or [1], Chapter 17.2.

4 Assumptions

In this section, we present the set of assumptions used in our results. It contains the assump-
tions from [18] used there to prove the existence of Markov mean-field equilibria in games
with either discounted or total payoff and new assumption (A5) necessary to show that these
equilibria are approximate equilibria for games with large finite number of players. The num-
bering of assumptions (including prime symbols) is consistent with that used in [18], where
the basic versions of the assumptions were the strongest ones, used to prove the existence of
stationary equilibria in mean-field games. We start by the assumptions used in the discounted
case.

(A1’) For i = 1, . . . , N , r i is continuous and bounded above by some constant R on
Di × �N

i=1�(Di ). Moreover, there exist non-negative constants α, γ , M satisfying
αβγ < 1 and

∫

S
w(s)μi

0(ds) ≤ M for i = 1, . . . , N ,

and such that for i = 1, . . . , N , s ∈ Si and t = 0, 1, 2, . . .,

inf
(a,τ )∈Ai (s)×�N

i=1�
(t)
w (Di )

r i (s, a, τ ) ≥ −Rγ tw(s)

with �
(t)
w (Di ) := {τ i ∈ �w(Di ) : ∫Di w(s)τ i (ds × da) ≤ αt M

}
.
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(A2’) For i = 1, . . . , N and any sequence {sn, an, τ n} ⊂ Di × �N
i=1�w(Di ) such that

sn → s∗, an → a∗ and τ n ⇒ τ ∗, Qi (· | sn, an, τ n) ⇒ Q(· | s∗, a∗, τ ∗). Moreover,

(a) for i = 1, . . . , N the functions
∫

S
w(s′)Qi (ds′ | s, a, τ )

are continuous in (s, a, τ ),
(b) for i = 1, . . . , N and s ∈ Si

sup
(a,τ )∈Ai (s)×�N

i=1�(Di )

∫

S
w(s′)Qi (s′ | s, a, τ ) ≤ αw(s).

(A3) For i = 1, . . . , N , correspondences Ai are continuous.

Assumptions (A1’) and (A2’) are modified for the total payoff case and complemented
by new assumption (A4”). Their formulation requires defining for i = 1, . . . , N , s ∈ Si ,
a ∈ Ai (s) and τ ∈ �N

j=1�(D j ) the modified transition probabilities Qi∗:

Qi∗(· | s, a, τ ) :=
{
Qi (· | s, a, τ ), if s �= s∗
δs∗ , if s = s∗

(A1”) For i = 1, . . . , N , r i is continuous and bounded above by some constant R on
Di × �N

i=1�(Di ). Moreover, there exist non-negative constants α, γ , M satisfying
α ≤ γ , αγ < 1 and

∫

S
w(s)μi

0(ds) ≤ M for i = 1, . . . , N ,

and such that for i = 1, . . . , N , s ∈ Si and t = 0, 1, 2, . . .,

inf
(a,τ )∈Ai (s)×�N

i=1�
(t)
w (Di )

r i (s, a, τ ) ≥ −Rγ tw(s)

with �
(t)
w (Di ) := {τ i ∈ �w(Di ) : ∫Di w(s)τ i (ds × da) ≤ αt M

}
.

(A2”) For i = 1, . . . , N and any sequence {sn, an, τ n} ⊂ Di × �N
i=1�w(Di ) such that

sn → s∗, an → a∗ and τ n ⇒ τ ∗, Qi (· | sn, an, τ n) → Q(· | s∗, a∗, τ ∗). Moreover,

(a) for i = 1, . . . , N the functions
∫

S
w(s′)Qi (ds′ | s, a, τ )

are continuous in (s, a, τ ),
(b) for i = 1, . . . , N and s ∈ Si

sup
(a,τ )∈Ai (s)×�N

i=1�(Di )

∫

S
w(s′)Qi (s′ | s, a, τ ) ≤ αw(s).

(A4”) For i = 1, . . . , N ,

lim
T→∞ sup

π i∈Mi ,

(τ )∈�∞
t=0�

N
j=1�(D j )

∥
∥
∥
∥
∥

∞∑

t=T

∫

Si \{s∗}
w(s′)α−t

(
Qi∗
)t

(ds′ | s, π i , (τ ))

∥
∥
∥
∥
∥

w

= 0.
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Finally, we present additional assumptions used to prove the approximation theorems.
Beforehand, for i = 1, . . . , N let us define the following moduli of continuity:

ωQi (δ) := sup
(s,a)∈Di

sup
τ ,η:∑N

j=1 ρ̃w(τ j ,η j )≤δ

∥
∥
∥Qi (· | s, a, τ ) − Qi (· | s, a, η)

∥
∥
∥

w
,

ωr i (δ) := sup
(s,a)∈Di

sup
τ ,η:∑N

j=1 ρ̃w(τ j ,η j )≤δ

∣
∣
∣r i (s, a, τ ) − r i (s, a, η)

∣
∣
∣ ,

where ρ̃w = ρw if any r i is unbounded, or ρ̃w = ρ otherwise.
For any function g : �N

i=1�w(Di ) → R, i = 1, . . . , N we next define its w-norm as
follows:

‖g‖∗
w := sup

τ∈�N
i=1�w(Di )

|g(τ )|
∑N

i=1

∫
Di w(s)τ i (ds × da)

.

Now we can formulate our additional assumptions. They adapt the assumptions used in [11]
to our multi-population case.

(A5) (a) We assume that ωQi (δ) → 0 and ωr i (δ) → 0 for i = 1, . . . , N as δ → 0. Moreover,
the following real-valued functions defined on �N

i=1�w(Di ):

�τ
Q(η) := max

i
ωQi (

N∑

j=1

ρ̃w(η j , τ j )) and �τ
r (η) := max

i
ωr i (

N∑

j=1

ρ̃w(η j , τ j ))

have finite w-norm.
(b) There exist non-negative real numbers B and B0 such that for i = 1, . . . , N and

s ∈ Si

sup
(a,τ )∈Ai (s)×�N

i=1�(Di )

∫

S
w2(s′)Qi (s′ | s, a, τ ) ≤ Bw2(s)

and
∫
S w2(s)μ∗i

0 (ds) ≤ B0.

5 Main Results

5.1 Results for the Discounted Payoff Case

In the first of our main results we address the case of discounted reward game.

Theorem 1 Suppose assumptions (A1’), (A2’), (A3) and (A5) hold and suppose π and
(μ∗

0, μ
∗
1, . . .) form a Markov mean-field equilibrium in the multi-population discrete-time

mean-field game existing by Theorem 4 in [18]. If in addition, for each t ≥ 0 and
i = 1, . . . , N, π i

t is weakly continuous, then for any ε > 0 there exist positive integers
ni (ε), i = 1, . . . , N such that the vector of strategies where each player from population i
uses policy π i is an ε-Markov–Nash equilibrium in any n-person stochastic counterpart of
the β-discounted mean-field game if ni ≥ ni (ε), i = 1, . . . , N.

Remark 1 Note that stationary mean-field equilibrium existing according to Theorem 1 in
[18] is a specific case of Markov mean-field equilibrium with stationarity condition imposed
on global states of the game at subsequent stages. Hence, the result provided by Theorem 1
also holds in this case.
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The proof of Theorem 1 will adapt the techniques used in [11] to our model. It will require
introducing some additional notation. Recall the Polish space (�w(S × A), ρw). Define
the Wasserstein distance of order 1 on the set of probability measures over �w(S × A),
�(�w(S × A)) by the formula:

W1(�,�) := inf
γ∈�(�,�)

∫

�(�w(S×A))×�(�w(S×A))

dS(x, y) dγ (x, y)},

where �(�,�) denotes the collection of all measures on �(�w(S × A)) × �(�w(S × A))

with marginals � and � on the 1st and the 2nd coordinate.
Next, for i = 1, . . . , N , define the following spaces:

�i
1(�w(S × A)) :=

{

� ∈ �(�w(S × A)) :
∫

�w(S×A)
ρw(τ, �i

0(π
i , μ∗i

0 ))�(dτ) < ∞
}

,

Cw(�N
i=1�w(Di )) :=

{
g : �N

i=1�w(Di ) → R : g is continuous and ‖g‖∗
w < ∞

}
.

Before we get to the actual proof of the theorem, note that the game is symmetric, hence,
proving only that the inequality defining ε-Nash equilibrium holds for the first player in the
first population will be enough to verify the theorem.

In our proof we shall use the following notation:

• Wewill use the notation π also to denote the vector of strategies in the n-person counter-
part of the mean-field game where each player from population i uses strategy π i . The
strategy vector where the first player in the first population changes his strategy to an
arbitrary weakly continuous Markov strategy π̂1

1 will be denoted by π̂ .
• The vector of states at time t in n-person game with ni players in population i ,

i = 1, . . . , N will be denoted by snt = (sn,1
t , . . . , sn,N

t ) with sn,i
t = (sn,i

t,1 , . . . , sn,i
t,ni )

for i = 1, . . . , N . Similarly, the vector of actions at time t will be denoted by
ant = (an,1

t , . . . , an,N
t ) with an,i

t = (an,i
t,1 , . . . , an,i

t,ni ) for i = 1, . . . , N . The correspond-
ing empirical state-action distribution of i-th population will be denoted by eni .• When we want to distinguish between what happens when strategy vector π is used and
when π̂ , an overline or a hat is added to a specific symbol, in particular the empirical
state-action distributions at time t when the two strategy vectors are used will be denoted
by eni,t and ê

n
i,t , respectively, with e

n
t = (en1,t , . . . , e

n
N ,t ) and ê

n
t = (̂en1,t , . . . , ê

n
N ,t ), while

the state and the action of the first player in the first population at time t by s̄n,1
t,1 , ā

n,1
t,1 ,

and by ŝn,1
t,1 , â

n,1
t,1 , respectively.• For any random element θ , its distribution will be denoted by L(θ). In particular, the

distributions of random elements (s̄n,1
t,1 , ān,1

t,1 ), (ŝn,1
t,1 , ân,1

t,1 ), eni,t and êni,t will be denoted

by L
(
s̄n,1
t,1 , ān,1

t,1

)
, L
(
ŝn,1
t,1 , ân,1

t,1

)
, L
(
eni,t
)
and L

(
êni,t

)
, respectively.

• The equilibrium state distribution in the mean-field limit at time t will be denoted by
μ∗i
t , i = 1, . . . , N while equilibrium state-action distribution in the mean-field limit

�i
t (π

i , μ∗i
t ) by τ ∗i

t with μ∗
t and τ ∗

t standing for their vectors. Finally, state and action
of the first player in i-th population at time t if the first player in the first population
uses policy π̂1

1 while others stick to their policies in the mean-field equilibrium, will be

denoted by ŝit,1 and â
i
t,1 with L

(
ŝit,1, â

i
t,1

)
their joint distribution.

In the first lemma, we adapt one of the results from Lemma 4.3 in [11] to our multidimen-
sional case.
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Lemma 2 Let �i
n ∈ �i

1(�w(S × A)) and δτ∗
i

∈ �i
1(�w(S × A)) for n ∈ NN and i =

1, . . . , N. Then if W1(�
i
n, δτ∗i ) → 0 for i = 1, . . . , N as n → ∞, then

E [|F (τn) − F (τ )|] → 0 as n → 0

for any F ∈ Cw

(
�N

i=1�w(Di )
)
and any �N

i=1�w(Di )-valued random elements τn =
(
τ 1n , . . . , τ N

n
)
, n ∈ NN , such that L

(
τ in
) = �i

n, i = 1, . . . , N, and a �N
i=1�w(Di )-valued

random element τ = (τ 1, . . . , τ N
)
such that L

(
τ i
) = δτ∗i , i = 1, . . . , N

Proof In the proof we will inductively (with respect to N ) verify a stronger result, stating that
for any function F satisfying the assumptions of the lemma, the functions F̃n : �w(DN ) →
R, defined as

F̃n(τ
N ) = E

[
F(τ 1n , . . . , τ N−1

n , τ N ) | L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

]

and F̂ : �w(DN ) → R, defined as

F̂(τ N ) = F(τ ∗1, . . . , τ ∗N−1, τ N )

satisfy for any convergent sequence
{
τ N
k

}
k≥1 ⊂ �w(DN )

F̃n(τ
N
k ) →n→∞,k→∞ F̂( lim

k→∞ τ N
k ). (5)

We precede the main part of the proof by showing that for any n ∈ N
N and any F ∈

Cw

(
�N

i=1�w(Di )
)
, F̃n ∈ Cw(�w(DN )).

Note that from the definition of the ‖ · ‖∗
w norm we know that for any τ ∈ �N

i=1�w(Di )

|F(τ )|
∫
DN w(s)τ N (ds × da)

≤ ‖F‖∗
w

(

1 +
∑N−1

i=1

∫
Di w(s)τ i (ds × da)

∫
DN w(s)τ N (ds × da)

)

≤ ‖F‖∗
w

(

1 +
N−1∑

i=1

∫

Di
w(s)τ i (ds × da)

)

,

with the last inequality following from the fact that w ≥ 1. Consequently,

∣
∣F̃n(τ N )

∣
∣

∫
DN w(s)τ N (ds × da)

≤ ‖F‖∗
w

(

1 +
N−1∑

i=1

E

[∫

Di
w(s)τ i (ds × da) | L(τ in) = �i

n)

])

.

By Lemma 4.3 in [11] we know that the RHS of the above inequality converges to

‖F‖∗
w

(

1 +
N−1∑

i=1

∫

Di
w(s)τ ∗i (ds × da)

)

< ∞

as n → ∞. This however implies that there exists a numberWN∗ such that for every n ∈ N
N ,

∣
∣F̃n(τ N )

∣
∣

∫
DN w(s)τ N (ds × da)

≤ WN∗ ,

which means that for each n,
∥
∥F̃n

∥
∥∗

w
≤ WN∗ .
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To show that for each n, F̃n is continuous, we take a convergent sequence
{
τ N
k

}
k≥1 ⊂

�w(DN ) and note that

lim
k→∞

∣
∣
∣
∣F̃n(τ

N
k ) − F̂( lim

k→∞ τ N
k )

∣
∣
∣
∣

= lim
k→∞

∣
∣
∣
∣E

[

F(τ 1n , . . . , τ N−1
n , τ N

k ) − F(τ 1n , . . . , τ N−1
n , lim

k→∞ τ N
k )

| L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

] ∣∣
∣
∣

≤ lim
k→∞ E

[∣
∣
∣
∣F(τ 1n , . . . , τ N−1

n , τ N
k ) − F(τ 1n , . . . , τ N−1

n , lim
k→∞ τ N

k )

∣
∣
∣
∣

| L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

]
(6)

Note that by the definition of thew-topology, the sequence of integrals
∫
DN w(s)τ N

k (ds×da)

converges to
∫
DN w(s) limk→∞ τ N

k (ds × da), hence there exists a number WN > 0 such
that ∫

DN
w(s)τ N

k (ds × da) ≤ WN for k ≥ 1 (7)

Next, note that by the definition of the ‖ · ‖∗
w norm,

∣
∣
∣F(τ 1n , . . . , τ N−1

n , τ N
k )

∣
∣
∣ ≤ ‖F‖∗

w

(
N−1∑

i=1

∫

Di
w(s)τ in(ds × da) +

∫

DN
w(s)τ N

k (ds × da)

)

The function on the RHS is the sum of a function of variables τ in, i = 1, . . . , N − 1 with a
finite integral with respect to the measure �N−1

i=1 �i
n by the assumption of the lemma and a

bounded term independent of these variables (a function of τ N
k bounded by ‖F‖∗

w WN for
any k ≥ 1 by (7)). Hence, by the dominated convergence theorem the RHS of (6) equals zero
for any n, which implies that F̃n is continuous.

Next, we turn to the inductive proof of (5). It is obvious that it holds for N = 1. Suppose
that (5) holds for some N − 1 for any function satisfying the assumptions of the lemma. We
will show it is also true for N . First, note that

lim
n→∞,k→∞

∣
∣
∣
∣F̃n(τ

N
k ) − F̂( lim

k→∞ τ N
k )

∣
∣
∣
∣

= lim
n→∞,k→∞

∣
∣
∣
∣E
[
F(τ 1n , . . . , τ N−1

n , τ N
k ) | L(τ 1n ) = �1

n, . . . ,L(τ N−1
n ) = �N−1

n

]

−F(τ ∗1, . . . , τ ∗N−1, lim
k→∞ τ N

k )

∣
∣
∣
∣

≤ lim
n→∞,k→∞ E

[∣
∣
∣
∣F(τ 1n , . . . , τ N−1

n , τ N
k ) − F(τ 1n , . . . , τ N−1

n , lim
k→∞ τ N

k )

∣
∣
∣
∣

| L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

]

+ lim
n→∞

∣
∣
∣
∣E

[

F(τ 1n , . . . , τ N−1
n , lim

k→∞ τ N
k ) − F(τ ∗1, . . . , τ ∗N−1, lim

k→∞ τ N
k )

| L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

] ∣∣
∣
∣ (8)
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To show that the first term on the RHS of (8) equals zero, we define functions θN
k , θN :

�N−1
i=1 �w(Di ) → R as

θN
k (τ 1, . . . , τ N−1) = F(τ 1, . . . , τ N−1, τ N

k ),

θN (τ 1, . . . , τ N−1) = F(τ 1, . . . , τ N−1, lim
k→∞ τ N

k ).

The definition of the ‖ · ‖∗
w norm, (7) and the fact that w ≥ 1 imply then that

∥
∥
∥θN

k

∥
∥
∥

∗
w

≤ ‖F‖∗
w(1 + WN ) for k ≥ 1 and

∥
∥
∥θN

∥
∥
∥

∗
w

≤ ‖F‖∗
w(1 + WN ).

As θN
k converges continuously to θN , by Theorem 3.3 in [15], the first term on the RHS of

(8) is zero.
To show that the same is true for the second term, we first rewrite it as follows:

lim
n→∞

∣
∣
∣
∣E

[

F(τ 1n , . . . , τ N−1
n , lim

k→∞ τ N
k ) − F(τ ∗1, . . . , τ ∗N−1, lim

k→∞ τ N
k )

| L(τ 1n ) = �1
n, . . . ,L(τ N−1

n ) = �N−1
n

] ∣∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

∫

�w(S×A)

((̃
θN
)
n(τ

N−1
n ) − θ̂N (τ ∗N−1)

)
�N−1

n

(
dτ N−1

n

)∣∣
∣
∣

≤ lim
n→∞

[∫

�w(S×A)

∣
∣
∣
(̃
θN
)
n(τ

N−1
n ) − (̃θN

)
n(τ

∗N−1)

∣
∣
∣�N−1

n

(
dτ N−1

n

)

+
∣
∣
∣
(̃
θN
)
n(τ

∗N−1) − θ̂N (τ ∗N−1)

∣
∣
∣
]

The second term goes to zero by the inductive hypothesis. To show that the same is true for
the first one, note that θN is a continuous function of N − 1 variables with a finite ‖ · ‖∗

w

norm, hence, for any n ∈ N
N ,
(̃
θN
)
n ∈ Cw(�w(DN−1)). Now we can apply Lemma 4.3

from [11] to show that the first term also goes to zero, ending the proof. ��
In the second lemma, we show that the sequences of random measures êni converge in

some sense to the mean-field equilibrium state-action distributions τ ∗i
t as n → ∞.

Lemma 3 For i = 1, . . . , N and any t ≥ 0,

lim
n→∞ W1

(
L
(
êni,t
)
, δτ∗i

t

)
= 0

in �i
1(�w(S × A)).

Proof By Lemma 4.3 in [11], to prove the thesis we only need to show that for any i and t ,

lim
n→∞ E

[∫

S×A
f (s, a)̂eni,t (ds × da) −

∫

S×A
f (s, a)τ ∗i

t (ds × da)

]

= 0

for any f ∈ Cw(S × A). We do it by induction on t .
Suppose t = 0. If i �= 1, then {(ŝn,i

0,k , â
n,i
0,k)}1≤k≤ni ∼ �

ni
k=1τ

∗i
0 . As any f ∈ Cw(S × A)

is w-integrable by assumption (A1’), the claim holds in this case. Next, suppose that i = 1.
Then
∫

S×A
f (s, a)̂eni,t (ds × da) = 1

n1
f (ŝn,1

0,1 , ân,1
0,1 ) + n1 − 1

n1

∫

S×A
f (s, a)̂en−e1

1,t (ds × da)
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with4 ên−e1
1,t = 1

n1−1

∑n1
k=2 δ

(ŝn,1
t,k ,ân,1

t,k )
. Now note that the expectation of the first term con-

verges to zero when n1 → ∞ as

E

[
1

n1
f (ŝn,1

0,1 , ân,1
0,1 )

]

≤ 1

n1
‖ f ‖wM

by assumption (A1’). On the other hand, the expected value of the second term goes to∫
S×A f (s, a)τ ∗1

0 (ds × da) by the argument used for i �= 1.
Now suppose the claim holds for t and consider t + 1. The claim will only be proved for

i = 1. The proof for i �= 1 goes along the same lines (we only do not need to consider the
first term on the RHS below in that case). Let us fix f ∈ Cw(S × A). Then

∣
∣
∣
∣

∫

S×A
f (s, a)̂en1,t+1(ds × da) −

∫

S×A
f (s, a)τ ∗1

t+1(ds × da)

∣
∣
∣
∣

≤ 1

n1

∣
∣
∣
∣ f (ŝ

n,1
t+1,1, â

n,1
t+1,1) −

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,1 , ân,1
t,1 , ênt )

∣
∣
∣
∣

+n1 − 1

n1

∣
∣
∣
∣

∫

S×A
f (s, a)̂en−e1

1,t+1(ds × da)

−
∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | s, a, ênt )̂e

n−e1
1,t (ds × da)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | s, a, ênt )̂e

n
1,t (ds × da)

−
∫

S×A
f (s, a)τ ∗1

t+1(ds × da)

∣
∣
∣
∣ (9)

To finish the proof, we need to show that the expected values of each term on the RHS of (9)
go to zero as n → ∞.

First, let us consider the first term.

E

[
1

n1

∣
∣
∣
∣ f (ŝ

n,1
t+1,1, â

n,1
t+1,1) −

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,1 , ân,1
t,1 , ênt )

∣
∣
∣
∣

]

≤ 1

n1
E

[∣
∣
∣ f (ŝn,1

t+1,1, â
n,1
t+1,1)

∣
∣
∣
]

+ 1

n1
E

[∫

S×A
| f (s′, a′)|π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,1 , ân,1
t,1 , ênt )

]

≤ ‖ f ‖w

n1
E

[
w(ŝn,1

t+1,1)
]

+ ‖ f ‖w

n1
E

[∫

S
w(s′)Q1(ds′ | ŝn,1

t,1 , ân,1
t,1 , ênt )

]

≤ 2
‖ f ‖w

n1
αt+1M,

where the last inequality follows from assumption (A1’) and a repeated application of (b) of
assumption (A2’). Clearly, the last expression goes to zero as n1 → ∞.

Next, let us consider the expectation of the second term on the RHS of (9). We can write
it as

n1 − 1

n1
E

[

E

[∣
∣
∣
∣

∫

S×A
f (s, a)̂en−e1

1,t+1(ds × da)

−
∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | s, a, ênt )̂e

n−e1
1,t (ds × da)

∣
∣
∣
∣

∣
∣
∣
∣ŝ

n
t , ânt

]]

4 Here and in the sequel e j stands for a versor with one on its j-th coordinate.
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The square of it can be bounded above as follows:

(
n1 − 1

n1
E

[

E

[∣
∣
∣
∣

∫

S×A
f (s, a)̂en−e1

1,t+1(ds × da)

−
∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | s, a, ênt )̂e

n−e1
1,t (ds × da)

∣
∣
∣
∣

∣
∣
∣
∣ŝ

n
t , ânt

]])2

≤ (n1 − 1)2

n21
E

[(

E

[∣
∣
∣
∣

∫

S×A
f (s, a)̂en−e1

1,t+1(ds × da)

−
∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | s, a, ênt )̂e

n−e1
1,t (ds × da)

∣
∣
∣
∣

∣
∣
∣
∣ŝ

n
t , ânt

])2]

≤ 1

n21
E

[
n1∑

k=2

[∫

S×A
f 2(s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,k , ân,1
t,k , ênt )

+
(∫

S×A
f (s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,k , ân,1
t,k , ênt )

)2
]]

≤ ‖ f ‖2w
n21

E

[
n1∑

k=2

[∫

S×A
w2(s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,k , ân,1
t,k , ênt )

+
(∫

S×A
w(s′, a′)π1

t+1(da
′ | s′)Q1(ds′ | ŝn,1

t,k , ân,1
t,k , ênt )

)2
]]

≤ ‖ f ‖2w
n21

n1∑

k=2

E

[
Bw2(ŝn,1

t,k ) + α2w2(ŝn,1
t,k )
]

with the second inequality following fromLemma6.2 in [11], the third one from the definition
of the w-norm and the last one from (b) of assumption (A2’) and (b) of assumption (A5). As
by assumption (A1’) and (b) of assumption (A5), for each k and any n, E[w2(ŝn,1

t,k )] ≤ Bt B0,
this implies that the expectaton of the second term on the RHS of (9) also converges to zero
when n → 0.

We finish the proof by showing that the same is true for the third term. In order to do it,
let us introduce the function φt : �N

i=1�w(Di ) → R with the formula

φt (τ ) :=
∫

S×A

∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s, a, τ )τ 1(ds × da).

Note that the third term on the RHS of (9) can be rewritten using φt as

∣
∣
∣φt

(
ênt
)

− φt
(
τ ∗1
t

)∣∣
∣ . (10)

As by the induction hypothesis limn→∞ W1

(
L
(
êni,t

)
, δτ∗i

t

)
= 0, i = 1, . . . , N , by Lemma

2 showing that the expected value of (10) goes to zero as n → ∞ only requires proving that
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φt ∈ Cw

(
�N

i=1�w(Di )
)
. We start by showing that it has a finite ‖ · ‖∗

w norm:

‖φt‖∗
w = sup

τ∈�N
i=1�w(Di )

|φt (τ )|
∑N

i=1

∫
S×A w(s)τ i (ds × da)

= sup
τ∈�N

i=1�w(Di )

∣
∣
∫
S×A

∫
S×A f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s, a, τ )τ 1(ds × da)

∣
∣

∑N
i=1

∫
S×A w(s)τ i (ds × da)

≤ sup
τ∈�N

i=1�w(Di )

∫
S×A

∫
S ‖ f ‖ww(s′)Q1(ds′ | s, a, τ )τ 1(ds × da)
∑N

i=1

∫
S×A w(s)τ i (ds × da)

< sup
τ∈�N

i=1�w(Di )

‖ f ‖wα
∫
S×A w(s)τ 1(ds × da)

∫
S×A w(s)τ 1(ds × da)

= ‖ f ‖wα < ∞,

with the penultimate inequality following from part (b) of the assumption (A2’) and the fact
that w ≥ 1.

Wenext show thatφt is continuous. Let {τ k}k≥1 ⊂ �N
i=1�w(Di )be a sequence converging

to τ ∈ �N
i=1�w(Di ). Let us further define the functions φ̃k

t : S× A → Rwhere k = 1, 2, . . .
and φ̃t : S × A → R by

φ̃k
t (s, a) :=

∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s, a, τ k)

φ̃t (s, a) :=
∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s, a, τ )

We will show that φ̃k
t converges continuously to φ̃t . Let {sk}k≥1 ⊂ S and {ak}k≥1 ⊂ A be

sequences converging to s∗ and a∗ respectively. Then
∣
∣
∣φ̃k

t (sk, ak) − φ̃t (s
∗, a∗)

∣
∣
∣

=
∣
∣
∣
∣

∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | sk, ak, τ k)

−
∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s∗, a∗, τ )

∣
∣
∣
∣

≤
∫

S×A
| f (s′, a′)π1

t+1(da
′ | s)| ∣∣Q1(ds′ | sk, ak, τ k) − Q1(ds′ | s∗, a∗, τ )

∣
∣

≤ ‖ f ‖∗
w

∫

S
w(s′)

∣
∣Q1(ds′ | sk, ak, τ k) − Q1(ds′ | s∗, a∗, τ )

∣
∣ ,

but the last expression goes to zero as k → ∞ by (a) of assumption (A2’), proving that

φ̃k
t converges continuously to φ̃t . Moreover, clearly, this time by part (b) of the assumption

(A2’), for each k,
∣
∣
∣φ̃k

t (s, a)

∣
∣
∣ =

∫

S×A
f (s′, a′)π1

t+1(da
′ | s)Q1(ds′ | s, a, τ k)

≤ ‖ f ‖∗
w

∫

S
w(s′Q1(ds′ | s, a, τ k) ≤ ‖ f ‖∗

wαw(s),

which makes the absolute values of each φ̃k
t bounded above by a τ 1-integrable function.
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Now we can apply Theorem 3.3 in [15] to the sequence of functions {φ̃k
t }k≥1 and the

sequence of measures {τ 1k }k≥1 obtaining

φt (τ k) =
∫

S×A
φ̃k
t (s, a)τ 1k (ds × da) →k→∞

∫

S×A
φ̃t (s, a)τ 1(ds × da) = φt (τ )

ending the proof of the continuity of φt , which also ends the proof that the expectation of the
third term on the RHS of (9) goes to zero. ��

In the third lemma, we prove an auxiliary result used to show that the rewards of the first
player in the first population from using strategy vector π̂ in the n-person counterparts of the
mean-field game converge to that in the mean-field limit.

Lemma 4 Fix any t ≥ 0 and i ∈ {1, . . . , N } and suppose that

lim
n→∞

∣
∣
∣
∣

∫

Di
gn(s, a)L

(
ŝn,i
t,1 , ân,i

t,1

)
(ds × da) −

∫

Di
gn(s, a)L

(
ŝit,1, â

i
t,1

)
(ds × da)

∣
∣
∣
∣ = 0

for any function gn ∈ Cw(Di ), n ∈ N
N satisfying supn∈NN ‖gn‖w < ∞. Moreover, suppose

that the family {hn : n ∈ N
N } of real-valued functions defined on Di × �N

j=1�w(D j )

satisfying

(a) The family {hn(si , ai , ·), (si , ai ) ∈ Di ,n ∈ N
N } is equicontinuous with respect to the

product w-topology.
(b) hn(·, ·, τ ) ∈ Cw(Di ) for any τ ∈ �N

j=1�w(D j ) and n ∈ N
N .

(c) supn∈NN ‖hn(·, ·, τ )‖w < ∞ for τ ∈ �N
j=1�w(D j ).

(d) The function

Fi
t (τ ) := sup

(s,a)∈Di ,n∈NN

∣
∣
∣hn(s, a, τ ) − hn(s, a, τ ∗

t )

∣
∣
∣

defined for τ ∈ �N
j=1�w(D j ) is real-valued and

∥
∥Fi

t

∥
∥∗

w
< ∞.

Then

lim
n→∞

∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝit,1, â

i
t,1, δτ∗

t

)
(ds × da × dτ)

∣
∣
∣
∣ = 0
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Proof Let us fix an arbitrary family {hn : n ∈ N
N } satisfying the hypothesis of the lemma.

Then we have
∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝit,1, â

i
t,1, δτ∗

t

)
(ds × da × dτ)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , δ
τ∗
t

)
(ds × da × dτ)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , δ
τ∗
t

)
(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝit,1, â

i
t,1, δτ∗

t

)
(ds × da × dτ)

∣
∣
∣
∣

The second term on the RHS can be rewritten as
∣
∣
∣
∣

∫

Di
hn(s, a, τ ∗

t )L
(
ŝn,i
t,1 , ân,i

t,1

)
(ds × da) −

∫

Di
hn(s, a, τ ∗

t )L
(
ŝit,1, â

i
t,1

)
(ds × da)

∣
∣
∣
∣ ,

which goes to zero as n → ∞ by the assumptions of the lemma. Next, we show that the
same is true for the first term. Note that

∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , δ
τ∗
t

)
(ds × da × dτ)

∣
∣
∣
∣

≤ E

[
E

[∣
∣
∣hn(s, a, ênt ) − hn(s, a, τ ∗

t )

∣
∣
∣ | (s, a) =

(
ŝn,i
t,1 , ân,i

t,1

)]]
≤ E

[
Fi
t (̂e

n
t )
]
(11)

We next show that Fi
t is continuous with respect to the product w-topology. Suppose

{τ k}k≥1 ⊂ �N
i=1�w(Di ) is a sequence converging to τ ∈ �N

i=1�w(Di ). Then

∣
∣
∣
∣F

i
t (τ k) − Fi

t (τ )

∣
∣
∣
∣ =

∣
∣
∣
∣ sup
(s,a)∈Di ,n∈NN

∣
∣
∣
∣hn(s, a, τ k) − hn(s, a, τ ∗

t )

∣
∣
∣
∣

− sup
(s,a)∈Di ,n∈NN

∣
∣
∣
∣hn(s, a, τ ) − hn(s, a, τ ∗

t )

∣
∣
∣
∣

∣
∣
∣
∣

≤ sup
(s,a)∈Di ,n∈NN

∣
∣
∣
∣hn(s, a, τ k) − hn(s, a, τ )

∣
∣
∣
∣→k→∞ 0

by the equicontinuity of the family {hn(si , ai , ·), (si , ai ) ∈ Di ,n ∈ N
N }. Since by the

assumption of the lemma also ‖Fi
t ‖∗

w < 0, this implies that Fi
t ∈ Cw

(
�N

i=1�w(Di )
)
, by

Lemma 2 the RHS in (11) goes to zero as n → ∞, ending the proof of the lemma ��
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In the penultimate lemmawe show that the expected rewards obtained by the first player in
any population in n-person counterparts of the discounted-reward mean-field game converge
to his expected reward in the mean-field game for all moments of time t .

Lemma 5 For any t ≥ 0 and i ∈ {1, . . . , N } we have
lim
n→∞

∣
∣
∣E
[
r i
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)]

− E

[
r i
(
ŝit,1, â

i
t,1, τ

∗
t

)]∣
∣
∣ = 0.

Proof Westart by showing that for any family {gn}n∈NN ⊂ Cw(Di ), satisfying supn∈NN ‖gn‖w

< ∞,

lim
n→∞

∣
∣
∣
∣

∫

Di
gn(s, a)L

(
ŝn,i
t,1 , ân,i

t,1

)
(ds × da) −

∫

Di
gn(s, a)L

(
ŝit,1, â

i
t,1

)
(ds × da)

∣
∣
∣
∣ = 0

We will show it by induction on t . The claim holds trivially for t = 0, as in this case

L
(
ŝn,i
t,1 , ân,i

t,1

)
= L

(
ŝit,1, â

i
t,1

)
= �i

0(π
i , μ∗i

0 ). Suppose the claim holds for t and consider

t+1. The first assumption of Lemma 4 is satisfied at time t by the induction hypothesis. Let us
next define the family of real-valued functions defined on Di×�N

j=1�w(D j ), {hn : n ∈ N
N }

using the formula

hn(s, a, τ ) :=
∫

Di
gn(s

′, a′)̂π i
t+1,1(da

′ | s′)Qi (ds′ | s, a, τ ).

We will next show that it satisfies the assumptions of Lemma 4. Let L := supn∈NN ‖gn‖w.
Then for any τ , η ∈ �N

j=1�w(D j ), we have

sup
(s,a)∈Di ,n∈NN

|hn(s, a, τ ) − hn(s, a, η)|

≤ L sup
(s,a)∈Di ,n∈NN

∥
∥
∥Qi (· | s, a, τ ) − Qi (· | s, a, η)

∥
∥
∥

w
≤ LωQi

⎛

⎝
N∑

j=1

ρ̃w(τ j , η j )

⎞

⎠ .

As by (a) of assumption (A5), ωQi (δ) → 0 when δ → 0, this implies that the family
{hn(s, a, ·), (s, a) ∈ Di ,n ∈ N

N } is equicontinuous. Moreover, the function

Fi
t (τ ) = sup

(s,a)∈Di ,n∈NN

∣
∣
∣hn(s, a, τ ) − hn(s, a, τ ∗

t )

∣
∣
∣

≤ LωQi

⎛

⎝
N∑

j=1

ρ̃w(τ j , τ ∗ j )

⎞

⎠ ≤ L�
τ∗
t
Q (η) ,

hence, it is real-valued and
∥
∥Fi

t

∥
∥∗

w
≤ L

∥
∥
∥
∥�

τ∗
t
Q

∥
∥
∥
∥

∗

w

< ∞, again by (a) of assumption (A5).

Next, note that for any τ ∈ �N
j=1�w(D j ), supn∈NN ‖hn(·, ·, τ )‖w ≤ αL by (b) of assump-

tion (A2’). Finally, we need to check that for any τ , hn(·, ·, τ ) is continuous. To this end let
us first define the function

l(s) :=
∫

A
gn(s, a)̂π i

t+1,1(da | s).

Clearly, l is a continuous function, given that for any sequence {sk}k≥1 ⊂ S converging to
some s∗, we have

l(sk) =
∫

A
gn(s

k, a)̂π i
t+1,1(da | sk) →k→∞

∫

A
gn(s

∗, a)̂π i
t+1,1(da | s∗) = l(s∗)
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by Theorem 3.3 in [15] as gn is continuous and
̂π i

t,1 is weakly continuous by the assumption
we have made about the strategy π̂ (remember also that A is compact, so gn is bounded on
the set

({sk}k≥1 ∪ {s∗})× A). Moreover, ‖l‖w ≤ ‖gn‖w ≤ L .
Next, let us take a sequence {(sk, ak)}k≥1 ⊂ Di converging to some (s∗, a∗). Clearly,

hn(s
k, ak, τ ) =

∫

Si
l(s′)Qi (ds′ | sk, ak, τ )

which, again by Theorem 3.3 in [15], converges to

hn(s
∗, a∗, τ ) =

∫

Si
l(s′)Qi (ds′ | s∗, a∗, τ ),

as l ∈ Cw(Si ) and Qi is weakly continuous by assumption (A2’).
As we have shown that the family {hn : n ∈ N

N } satisfies all the assumptions given in
Lemma 4, we can conclude as follows:

lim
n→∞

∣
∣
∣
∣

∫

Di
gn(s, a)L

(
ŝn,i
t+1,1, â

n,i
t+1,1

)
(ds × da)

−
∫

Di
gn(s, a)L

(
ŝit+1,1, â

i
t+1,1

)
(ds × da)

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

(ds × da × dτ)

−
∫

Di×�N
j=1�w(D j )

hn(s, a, τ )L
(
ŝit,1, â

i
t,1, δτ∗

t

)
(ds × da × dτ)

∣
∣
∣
∣ = 0,

showing the induction hypothesis.
The last step of the proof is showing that the function r i satisfies all the assumptions

of Lemma 4 (when taking hn ≡ r i for n ∈ N
N ). Obviously, r i (·, ·, τ ) ∈ Cw(Di ) for any

τ ∈ �N
j=1�w(D j ) by assumption (A1’). Then for any τ , η ∈ �N

j=1�w(D j ), we have

sup
(s,a)∈Di

∣
∣
∣r i (s, a, τ ) − r i (s, a, η)

∣
∣
∣ ≤ ωr i

⎛

⎝
N∑

j=1

ρ̃w(τ j , η j )

⎞

⎠ .

As by (a) of assumption (A5), ωr i (δ) → 0 when δ → 0, this implies that the family
{r i (s, a, ·), (s, a) ∈ Di } is equicontinuous. Moreover, the function

F̃ i
t (τ ) := sup

(s,a)∈Di

∣
∣
∣r i (s, a, τ ) − r i (s, a, τ ∗

t )

∣
∣
∣ ≤ ωr i

⎛

⎝
N∑

j=1

ρ̃w(τ j , τ ∗ j )

⎞

⎠ ≤ �
τ∗
t
r (η) ,

hence, it is real-valued and
∥
∥F̃ i

t

∥
∥∗

w
≤
∥
∥
∥
∥�

τ∗
t
Q

∥
∥
∥
∥

∗

w

< ∞, again by (a) of assumption (A5). Now

we can apply Lemma 4 to r i , obtaining the thesis of the lemma. ��

The last lemma can be treated as a counterpart of Theorem 2.3 in [11] tailored to our
model. It shows that in our considerations we can restrict ourselves to the weakly continuous
deviations from the mean-field equilibrium strategy.
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Lemma 6 For any i , under the assumptions of Theorem 1,

sup
π̂ i
1∈Mi

E

[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]

can be obtained using policies π̂ i
1 such that

̂π i
1,t is weakly continuous for any time t ≥ 0.

Proof Without loss of generality, we may show the result only for i = 1. Let us choose an
arbitrary policy π̃1

1 ∈ M1. We will show that for any ε > 0 there exists π̂1
1 ∈ M1 which is

weakly continuous and satisfies

E

[
J 1,1β,n(s0, [π−1,1, π̂

1
1 ]) | s0 ∼ μ∗

0

]
≥ E

[
J 1,1β,n(s0, [π−1,1, π̃

1
1 ]) | s0 ∼ μ∗

0

]
− ε, (12)

which will complete the proof.
We start by noting that the problem the first player in first population is facing is that

of finding an optimal policy in a Markov decision process with state space �N
j=1(S

j )n j ,
time-dependent transition probability

Q̃t (dx | s, a11) =
∫

A1(s12 )

. . .

∫

A1(s1n1 )

. . .

∫

AN (sN1 )

. . .

∫

AN (sNnN )

�N
j=1�

n j
k=1Q

j
(
dx j

k | s jk , a j
k , τ (s, a)

)

�
n1
k=2π

j
t,k(da

j
k | s jk )�N

j=2�
n j
k=1π

j
t,k(da

j
k | s jk )

and one-stage reward

r̃t (s, a
1
1) =

∫

A1(s12 )

. . .

∫

A1(s1n1 )

. . .

∫

AN (sN1 )

. . .

∫

AN (sNnN )

r i
(
s11 , a

1
1, τ (s, a)

)

�
n1
k=2π

j
t,k(da

j
k | s jk )�N

j=2�
n j
k=1π

j
t,k(da

j
k | s jk ).

ByLusin’s theorem (seeTheorem7.5.2 in [4]), for any δ > 0, there exists a closed set Fδ
0 ∈ S1

such that μ∗1
0 (Fδ

0 ) < δ and˜π1
0,1 is weakly continuous on Fδ

0 . As �(A) is a convex subset
of a locally convex vector space of finite signed measures on A, by Dugundji’s extension

theorem (see Theorem 7.4 in [5]), we can extend˜π1
0,1 limited to Fδ

0 continuously to S1. Let
˜
π
1,δ
0,1 denote this extension. We then apply the same method to ˜π1

1,1, that is, we define the

measure μ̃1 on S1 with the formula

μ̃1(B) :=
∫

B

∫

(S1)n1−1
. . .

∫

(SN )nN

∫

A
Q̃0

(
B × (S1)n1−1 × �N

j=2(S
j )n j | s, a11

)

˜π1
0,1(da

1
1 | s11 )μ∗1

0 (ds11 ) . . . μ∗1
0 (ds1n1) . . . μ∗N

0 (dsN1 ) . . . μ∗1
0 (dsNnN )

and construct a continuous ˜
π
1,δ
1,1 that agrees with ˜π1

1,1 on a closed subset Fδ
1 of S1

satisfying μ̃1(Fδ
1 ) < δ. We continue in the same manner until time t∗, constructing mea-

sures μ̃t and weakly continuous stochastic kernels ˜
π
1,δ
t,1 for t = 2, . . . , t∗ and define

̂π1
1 (δ, t∗) as a Markov strategy for the first player in the first population of the form(
˜
π
1,δ
0,1 ,

˜
π
1,δ
1,1 , . . . ,

˜
π
1,δ
t∗,1, π

1
t∗+1,1, . . .

)

(remember that the kernel π1
t,1 is weakly continuous
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for any t by the assumption of the theorem). Now we can conclude as follows:
∣
∣
∣E
[
J 1,1β,n(s0, [π−1,1,

̂π1
1 (δ, t∗)]) | s0 ∼ μ∗

0

]
− E

[
J 1,1β,n(s0, [π−1,1, π̃

1
1 ]) | s0 ∼ μ∗

0

]∣
∣
∣

=
∣
∣
∣
∣
∣
E

μ∗
0,Qn ,[π−1,1,

̂π1
1 (δ,t∗)]

∞∑

t=0

β t r1,1n (st , at ) − E
μ∗
0,Qn ,[π−1,1,π̃

1
1 ]

∞∑

t=0

β t r1,1n (st , at )

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
E

μ∗
0,Qn ,[π−1,1,

̂π1
1 (δ,t∗)]

t∗∑

t=0

β t r1,1n (st , at ) − E
μ∗
0,Qn ,[π−1,1,π̃

1
1 ]

t∗∑

t=0

β t r1,1n (st , at )

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
E

μ∗
0,Qn ,[π−1,1,

̂π1
1 (δ,t∗)]

∞∑

t=t∗+1

β t r1,1n (st , at ) − E
μ∗
0,Qn ,[π−1,1,π̃

1
1 ]

∞∑

t=t∗+1

β t r1,1n (st , at )

∣
∣
∣
∣
∣

(13)

Note that by assumption (A1’), (b) of assumption (A2’) and the definition of r1,1n , for any t
we have

R ≥ E
μ∗
0,Qn ,· [r1,1n (st , at )

] ≥ −Rγ t
E

μ∗
0,Qn ,· [w(s1t,1)

] ≥ −Rγ tαt M, (14)

regardless of the strategy used. Therefore, the second term on the RHS of (13) can be bounded
above by

∞∑

t=t∗+1

β t (R + Rγ tαt M
) = β t∗+1

(
R

1 − β
+ RMαt∗γ t∗

1 − αβγ

)

,

which goes to 0 as t∗ → ∞. Obviously, this implies that there exists a value of t∗, call it t̂∗,
for which the second term on the RHS of (13) is smaller than ε

2 .
Next, note that, by (14) and (b) of assumption (A2’), the first term on the RHS of (13) is

bounded above by

t∗∑

t=0

β t

∣
∣
∣
∣
∣
Rγ tαt

∫

Fδ
0

w(s10,1)μ
∗1
0 (ds10,1) + Rδ

∣
∣
∣
∣
∣

+
t∗∑

t=1

β t

∣
∣
∣
∣
∣
Rγ tαt−1

∫

Fδ
0

w(s11,1)μ̃1(ds
1
1,1) + Rδ

∣
∣
∣
∣
∣

+ . . . +
t∗∑

t=t∗
β t

∣
∣
∣
∣
∣
Rγ tαt−t∗

∫

Fδ
0

w(s1t∗,1)μ̃t∗(ds
1
t∗,1) + Rδ

∣
∣
∣
∣
∣

This sum can be made arbitrarily small, say smaller than ε
2 for t∗ = t̂∗ by taking appropriate

δ = δ∗.
This however implies that π̂1

k = ̂π1
1 (δ∗, t̂∗) satisfies (12). ��

Proof of Theorem 1 Take ε > 0 and note that by Lemma 6 for each population i there exists

a weakly continuous policy π̂ i
1 ∈ Mi such that

E

[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]
≥ sup

π̃ i
1∈Mi

E

[
J 1,iβ,n(s0, [π−i,1, π̃

i
1]) | s0 ∼ μ∗

0

]
− ε

5
.

(15)
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Next note that for any t∗ ≥ 0 we have

∣
∣
∣E
[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]
− E

[
J iβ(si0, μ

∗
0, π̂

i
1, π) | si0 ∼ μ∗i

0

]∣
∣
∣

≤
t∗∑

t=0

β t
∣
∣
∣E
[
r i
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)]

− E

[
r i
(
ŝit,1, â

i
t,1, τ

∗
t

)]∣
∣
∣

+
∣
∣
∣
∣
∣
E

[ ∞∑

t=t∗+1

β t
(
r i
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

− r i
(
ŝit,1, â

i
t,1, τ

∗
t

))
]∣
∣
∣
∣
∣

The first t∗ terms on the RHS go to zero as n → ∞ by Lemma 5, while (14) implies that the
last term can be bounded above by

∞∑

t=t∗+1

β t (R + Rγ tαt M
) = β t∗+1

(
R

1 − β
+ RMαt∗+1γ t∗+1

1 − αβγ

)

→t∗→∞ 0.

Hence, we can fix t∗ such that β t∗+1
(

R
1−β

+ RMαt∗+1γ t∗+1

1−αβγ

)

< ε
5 and n

i
1(ε), …, niN (ε) such

that for n1 ≥ ni1(ε), …, nN ≥ niN (ε), we have

∣
∣
∣E
[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]
− E

[
J iβ(si0, μ

∗
0, π̂

i
1, π) | si0 ∼ μ∗i

0

]∣
∣
∣ <

2ε

5
. (16)

Using similar reasoning, we may find n̂i1(ε), …, n̂iN (ε) such that for n1 ≥ n̂i1(ε), …, nN ≥
n̂iN (ε),

∣
∣
∣E
[
J 1,iβ,n(s0, π) | s0 ∼ μ∗

0

]
− E

[
J iβ(si0, μ

∗
0, π

i
1, π) | si0 ∼ μ∗i

0

]∣
∣
∣ <

2ε

5
. (17)

If we take ni (ε) := max{max{n j
i (ε), j = 1, . . . , N },max{̂n j

i (ε), j = 1, . . . , N }}, i =
1, . . . , N , the definition of the Markov mean-field equilibrium, (16) and (17) imply that

E

[
J 1,iβ,n(s0, π) | s0 ∼ μ∗

0

]
− E

[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]

≥ E

[
J iβ(si0, μ

∗
0, π

i
1, π) | si0 ∼ μ∗i

0

]
− E

[
J iβ(si0, μ

∗
0, π̂

i
1, π) | si0 ∼ μ∗i

0

]

−
∣
∣
∣E
[
J 1,iβ,n(s0, [π−i,1, π̂

i
1]) | s0 ∼ μ∗

0

]
− E

[
J iβ(si0, μ

∗
0, π̂

i
1, π) | si0 ∼ μ∗i

0

]∣
∣
∣

−
∣
∣
∣E
[
J 1,iβ,n(s0, π) | s0 ∼ μ∗

0

]
− E

[
J iβ(si0, μ

∗
0, π

i
1, π) | si0 ∼ μ∗i

0

]∣
∣
∣ > −4ε

5

for n1 ≥ n1(ε),…, n1 ≥ n1(ε). Combining it with (15) we get that

E

[
J 1,iβ,n(s0, π) | s0 ∼ μ∗

0

]
> sup

π̃ i
1∈Mi

E

[
J 1,iβ,n(s0, [π−i,1, π̃

i
1]) | s0 ∼ μ∗

0

]
− ε

for any i ∈ {1, . . . , N } and n1 ≥ n1(ε),…, n1 ≥ n1(ε). As all the players within each
population are symmetric, this implies that the profile of strategies π is an ε-equilibrium in
the n-person counterpart of the discounted-payoff mean-field game in this case. ��
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5.2 Results for the Total Payoff Case

In the remaining results we address the n-person counterparts of total-payoff game.

Theorem 7 Suppose assumptions (A1”), (A2”), (A3), (A4”) and (A5) hold and suppose π

and (μ∗
0, μ

∗
1, . . .) form a Markov mean-field equilibrium in the multi-population discrete-

time mean-field game existing by Theorem 8 in [18]. If in addition, for each t ≥ 0 and
i = 1, . . . , N, π i

t is weakly continuous, then for any ε > 0 and any T ≥ 0 there exist
positive integers ni (ε, T ), i = 1, . . . , N such that the vector of strategies where each player
from population i uses policy π i is an (ε, T )-Markov–Nash equilibrium in any n-person
stochastic counterpart of the total-payoff mean-field game if ni ≥ ni (ε, T ), i = 1, . . . , N.

Remark 2 As in the case of discounted payoff, stationary mean-field equilibrium existing
according to Theorem 5 in [18] is a specific case of Markov mean-field equilibria with
stationarity condition imposed on global states of the game at subsequent stages. Hence, the
result provided by Theorem 7 holds in this case as well.

Before we pass to the actual proof of Theorem 7, we present an auxiliary result that can
be seen as a variant of Lemma 6 for the total payoff game.

Lemma 8 For any i and any t0 ∈ N under the assumptions of Theorem 7,

sup
π̂ i
1∈Mi

E

[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]

can be attained using policies π̂ i
1 such that̂π i

1,t is weakly continuous for any time t ≥ 0.
Moreover, these policies do not depend on t0 as long as t0 ≤ T for some fixed T ∈ N.

Proof Without loss of generality we may only consider i = 1. As in the case of Lemma 6
what we need to prove is that for an arbitrary policy π̃1

1 ∈ M1 and any ε > 0 there exists

π̂1
1 ∈ M1 which is weakly continuous and satisfies for any fixed t0 ≤ T

E

[
J 1,1∗n (μt0 , [t0π−1,1,

t0 π̂1
1 ]) | s0 ∼ μ∗

0

]
≥ E

[
J 1,1∗n (μt0 , [t0π−1,1,

t0 π̃1
1 ]) | s0 ∼ μ∗

0

]
− ε.

(18)
The beginning of the proof is the same as for Lemma 6: we construct a Markov

strategy for the first player in the first population ̂π1
1 (δ, t∗) (with t∗ > T ) of the form(

˜
π
1,δ
0,1 ,

˜
π
1,δ
1,1 , . . . ,

˜
π
1,δ
t∗,1, π

1
t∗+1,1, . . .

)

, where each˜
π
1,δ
t,1 is weakly continuous and agrees with

˜π1
t,1 with probability 1 − δ.

Next, we define modified (non-time homogeneous) transition probability Q∗t0
n as

Q∗t0
n,t (· | s, a, τ ) :=

{
Qn(· | s, a), if s11 �= s∗ or t < t0
δ(s∗)n , if s = s∗ and t ≥ t0

Let
(
Q∗t0

n
)t

(· | s, σ ) denote the transition in t stepswhen the initial state of the n-person game
is s and the players use Markov strategy vector σ . It can be checked that under assumption
(A4”), Q∗t0

n satisfies

lim
t∗→∞ sup

σ∈�N
j=1

(
M j

)n j ,

(s0,a0,s1,a1,...)∈�∞
t=0�

N
j=1(D

j )
n j

∥
∥
∥
∥
∥

∞∑

t=t∗+1

∫

S1\{s∗}
w(x11 )α

−t (Q∗t0
n

)t
(dx | s, σ )

∥
∥
∥
∥
∥

w

= 0,
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which can shortly be written as
lim

t∗→∞ Lt∗ = 0 (19)

with Lt∗ denoting the supremum under the limit.
Now we can proceed as follows:
∣
∣
∣E
[
J 1,1∗n (μt0 , [t0π−1,1,

t0 ̂π1
1 (δ, t∗)]) | s0 ∼ μ∗

0

]
− E

[
J 1,1∗n (μt0 , [t0π−1,1,

t0 π̃1
1 ]) | s0 ∼ μ∗

0

]∣
∣
∣

=
∣
∣
∣
∣
∣
∣
E

μ0
∗,Qn ,[t0π−1,1,

t0 π̂1
1 (δ,t∗)]

T 1
1 −1∑

t=t0

r1,1n (st , at ) − E
μ0

∗,Qn ,[t0π−1,1,
t0 π̃1

1 ]
T 1
1 −1∑

t=t0

r1,1n (st , at )

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
E

μ0
∗,Q

∗t0
n ,[t0π−1,1,

t0 π̂1
1 (δ,t∗)]

∞∑

t=t0

r1,1n (st , at ) − E
μ0

∗,Q
∗t0
n ,[t0π−1,1,

t0 π̃1
1 ]

∞∑

t=t0

r1,1n (st , at )

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
E

μ0
∗,Q

∗t0
n ,[t0π−1,1,

t0 π̂1
1 (δ,t∗)]

t∗∑

t=t0

r1,1n (st , at ) − E
μ0

∗,Q
∗t0
n ,[t0π−1,1,

t0 π̃1
1 ]

t∗∑

t=t0

r1,1n (st , at )

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
E

μ0
∗,Q

∗t0
n ,[t0π−1,1,

t0 π̂1
1 (δ,t∗)]

∞∑

t=t∗+1

r1,1n (st , at ) − E
μ0

∗,Q
∗t0
n ,[t0π−1,1,

t0 π̃1
1 ]

∞∑

t=t∗+1

r1,1n (st , at )

∣
∣
∣
∣
∣

As assumptions (A1”) and (A2”) are stronger than (A1’) and (A2’), bounds given in (14) still
hold here. Hence, the first term on the RHS can be bounded above by

t∗∑

t=max{0,t0}

∣
∣
∣
∣
∣
Rγ tαt

∫

Fδ
0

w(s10,1)μ
∗1
0 (ds10,1) + Rδ

∣
∣
∣
∣
∣

+
t∗∑

t=max{1,t0}

∣
∣
∣
∣
∣
Rγ tαt−1

∫

Fδ
0

w(s11,1)μ̃1(ds
1
1,1) + Rδ

∣
∣
∣
∣
∣

+ . . . +
t∗∑

t=t∗

∣
∣
∣
∣
∣
Rγ tαt−t∗

∫

Fδ
0

w(s1t∗,1)μ̃t∗(ds
1
t∗,1) + Rδ

∣
∣
∣
∣
∣
.

As far as the second term is concerned, (14) and the fact that r1,1n (s, a) equals zero whenever
s11 = s∗ imply that it can be bounded above by

E

⎡

⎣ sup
σ∈�N

j=1(M j )
n j

∞∑

t=t∗+1

Rγ tαt
∫

S1\{s∗}
w(x11)α

−t (Q∗t0
n

)t
(dx | s, σ )

+ sup
σ∈�N

j=1(M j )
n j

∞∑

t=t∗+1

R
(
Q∗t0

n

)t (
S1 \ {s∗} | s, σ ) | s0 ∼ μ∗

0

⎤

⎦ ≤ 2RMLt∗

with the last inequality following from the definition of Lt∗ , (A1”) (in particular the fact that
αγ < 1) and the inequality w ≥ 1.

Both boundaries can be made arbitrarily small by taking t∗ big enough (by (19)) in
the second case and δ small enough in the first one. In particular, if both are less than ε

2 ,

π̂1
k = ̂π1

1 (δ∗, t̂∗) satisfies (18). As boundaries do not depend on t0, the last statement of the
lemma has also been proved. ��
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Proof of Theorem 7 Take ε > 0 and T ∈ N. Note that by Lemma 8 for each population i

there exists a weakly continuous policy π̂ i
1 ∈ Mi such that

E

[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]

≥ sup
π̃ i
1∈Mi

E

[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̃ i
1]) | s0 ∼ μ∗

0

]
− ε

5
. (20)

for any t0 ≤ T . Next note that for any t∗ ≥ T we have
∣
∣
∣E
[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0 π̂ i
1,

t0π) | si0 ∼ μ∗i
0

]∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
E

⎡

⎣
min{T i

1 −1,t∗}∑

t=t0

(
r i
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

− r i
(
ŝit,1, â

i
t,1, τ

∗
t

))
⎤

⎦

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
E

⎡

⎣
T i
1∑

t=t∗+1

(
r i
(
ŝn,i
t,1 , ân,i

t,1 , ênt
)

− r i
(
ŝit,1, â

i
t,1, τ

∗
t

))
⎤

⎦

∣
∣
∣
∣
∣
∣

The first term on the RHS goes to zero as n → ∞ by Lemma 5. As far as the second term is
concerned, it can be bounded above by 2RMLt∗ in a similar way as in the proof of Lemma
8. By (19) this can be made arbitrarily small by taking t∗ big enough. In particular, we can
find t∗ such that 2RMLt∗ < ε

5 and ni1(ε, T ), …, niN (ε, T ) such that for n1 ≥ ni1(ε, T ), …,
nN ≥ niN (ε, T ), for each t0 ≥ T we have
∣
∣
∣E
[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0 π̂ i
1,

t0π) | si0 ∼ μ∗i
0

]∣
∣
∣ <

2ε

5
.

(21)

Similarly we find n̂i1(ε, T ), …, n̂iN (ε, T ) such that for n1 ≥ n̂i1(ε, T ), …, nN ≥ n̂iN (ε, T )

and any t0 ≤ T ,
∣
∣
∣E
[
J 1,i∗n (μt0 ,

t0π) | s0 ∼ μ∗
0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0π i
1,

t0π) | si0 ∼ μ∗i
0

]∣
∣
∣ <

2ε

5
. (22)

If we take ni (ε, T ) := max{max{n j
i (ε, T ), j = 1, . . . , N },max{̂n j

i (ε, T ), j = 1, . . . , N }},
i = 1, . . . , N , the definition of the Markov mean-field equilibrium, (21) and (22) imply that

E

[
J 1,i∗n (μt0 ,

t0π) | s0 ∼ μ∗
0

]
− E

[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]

≥ E

[
J i∗(sit0 , μ

∗
t0 ,

t0π i
1,

t0π) | si0 ∼ μ∗i
0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0 π̂ i
1,

t0π) | si0 ∼ μ∗i
0

]

−
∣
∣
∣E
[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̂ i
1]) | s0 ∼ μ∗

0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0 π̂ i
1,

t0π) | si0 ∼ μ∗i
0

]∣
∣
∣

−
∣
∣
∣E
[
J 1,i∗n (μt0 ,

t0π) | s0 ∼ μ∗
0

]
− E

[
J i∗(sit0 , μ

∗
t0 ,

t0π i
1,

t0π) | si0 ∼ μ∗i
0

]∣
∣
∣ > −4ε

5

for n1 ≥ n1(ε, T ),…, n1 ≥ n1(ε, T ) and t0 ≤ T . Combining it with (20) we get that

E

[
J 1,i∗n (μt0 ,

t0π) | s0 ∼ μ∗
0

]
> sup

π̃ i
1∈Mi

E

[
J 1,i∗n (μt0 , [t0π−i,1,

t0 π̃ i
1]) | s0 ∼ μ∗

0

]
− ε

for any i ∈ {1, . . . , N }, n1 ≥ n1(ε, T ),…, n1 ≥ n1(ε, T ) and t0 ≤ T . As all the players
within each population are symmetric, this implies that the profile of strategies π is an
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(ε, T )-equilibrium in the n-person counterpart of the total-payoff mean-field game in this
case. ��

6 Concluding Remarks

The paper is the continuation of our previous article [18], where we have presented the
conditions under which multiple-population discrete-time mean-field games admit Markov
(or stationary) equilibria. These results were presented for two payoff criteria: β-discounted
payoff and total expected payoff. In this article, we have presented the theorems showing that
under some rather unrestrictive assumptions equilibria obtained in the mean-field models
are approximate equilibria in their n-person counterparts when n is large enough. All of
them are presented for both payoffs considered. As games with total payoff have only been
studied in finite state space case, the approximation results presented here also extend those
for total-payoff mean-field games with a single population. The article is a part of ongoing
research on discrete-time mean-field games with multiple populations of players. The next
step should be extending the results presented in this paper to the case of long-run average
reward. This is an especially interesting case as standard ergodicity assumptions applied in
this kind of models to show the existence of an equilibrium do not translate well to the case
with multiple populations.
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17. Więcek P (2020) Discrete-time ergodic mean field games with average reward on compact spaces. Dyn

Games Appl 10:222–256
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