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Abstract
We identify structural assumptions which provide solvability of the Nash system arising
from a linear-quadratic closed-loop game, with stable properties with respect to the number
of players. In a setting of interactions governed by a sparse graph, both short-time and long-
time existence of a classical solution for the Nash system set in infinitely many dimensions
are addressed, as well as convergence to the solution to the respective ergodic problem as
the time horizon goes to infinity; in addition, equilibria for the infinite-dimensional game
are shown to provide ε-Nash closed-loop equilibria for the N -player game. In a setting of
generalized mean-field type (where the number of interactions is large but not necessarily
symmetric), directly from the N -player Nash system estimates on the value functions are
deduced on an arbitrary large time horizon, which should pave the way for a convergence
result as N goes to infinity.

1 Introduction

Consider a stochastic differential gamewith N players, indexed by i ∈ [[N ]] := {0, . . . , N−
1}, where the state Xi of the i-th player evolves according to the Rd -valued SDE

dXi
t = αi

t dt +
√
2 dBi

t .

His/her cost, in the fixed time horizon [0, T ], is given by

J i (α) = 1

2
E

∫ T

0

(|αi |2 + 〈Fi X , X〉) dt + 〈Gi XT , XT 〉, (1.1)
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for some Fi = f i ⊗ Id and Gi = gi ⊗ Id , with f i ∈ C0([0, T ];S (N )) and gi ∈ S (N ).1

The Bi ’s are independentRd -valued Brownianmotions, and the αi ’s are closed-loop controls
in feedback form, that is αi = αi (t, Xt ).

It is known (see for instance [12, Section 2.1.4], or [22]) that the value functions of the
players, ui = ui (t, x) with i ∈ [[N ]], t ∈ [0, T ] and x = (x0, . . . , xN−1) ∈ (Rd)N solve
the so-called Nash system of Hamilton-Jacobi PDEs{

−∂t ui −�ui + 1
2 |Diui |2 +∑

j �=i D j u j D jui = F̄ i

ui (T , ·) = Ḡi (1.2)

where F̄ i = 1
2 〈Fi ·, ·〉, Ḡi = 〈Gi ·, ·〉 and i ∈ [[N ]]. The equilibrium feedbacks are then

given by αi = −Diui . Since the dynamic of each player is linear, and the costs are quadratic
in the state and control variables, it is well-known that the previous system can be recast into
a system of ODEs of Riccati type, by making the ansatz that ui are quadratic functions of
the states. Here, we look for conditions on the solvability of such system, and we focus in
particular on properties that are stable as the number of players goes to infinity, with the aim of
addressing the limit problem with infinitely many players, whenever possible. The Laplacian
appears in (1.2) by the presence of the independent noises Bi , but it will not actually play any
relevant role in our analysis. We keep it since the purely deterministic system is not known
to be well posed, beyond the linear quadratic setting.

The study of differential games with many players has enjoyed a rapid development in
the last two decades, since the introduction of the theory of Mean Field Games (MFGs)
independently by Lasry and Lions [31] and Huang, Caines and Malhamé [25]. MFG theory
provides an effective paradigm for studying dynamic games with many players that are both
symmetric (that is, indistinguishable) and negligible. In such framework, one has a limit
model, involving the equilibrium between a typical player versus a mass of agents, which is
decentralised and symmetric: in fact, it is realised by a feedback of the state of the player
only, it is identical for all the players, and it can be computed just by observing the population
of players at the initial time. We refer to the book [12] and the lecture notes [11] for a recent
account of the theory of MFGs.

If the MFG assumption is not fullfilled, that is, Fi and Gi do not depend just on the
empirical measure of the other players, one enters into the broader framework of network
games. There has been in the last few years an increasing interest in the understanding of
the large population limits of equilibria among players whose interactions are described by
graphs. Roughly speaking, when the number of interactions is “large”, the MFG description,
or a suitable generalisation based on the notion of graphon effectively characterizes large
population limits: see for instance [1, 5, 8, 30] and references therein. See also [16] for the
analysis of a model on Erdős-Rényi graphs.

On the other hand, when the underlying network structure is sparse, very few results are
available in the literature. In the dense regime, one expects all the players to have an indi-
vidual negligible influence on a given player, because their running costs involve cumulative
functions of many variables, while in sparse regimes,most of the players should have a small
impact just because they are “far” with respect to the graph distance. This mechanism of
independency between players that are far in the graph has been first observed in [29], by
means of correlation estimates.

The framework addressed in [29] is somehowsimilar to ours. The linear-quadratic setting is
considered, and under some symmetry assumptions on the underlying graph, Nash equilibria

1 The symbol ⊗ denotes the usual Kronecker product.
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are computed explicitly (exploiting also the running costs F
i
to be identically zero, and

G
i
to have a specific structure). Then, a probabilistic information on the covariance of any

two players’ equilibrium state processes is derived. A main goal in our work is to derive an
analogous information in more analytic terms; that is, we wish to quantify the influence of
the j-th player on the i-th one by estimating Djui , with the perspective of developing some
ideas that could be applied also beyond the linear-quadratic framework.

Wenowdescribe our resultsmore in detail. The first part of the paper is devoted to analyse a
sort of sparse regimewith a special structure, namely shift-invariance, where basically f i and
gi coincide with f i−1 and gi−1, respectively, after the permutation of variables xi �→ xi−1.
Most importantly, we assume players to have nearsighted interactions, that means

| f ihk |, |gihk | � βh−iβk−i ∀ h, k,

where (βk)k is a suitable sequence in �1(Z). Since βk−i decays as |k − i | → ∞, this means
that f ihk , which quantifies the influence of the h-th and k-th player on the i-th one, decreases
as |h − i | and |k − i | increase. A prototypical example is given by the bi-directed chain,
where f ihk is a sparse matrix with zero entries except for |h − i | ≤ 1 and |k − i | ≤ 1, so that
the i-th player cost depends only on the (i + 1)-th and the (i − 1)-th state. See also [20] for
results on models that build upon a similar structure.

The first statement we get, which sums up Theorems 2.13 and 2.14, is the following.

Theorem There exists T ∗ > 0 such that if T ≤ T ∗ then for any N ∈ N∪ {∞} there exists a
smooth solution to system (1.2) such that, for any i, j and m ∈ N,

∥∥∥∥
( d

dt

)m
Dhku

i
∥∥∥∥∞ � βh−iβk−i .

Note in particular that we get existence of a smooth classical solution to the infinite-
dimensional Nash system (1.2) with N = ∞, i ∈ Z. We stress that the key issue in the
analysis of our problem is that, despite the cost functions f i , gi may depend on very few
variables, the system itself is strongly coupled by the transport terms

∑
j �=i D j u j D jui ,

which become in fact series when N = ∞. The closed-loop structure of equilibria forces
the equilibrium feedbacks α j = −Dju j to be strongly “nonlocal”, that is, they depend on
the full vector state x . Hence, decay estimates on Djui which are stable as N increases are
crucial to pass to the limit N →∞. These are obtained here by a careful choice of β: below,
we will use the terminology self-controlled for the discrete convolution, or briefly c-self-
controlled (where the “c” stands for “convolution”), that fits well with the structure of cyclic
discrete convolution appearing in our problem. From the game perspective, the equilibrium
feedbacks α j turn out to be almost “local”, in the sense that the influence of “far” players is
still negligible in the sense explained above. In other words, despite the strong coupling given
by the full information structure of closed-loop equilibria, the property of “unimportance of
distance players” is observed (see Remark 2.15 for further discussions).

While the shift-invariance condition can be actually dropped (see Sect. 2.4), one of the
main restrictions of the previous result is that it guarantees short-time existence only. Note
that, even with a finite number of players N , Riccati systems may fail to have long time
solutions in general; therefore we look for further conditions on f i and gi such that existence
holds for any time horizon T , and independently on N . To achieve this goal, we strengthen
the previous assumption on nearsighted interactions, that now become of strongly gathering
type, and require further directionality conditions. Section2.5 contains precise definition of
this notion and examples. The main existence result is stated in Theorem 2.26. Here, we
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exploit the possibility to relate a solution to system (1.2) to a flow of generating functions,
which works well when N = ∞ but has no clear adaption to the finite N setting.

Within the special setting of systemswith cost of strongly gathering type and directionality,
we are able to push further our analysis and study the long time limit T → ∞, that is, we
show that the value functions ui converge to solutions of the ergodic problem as the time
horizon goes to infinity. To complete this program, estimates on solutions of the Riccati
system are obtained at the level of the game with N = ∞ players, uniformly with respect to
T . The main result of this part of the work is stated by Theorem 2.42.

We conclude this second part by showing that equilibria of the infinite-dimensional game
provide ε-Nash closed-loop equilibria of suitable N player games, see Sect. 2.6.

In the last part of the work, we come back to the dense regime, and work without any
symmetry assumption (like shift-invariance). Our goal is again to deduce some estimates
on the Riccati system that do not depend on the number of players, under a mean-field-like
condition

sup
i

(
N

∑
h,k
k �=i

| f ihk |2 + N
∑
k,k �=i

| f kki |2 + | f ii i |2
)

� 1,

and the same for gi ; the previous assumption imposes a smallness condition on the coefficients
which is typical of theMean-Field setting, that is when costs depend on the empiricalmeasure
of the players, though here we do not require any symmetry; see Remark 3.2 for further
comments on the connection between this condition and the Mean-Field setting. It is crucial
to observe that in this dense setting there is no hope to have a limit system of the same form.
Indeed, in the sparse case we had an �1 control of coefficients independent of N (given by
β), so that the series

∑
j �=i D j u j D jui carries to the limit by dominated convergence, while

now a dominated convergence cannot performed. In fact, at least in the symmetric case,
where the costs are of the form Fi (x) = V (xi , 1

N−1
∑

j �=i δx j ), the correct limiting object
is the so-called Master Equation, which has been the object of the seminal work [10]. The
convergence of ui to a limit function defined on the space of probability measures has been
shown under monotonicity assumptions of f i , and its regularity is obtained as a consequence
of the stability properties of the MFG system, which characterizes the limit model.

Here, we wish to deduce the estimates on ui that allow for a passage to the limit N →∞
directly on the Riccati system (that is, on the Nash system). For short time horizon, one can
basically reproduce the same approach of the previous section (cf. Theorem 2.17). To achieve
stability for arbitrary values of T , we impose a bound from below on the matrices ( f ii j )i j and

(gii j )i j :

( f ii j )i j , (gii j )i j ≥ −κ I , κ > 0. (1.3)

If κ is small enough, then the existence of a solution to theNash system is guaranteed for large
T , by a mechanism that produces an analogous bound from below on the matrix (Di j ui )i j .
Recalling that the equilibrium feedbacks are given by α j = −Dju j , this is equivalent to the
one-sided Lipschitz condition

∑
j

〈α j (t, x)− α j (t, y), x j − y j 〉 ≤ δ|x − y|2. (1.4)

Our main estimate is contained in Theorem 3.1. Interestingly, the monotonicity (or mild non-
monotonicity) condition (1.3) generates the nice structural property (1.4) of the equilibrium
drift vector (−Dju j ) j ; it is worth observing that, when κ = 0 and in the symmetric MFG
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case f i (x) = V (xi , (N − 1)−1
∑

j �=i δx j ), (1.3) is “almost” equivalent (that is, up to a
correction term of order 1/N ) to the displacement monotonicity condition used in [23] to
get well-posedness of the Master Equation.

We believe that the estimates obtained here, combined with propagation of chaos argu-
ments, allow for a convergence result of (closed loop) equilibria in the N → ∞ limit. We
recall that the lack of such estimates so far has motivated the investigation of regularity of
solutions to the Master equation, that allows to bypass the difficult analysis of the Nash sys-
tem; hence they can be of interest by themselves. Analogous estimates for solutions to the
Nash system beyond the Linear-Quadratic setting, and their application to the convergence
problem will be discussed in the forthcoming work [14].

We now discuss some some further related references. In [3, 19], the convergence problem
of open-loop equilibria in symmetric N -person linear-quadratic games is addressed, while
[17] deals with the selection problem for models without uniqueness. See also [4] for a
convergence result in a finite state model. Linear-quadratic MFGs are studied in several
works, see for instance [6, 7, 24, 32, 33] and references therein. Further contributions on the
convergence problem are contained in [9, 18, 21, 27, 28], while recent results on the structure
of many players cooperative equilibria can be found in [13, 15, 26].

As a final comment, despite trying to pursue the full generality of the linear-quadratic
differential game framework, we carefully analysed here a few case studies, with the aim of
highlighting some properties that could be investigated beyond the linear-quadratic setting,
and directly on the Nash system of PDEs. With this purpose, we tried to avoid as much
as possible the use of explicit formulas. Even though these were quite crucial to study the
long time behaviour in the sparse regime, there are a few takeaways here that can be starting
points for further investigations. On one hand, we are addressing the short-time existence
of the infinite-dimensional Nash system with non-quadratic cost functions, by estimating
the derivatives of ui by means of the coefficients β constructed here. On the other hand,
analogous bounds on ui in the mean-field-like setting, again by working directly on the Nash
system and without making use of limit objects such as the Master Equation, will appear in
[14].

2 Shift-Invariant Games

2.1 General Setting

For a ∈ Z and b ∈ Z+, we will use the notation [a]b to identify the unique natural number
r ∈ [[b]] such that r = a mod b. The entries of a N × N matrix will be indexed over [[N ]].
We will denote by L(N ) ∈ S (N ) the lower shift matrix mod N , defined by

L(N )
hk = δh,[k+1]N ∀ h, k ∈ [[N ]],

where δ is the Kronecker symbol.
Our main assumption in this section, on the structure of the running cost, is that f i and

gi are shift-invariant, in the sense of the following definition.

Definition 2.1 A collection of matrices (Mi )i∈[[N ]] ⊂ S (N ) is shift-invariant if

M [i+1]N = L(N )Mi L(N )T ∀ i ∈ [[N ]]. (SI)
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Note that this is equivalent to requiring that for all i ∈ [[N ]] and x ∈ R
N ,

〈Mi (x0, x1, . . . , xN−1), (x0, x1, . . . , xN−1)〉
= 〈M [i+1]N (x1, . . . , xN−1, x0), (x1, . . . , xN−1, x0)〉.

Example 2.2 A very basic shift-invariant case is that with g0 = 0 and

f 0 = w ⊗ w, (2.1)

with

w = 1

�− 1
(�− 1,−1, . . . ,−1︸ ︷︷ ︸

�−1 times

, 0, . . . , 0︸ ︷︷ ︸
N−� times

), � ≤ N ;

that is, by (SI),

〈Fi Xt , Xt 〉 =
∣∣∣∣Xi

t −
1

�− 1

[i+�−1]N∑
j=[i+1]N

X j
t

∣∣∣∣
2

. (2.2)

When � = N , the cost is actually of Mean-Field type, that is, it penalizes the deviation of
the private state Xi from the mean of the vector X .

Here f 0 induces an underlying directed circulant graph structure G� to the problem;
indeed, by assumption (SI)

A =
(
f ii j

)
i, j∈[[N ]]

− diag
(
f ii i

)
i∈[[N ]]

=
(
f ii j

)
i, j∈[[N ]]

− IN

can be considered as the asymmetric and circulant adjacencymatrix ofG�, so that (2.2) reads

〈Fi Xt , Xt 〉 =
∣∣∣∣Xi

t −
1

#{ j : (i, j) ∈ G�}
∑

j : (i, j)∈G�

X j
t

∣∣∣∣
2

. (2.3)

The same is true in the more general case when

w = (1,−w1, . . . ,−w�−1), with w j ≥ 0 ∀ j,
�−1∑
j=1

w j = 1; (2.4)

here the w j ’s are regarded as normalized weights, and we have

〈Fi Xt , Xt 〉 =
∣∣∣∣Xi

t −
∑

j : (i, j)∈G�

w j X
j
t

∣∣∣∣
2

,

which generalizes (2.3).
Note finally that a sort of “directionality” is encoded in the above examples, that is, each

player i is affected by the “following” ones j > i in the chain. This is not yet important at
the current stage, namely we may allow for

w = 1

�− 1
(�− 1,−1, . . . ,−1︸ ︷︷ ︸

�−1 times

, 0, . . . , 0︸ ︷︷ ︸
N−�−m times

,−1, . . . ,−1︸ ︷︷ ︸
m times

), �+ m ≤ N ; (2.5)

It is only from Sect. 2.5 that m = 0 will be required.
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2.2 The Evolutive Infinite-Dimensional Nash System

The main object of our study is the Nash system

{
−∂t ui −�ui + 1

2 |Diui |2 +∑
j �=i D j u j D jui = F̄ i on (0, T )× (Rd)N

ui (T , ·) = Ḡi (2.6)

When N = ∞, we need to be a bit careful about the notion of solution. In this case,
x ∈ X = �∞(Z;Rd). Then, we mean that (2.6) admits a classical solution in the following
sense.

Definition 2.3 A sequence ofR-valued functions (ui )i∈Z defined on [0, T ]×X is a classical
solution to the Nash system (2.6) on [0, T ] × X if the following hold:

(S1) each ui is of class C1 with respect to t ∈ (0, T ) and C2 with respect to x ∈ X , in the
Fréchet sense;

(S2) for each i ∈ N, the Laplacian series �ui = ∑
j � j ui and the series

∑
j �=i D j u j D jui

uniformly converge on all bounded subsets of [0, T ] × X ;
(S3) system (2.6) is satisfied pointwise for all (t, x) ∈ (0, T )× X ;
(S4) ui (T , ·) = Ḡi for all i ∈ N.

Remark 2.4 Here we made a choice of Banach space, namely X = �∞(Z;Rd). This seems
a natural choice for a twofold reason. First, it is the largest �p space contained in the limit
set (Rd)∞ ∼= (Rd)Z, so it seems to provide a quite general setting for a Nash system for
infinitely many players. Second, in a linear-quadratic setting as the one we are considering,
it is fairly clear that (see the upcoming discussion about the standard ansatz ui (t, x) =
1
2 〈(ci (t) ⊗ Id)x, x〉RNd + ηi (t)) the uniform convergence of �ui when N = ∞ is strictly
related to (cij j ) j∈Z being summable; therefore the variable x is expected to live in the dual

space of �1, that is �∞. This is even more evident if one considers the case (and the results
we present can indeed be adapted to it) of a more general diffusion such as the one arising
from common noise,

∑
j � j ui + β

∑
jk tr(D

2
jku

i ).

As it is customary in linear-quadratic N -player games, we look for solutions of the form

ui (t, x) = 1

2
〈(ci (t)⊗ Id)x, x〉RNd + ηi (t), (2.7)

for some functions ci : [0, T ] → S (N ) such that ci (T ) = gi and ηi : [0, T ] → R which
vanish at T . We have Djui (t, x) = e j T(ci (t) ⊗ Id)x , where e j = e j ⊗ Id , {e j }N−1j=0 being

the canonical basis of RN . Hence, from (2.6) we obtain
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xT
(
−1

2
ċi ⊗ Id+ 1

2
(ci ⊗ Id)e

i ei T(ci ⊗ Id)+
∑

j∈[[N ]]\{i}
(c j ⊗ Id)e

j e j T(ci ⊗ Id)− 1

2
Fi

)
x

= tr(ci ⊗ Id)+ η̇i ;
that is,

xT
((
−1

2
ċi + 1

2
ci ei ei

Tci +
∑

j∈[[N ]]\{i}
c j e j e j

Tci − 1

2
f i

)
⊗ Id

)
x = d tr ci + η̇i .

As this must hold for all x ∈ R
Nd , it follows that

η̇i = −d
∑

j∈[[N ]]
cij j ,

and

−ċi + ci ei ei
Tci +

∑
j∈[[N ]]\{i}

(
c j e j e j

Tci + ci e j e j
Tc j

) = f i , (2.8)

as xTAx = 0 for all x if and only if A + AT = 0 for any square matrix A.
Now, given the shift invariance of f i and gi , one expects a solution to (2.8) to enjoy the

same property, hence we look for a solution such that

ci = (
L(N )

)i
c
(
L(N )T)i , (2.9)

for some c : [0, T ] → S (N ). Clearly, this makes ηi independent of i , as we will have
ηi = η := ∫ T

· tr c. By plugging (2.9) into (2.8) and letting i = 0 one obtains the following
system of ODEs for the entries of c:

− ċhk − c0hc0k +
∑

j∈[[N ]]

(
c0,[h− j]N c jk + c0,[k− j]N c jh

) = fhk, chk(T ) = ghk,

(2.10)

where f := f 0 and g := g0.
As we are interested in the limit problem of infinitely many players, which we expect to

be indexed by Z since we have an undirected structure, it is convenient to shift the indices
in such a way that i = 0 “stays in the middle”; that is, we let i = −N ′, . . . , N ′′, instead of
i = 0, . . . , N , where, for example, N ′ = N ′′ = (N − 1)/2 if N is odd, and N ′ = N/2 =
N ′′ + 1 if N is even. Therefore, we rewrite system (2.10) as

−ċhk + c0hc0k +
∑
j �=0

(
c0,h− j c jk + chj c0,k− j

) = fhk,

chk(T ) = ghk, i = −N ′, . . . , N ′′, (2.11)

where all indices are understood mod N and between −N ′ and N ′′. Now it is immediate to
identify a convenient limit system by letting N →∞.

2.3 Self-Controlled Sequences for the Discrete Convolution

We can recognise a structure of a cyclic discrete convolution in the sums in (2.10); that is,

N−1∑
j=0

c0,[h− j]N c jk = (c·0�Nc·k)h,
N−1∑
j=0

chj c0,[k− j]N = (ch·�Nc0·)k . (2.12)
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We wish to exploit this fact in order to prove existence of the solution to system (2.11) for
small T , for any (possibly infinite) N .

Our main tool will be the following.

Definition 2.5 A nonnegative sequence β ∈ �2(Z) is said to be convolution-self-controlled,
or c-self-controlled, if β�β � β; that is,

∑
j∈Z

β jβi− j ≤ Cβi ∀ i ∈ Z, (2.13)

for some constant C > 0 independent of i .

We will mainly consider positive c-self-controlled sequences in �1(Z) that are even and
“weakly decreasing”, in the sense that βi = β−i and there exists K > 0 such that β j ≤ Kβi ,
for all i, j ∈ N with j ≥ i . Such sequences, which we will refer to as regular, indeed exist,
as shown by the following result.

Lemma 2.6 For any ε > 0, there exists a positive sequence β ∈ �1(Z), with ‖β‖2 < ε and
such that β�β ≤ 4β. In particular, one can choose β of the form

βi = βi (α) := 2α

α2 + i2

(
1− (−)i e−απ

)
, i ∈ Z,

for some α = α(ε) > 0, so that β is even and β j ≤ coth( απ
2 )βi for all i, j ∈ N with j ≥ i .

Proof It is well-known that the Fourier coefficients of a function f ∈ L2((−π, π)), given
by

f̂ j := 1

2π

∫ π

−π

f (x)e−i j xdx, j ∈ Z,

satisfy the following property: if f , g ∈ L2((−π, π)), then f̂ g j = ( f̂ �ĝ) j for all j ∈ Z. Let
now be fα := e−α|·|, for any α > 0. It is elementary to compute, for each j ∈ Z,

f̂α j =
2α

α2 + j2

(
1− (−) j e−απ

)
> 0, (2.14)

whence ( f̂α� f̂α) j = f̂ 2α j = f̂2α j ≤ 4 f̂α j , the last inequality being straightforward to check

using the explicit expression (2.14).Also, byParseval’s identity ‖ f̂α‖2�2(Z)
= ‖ fα‖2L2(−π,π)

=
α−1(1− e−2απ ) → 0 as α →+∞, so that β = f̂α has the desired properties for any choice
of α = α(ε) sufficiently large. Finally, note that β j ≤ coth( απ

2 )βi for all i, j ∈ Nwith j ≥ i .
��

Remark 2.7 (Variations on a c-self-controlled sequence) Clearly any positive multiple of a c-
self-controlled sequence stays self-controlled. This allows to have self-controlled sequences
of arbitrarily large �∞-norm, although with a larger constant C in (2.13). On the other hand,
one can also build c-self-controlled sequences which decay exponentially faster; indeed, if β

is c-self-controlled, then for any γ > 0 so is the sequence defined by setting β̃i := βi e−γ |i |,
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with the same implied constant C . This is easily proven as follows. Suppose that i ≤ 0; then

(β̃�β̃)i = eγ i
∑
j>0

β jβi− j e
−2γ j + eγ i

∑
i≤ j≤0

β jβi− j + e−γ i
∑
j<i

β jβi− j e
2γ j

≤ eγ i
( ∑

j>0

β jβi− j +
∑

i≤ j≤0
β jβi− j

)
+ e−γ i

∑
j<i

β jβi− j e
2γ i

= eγ i
∑
j∈Z

β jβi− j

≤ Cβi e
γ i .

The case i ≥ 0 is analogous.

The next result will be useful to deal with convolution of the form (2.12). It essentially
states that c-self-controllability is preserved by suitable perturbations, which include all
perturbations with compact support.

Lemma 2.8 Let β be c-self-controlled and let θ = (θhk)h,k∈Z be a nonnegative sequence
such that θ � β ⊗ β.2 Let d be the sequence given by d := β ⊗ β + θ . Then

(d·0�d·k)h � βhβk ∀ h, k ∈ Z.

Proof It suffices to compute

(d·0�d·k)h = β0(β�β)hβk + (θ·0�β)hβk + β0(β�θ·k)h + (θ·0�θ·k)h � βhβk .

��
Remark 2.9 A straightforward implication of the above inequality is that (d·0�d·k)h � dhk .

2.4 Short-Time Existence for Nearsighted Interactions

We are now ready for our first existence and uniqueness results (Theorem 2.13 and 2.14
below), which is a direct consequence of the following proposition.

By a gamewith nearsighted interactions we are meaning that | f |∨|g| ≤ θ pointwise (that
is, index-wise) for some θ ∈ �1(Z2) satisfying the hypotheses of Lemma 2.8; said differently,
we are meaning that | f | ∨ |g| � β ⊗ β for some regular c-self-controlled β.

Remark 2.10 Any compactly supported sequence h : Z2 → [0,+∞) is nearsighted. Indeed,
given a positive c-self-controlled sequence β, define β̃ := (max(i, j)∈sptβ

hi j
βiβ j

)β; then h �
β̃ ⊗ β̃.

Proposition 2.11 Let N ∈ N and β be a regular c-self-controlled sequence. Let f ∈
C0([0, T ];S (N )) and g ∈ S (N ) satisfy | f | ∨ |g| � β ⊗ β. Define CN := C0([0, T ])2N+1
and write c = (ci j )Ni, j=−N ∈ CN . For d = β ⊗ β + |g| ∨ sup[0,T ] | f |, set

KN :=
N∏

i, j=−N

{
w ∈ C0([0, T ]) : ‖w‖∞ ≤ 2di j

}
. (2.15)

2 We mean (β ⊗ β)hk = βhβk for all h, k ∈ Z.
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Let JN : KN → CN be the map given, for each i, j = −N , . . . , N, by

JN (c)i j (t) := gi j +
∫ T

t

(
fi j + c0i c0 j − (c·0�2N+1c· j )i − (ci ·�2N+1c0·) j

)
. (2.16)

Then there exist T ∗ > 0, depending on β but independent of N , such that

T ≤ T ∗ �⇒ JN (KN ) ⊆ KN .

Proof Let c ∈ KN . If i ≥ 0,

∥∥(c·0�Nc· j )i
∥∥∞ =

∥∥∥∥
N∑

k=−N+i
c0,i−kc jk +

−N+i−1∑
k=−N

c0,i−k−2N−1c jk
∥∥∥∥∞

≤ 4
N∑

k=−N+i
d0,i−kd jk + 4

−N+i−1∑
k=−N

d0,i−k−2N−1d jk

≤ 4(d·0�d· j )i + 4(d·0�d· j )i−2N−1
� (βi + βi−2N−1)β j ,

where the last estimate comes fromLemma2.8.Asβ is regular and |i−2N−1| = 2N+1−i >

i , we have that βi−2N−1 � βi , and thus
∥∥(c·0�Nc· j )i

∥∥∞ � di j , with an implied constant
which does not depend on N . The same holds for −N ≤ i < 0 by a symmetrical argument.
Analogously,

∥∥(ci ·�Nc0·) j
∥∥∞ � di j and clearly ‖c0i c0 j‖∞ ≤ 4d0i d0 j ≤ 4(d·0�d· j )i � di j .

Therefore,

‖JN (c)i j‖∞ ≤ |gi j | + CTdi j ≤ (1+ CT )di j , (2.17)

where the constant C depends only on β. It follows that for T > 0 small enough, depending
on β, one has ‖JN (c)i j‖∞ < 2di j for all i, j = −N , . . . , N . ��
Remark 2.12 We stated and proved Proposition 2.11 for an odd number of players. This is
just a matter of having expressions that look more symmetrical, yet there is no preference
about the parity of the number of players, so that the above result holds, mutatis mutandis,
also if the number of players is even. It is also clear that, with a very much analogous proof,
the thesis of Proposition 2.11 also holds for N = ∞, where one defines, in a natural way,

K∞ :=
∏
i, j∈Z

{
w ∈ C0([0, T ]) : ‖w‖∞ ≤ 2di j

}

and

J∞(c)i j (t) := gi j +
∫ T

t

(
fi j + c0i c0 j − (c·0�c· j )i − (ci ·�c0·) j

)
.

Theorem 2.13 Under the hypotheses of Proposition 2.11, there exists T ∗ > 0 such that if
T ≤ T ∗ then for any N ∈ N ∪ {∞} there exists a unique smooth solution to system (2.11)
such that, for any i, j ∈ −N ′, . . . , N ′′ and m ∈ N,

∥∥∥∥
( d

dt

)m
ci j

∥∥∥∥∞ � βiβ j , (2.18)

where the implied constants depend only on T ∗, f , g and m.
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Proof A fixed point of the map JN defined in (2.16) is a solution. We deal with the case of
JN with N = ∞, as the case with N ∈ N can be included therein. Note that K∞ can be
considered as a closed ball of the Banach space �∞d (Z2;C0([0, T ])); that is, the space of
functions from Z

2 to C([0, T ]) with finite norm

||| · |||∞ := sup
i, j∈Z

d−1i j ‖·i j‖∞.

We prove that the map J∞ is a contraction on K∞, provided that T is sufficiently small
with respect to d . The conclusion will follow from Proposition 2.11, Remark 2.12 and the
contraction mapping theorem; then, once one have a continuous solution, by the structure of
equations (2.11), one bootstraps its regularity up to C∞, while estimate (2.18) for m > 1
follows by induction differentiating (2.11) and estimating as in the proof of Proposition 2.11.
Let now c, c̄ ∈ K∞. We have, for i, j fixed,

∥∥J∞(c̄)i j − J∞(c)i j
∥∥∞ ≤ T

(∥∥(c̄·0�N c̄· j )i − (c·0�Nc· j )i
∥∥∞

+ ∥∥c0i c̄0 j − c0i c0 j −
(
(c̄i ·�N c̄0·) j − (ci ·�Nc0·) j

)∥∥∞
)
.

(2.19)

We have
∥∥(c̄·0�c̄· j )i − (c·0�c· j )i

∥∥∞ ≤
∑
k∈Z

(
‖c̄k0‖∞‖c̄i−k, j − ci−k, j‖∞ + ‖c̄k0 − ck0‖∞‖ci−k, j‖∞

)

� di j |||c̄ − c|||;
that is, |||(c̄·0�c̄· j )i − (c·0�c· j )i ||| � |||c̄ − c||| and analogously for the second term in (2.19).
Hence |||J∞(c̄)− J∞(c)||| � T |||c̄ − c|||. ��
Theorem 2.14 Suppose that f i and gi are shift-invariant and there exists a regular c-self-
controlled β such that | f 0| ∨ |g0| ≤ C(β⊗β), C > 0. There exists T ∗ > 0, depending only
on C and β, such that if T ≤ T ∗ then there exists a smooth classical solution to the infinite-
dimensional Nash system (2.6) with i ∈ Z on [0, T ] × X . Furthermore, such a solution is
unique in the class of functions of the form (2.7).

Proof Let c be the solution given by Theorem 2.13. For x = (xi )i∈Z ∈ �∞(Z;Rd), define

U (t, x) = 1

2

∑
i, j∈Z

ci j (t)x
i · x j +

∫ T

t

∑
i∈Z

cii (s) ds,

where we denoted by · the standard scalar product on R
d . U is well-defined for

x ∈ �∞(Z;Rd), and continuous in t , because the series normally converge thanks to
estimate (2.18); for the same reason, also

t �→ ∂kt U (t, x) = 1

2

∑
i, j∈Z

( d

dt

)k
ci j (t)x

i · x j −
∑
i∈Z

( d

dt

)k−1
cii (t), k ∈ N,

are well-defined and continuous. Finally, for h ∈ �∞(Z;Rd), note that (omitting the
dependence on t)

U (x + h)−U (x) =
∑
i, j∈Z

ci j x
i h j + 1

2

∑
i, j∈Z

ci j h
i · h j ,
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thus U (t, ·) is infinitely many times Fréchet-differentiable in �∞(Z;Rd). Define now u =
(ui )i∈Z by setting

u0 := U , ui+1(t, x) := ui (t, σ x), i ∈ Z,

where (σ x) j := x j−1 for j ∈ Z. We have

Dju
i (t, x) = Dj [u(t, σ i x)] = Dj−i u(t, x) =

∑
k∈Z

c j−i,k(t)xk, i, j ∈ Z,

hence
∑

j∈Z Dju j D jui locally uniformly converges by estimate (2.18). Hence, by construc-
tion, u solves (2.6) in the desired sense. ��
Remark 2.15 (Unimportance of distant players) What essentially allows the Nash system to
have a solution in infinite dimensions is what we call an unimportance of distant players, in
the sense that the farther a player is from a given one (say the 0-th player) the smaller the
impact it has on it is. This is seen in the fact that, on any bounded B ⊂ X ,

‖DjU‖∞,[0,T ]×B =
∥∥∥∥

∑
i∈Z

ci j x
i
∥∥∥∥∞,[0,T ]×B

� β j

is infinitesimal as | j | → ∞.

Beyond Shift-Invariance

We have made the shift-invariance hypothesis to reduce our system of infinitely many equa-
tions for c to one equation. Nevertheless, the reader should be aware that the above results
can be adapted to a more general setting.

One can suppose that we only have a shift-invariant control on the data; that is

| f ihk | ∨ |gihk | � βh−iβk−i . (2.20)

In this case, the most natural limit of (2.8) is indexed over N and it suffices to replace K∞
with

K̃∞ := {
w = (wi

hk)i,h,k∈N ∈ �∞(N3;C0([0, T ])) : ‖wi
hk‖∞ ≤ 2d|h−i |,|k−i | ∀ i, h, k ∈ N

}
,

which is a closed ball in �∞
d̃

(N3;C0([0, T ])), letting d̃ ihk := d|h−i |,|k−i |. Then, for instance,
one obtains the following result.

Theorem 2.16 Assume (2.20). There exists T ∗ > 0 such that if T ≤ T ∗ then for any N ∈
N∪{∞} there exists a unique smooth solution to system (2.8) such that, for any i, h, k ∈ [[N ]]
and m ∈ N, ∥∥∥∥

( d

dt

)m
cihk

∥∥∥∥∞ � β|h−i |β|k−i |,

where the implied constants depend only on T ∗, f , g and m.

Also, one can fix the dimension N ≥ 2 and consider βN ∈ (R+)2N+1 given by

βN
j :=

⎧⎨
⎩
1 if j = 0

1

N − 1
if | j | ∈ {1, . . . , N − 1},
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which is c-self-controlled in the sense that for | j | ∈ [[N ]]

(βN �βN ) j =
∑

|k|∈[[N ]]
βN
k βN

j−k = βN
j +

1

N − 1

∑
|k|∈[[N ]]\{0}

βN
j−k ≤ βN

j +
3

N − 1
≤ 4βN

j .

In this case one can look for a solution to (2.8) starting with assumption (2.20) with β = βN ;
that is,

| f ihk | ∨ |gihk | �

⎧⎪⎨
⎪⎩
1 if h = i = k

N−1 if h �= i = k or vice versa

N−2 if h �= i and k �= i .

(2.21)

What we get is the following statement.

Theorem 2.17 Let N ∈ N, N ≥ 2 andassume (2.21). There exists T ∗ > 0 such that if T ≤ T ∗
then there exists a unique smooth solution to system (2.8) such that, for any i, h, k ∈ [[N ]]
and m ∈ N,

∥∥∥∥
( d

dt

)m
cihk

∥∥∥∥∞ �

⎧⎪⎨
⎪⎩
1 if h = i = k

N−1 if h �= i = k or vice versa

N−2 if h �= i and k �= i .

where the implied constants depend only on T ∗, f , g and m.

Notice that this can be regarded as a result in amean-field-like setting, as assumption (2.21)
is consistent with the fact that we expect the j-th derivative of a mean-field-like cost for the
i-th player to scale by a factor of N−1 whenever j �= i . For further discussion and results
related to this specific setting, we invite the reader to proceed directly to the next Sect. 3.

2.5 Long-Time Existence for Shift-Invariant Directed Strongly Gathering
Interactions

It is clear that the previous construction follows the standard Cauchy-Lipschitz local (in
time) existence argument, and the existence (and uniqueness) of a solution can be as usual
continued up to a maximal time T ∗, that is when the quantity maxi, j β

−1
i β−1j |c0i j | blows up.

So far, we cannot exclude in general that such blow up time T ∗ is finite.
Upcoming Definition 2.18 introduces an additional assumption on the running and

terminal costs which will allow us to prove long-time existence of a solution to the infinite-
dimensional Nash system. This assumption requires some rather abstract properties of the
generating function that is built upon fhk . We will state the assumption first, and then discuss
its implications on the game structure. We anticipate that, loosely speaking, the i-th player’s
cost is affected by the states of the players j > i only in the chain (directedness) and that the
term fhh is “dominant” with respect to fhk , h �= k (strong gathering).

Given m ≤ n, we will identify M ∈ S (m) ⊂ S (n) by considering R
m � R

m × {0} ⊂
R
m × R

n−m = R
n and then extending M = 0 on R

n−m ; that is, identify M ∈ S (m) with(
M 0
0 0

)
∈ S (n). Also, given M ∈ S (m) and M ′ ∈ S (n) we will say that M = M ′ if M ′

equals the above-mentioned extension of M over Rn .
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Definition 2.18 Let M = (M (N ))N∈N be a sequence of matrices, with M (N ) ∈ S (N ). We
say that M is directed if there exists � ∈ N such that M (N ) = M (�) ∈ S (�) for all N large
enough.

Given � > 1, we say that M ∈ S (�) is �-strongly gathering if the polynomial

μ(z, w) =
�−1∑
h,k=0

Mhkz
hwk, z, w ∈ C

is such that μ(z, 0) /∈ (−∞, 0) if z ∈ �D̄.3

Remark 2.19 We anticipate here the main idea behind this definition. We wish to consider
the generating function of the coefficients chk in (2.11) with N = ∞; that is, formally,
�(t, z, w) := ∑

h,k∈Z chk(t)zhwk . This is a priori singular on zw = 0, nevertheless we are
going to show that if (( fhk)|h|,|k|≤N )N∈N and ((ghk)|h|,|k|≤N )N∈N are directed, then one can
assume that chk = 0 if h ∧ k < 0, so that � is analytic and satisfies a “functional Riccati
equation” (see (2.28) below).

At this point the stronggathering condition,whichwill be put on f (see upcomingAssump-
tions (�)), has a twofold utility. First, it ensures that the functional Riccati equation has a
solution which is defined in a neighborhood of (z, w) = (0, 0) and has real coefficients chk ;
this is basically due to the fact that the principal branch of the square root of the function
μ(·, 0) associated to f is well-defined. Second, as we require � > 1 (and not just � > 0),
it ensures that the chk’s will be summable by standard properties of the derivatives of an
analytic function.

We also point out that � > 1 is not necessary in order for summability to be satisfied,
while � = 1 is not a priori sufficient. This makes the latter a limiting condition that we have
found as interesting as difficult to study in the generality we would have wished for; we have
devoted to it a brief discussion in Sect. 2.9.

Remark 2.20 The reader could find a first sight quite strange that the crucial condition in the
notion of strong gathering regards μ(·, 0), which sees only the first column (Mh0)h∈[[�]] of
the matrix M . From a technical point of view, we claimed in Remark 2.19 that it is all we
need to solve the functional Riccati equation (2.28). From an interpretative point of view,
instead, recalling that we will require f to be strongly gathering, it is interesting to note
that the coefficients fh0 quantify the interaction of the 0-th player with the others; in the
shift-invariant setting the 0-th player is basically our reference player for the game, hence we
are somehow saying that the solvability of the Nash system is related to a condition which
sees only the “direct” interactions between the reference player and the others, and not the
“indirect” influence of the interactions between pairs of other players.

Remark 2.21 The term directed is related to the fact that the i-th player’s cost is affected by
the states of the following players j > i in the chain, and this fact might not be immediately
clear from the previous definition, which just requires the matrices M (N ) to be extensions of
a fixed matrix, not depending on N . One may then have a look to the matrices of the form
M = w ⊗ w in (the end of) Example 2.2. In particular, w = w(N ) in (2.5) gives rise to a
directed family only when m = 0.

Moreover, in the situations described in Example 2.2, the associated sequence of matrices
as the dimension N diverges is not strongly gathering. Indeed, even though � stays bounded,

3 We will use the notation Dr (z) for the open complex disc of radius r about z, but we will omit the center
when it is 0 and the radius when it is 1, so that, e.g., we have Dr = Dr (0) = rD.
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one has that μ is a polynomial with μ(1, 0) = 0. In fact, as said in Example 2.19, those
situations can be seen as limit settings corresponding to taking � = 1 and we will comment
on this case later on in Sect. 2.9.

The validity of the strong gathering assumption as it is, can be achieved in different ways;
two basic settings are given in the following examples.

Example 2.22 Ifwewant to stick to amatrix f 0 of the form (2.1), in order to have ( f 0(N ))N∈N
(where N is the dimension) directed with strongly gathering limit one can require that � is
independent of N large and

�−1∑
j=1

w j = 1− ε, ε > 0,

so that μ(z, 0) ≥ ε if |z| ≤ 1. Put it differently, it suffices to consider

w = (ν,−w1, . . . ,−w�−1), with w j ≥ 0 ∀ j,
�−1∑
j=1

w j = 1, and ν > 1;

this means that we are considering an underlying graphwhere each node is directly connected
with itself as well, and such link has a negative weight. As in this model a positive weight
is associated to the tendency, in order to reduce their cost, of each player to get closer to
their neighbors, a negative connection with themself is to be interpreted as a drift towards
self-annihilation. More prosaically, this means that the state of each player will also tend to
the common position 0 ∈ R

d .
Regarding this example, it is also worth pointing out that the common attractive position

0 ∈ R
d cannot be any other arbitrary point, in the sense that the structure of problem is not

invariant under translation of the coordinates. This is due to the fact that we are considering
a graph whose nodes have outdegree different from 1.

Example 2.23 Another setting with directedness and strong gathering is that of

q0 = νE0 + w ⊗ w,

where w can be given by (2.4) with � independent of N , ν > 0 and E0x = x0 for all
x = (x0, . . . , xN−1) ∈ (Rd)N . Here

〈Fi Xt , Xt 〉 = ν|Xi
t |2 +

∣∣∣∣Xi
t −

∑
j : (i, j)∈G�

w j X
j
t

∣∣∣∣
2

,

and with a translation of the coordinates we can lead to this situation also costs like

J i (α) = 1

2
E

∫ T

0

(
|αi |2 + ν|Xi

t − y|2 +
∣∣∣∣Xi

t −
∑

j : (i, j)∈G�

w j X
j
t

∣∣∣∣
2 )

,

for any given y ∈ R
d . This example, more genuinely than the previous one, shows that the

strong gathering assumption entails that we are giving some sort of preference about where
the players should aggregate. This will strengthen the attractive structure yielded by a graph
satisfying only assumption (SI) (Example 2.2), thus providing more stability to our game.

From this section on in this part, the following assumptions will be in force, declined in
suitable manners which will be specified.
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Assumptions (�) The matrices f i and gi are shift-invariant and f 0 = f 0(N ) and g0 =
g0(N ) are directed with limits f , g ∈ S (�) for some � ∈ N. The matrix f is �-strongly
gathering for some � > 0 and g is compatible on I with f for some interval I ⊂ R, in the
following sense: given

ϕ(z, w) :=
�−1∑
h,k=0

fhk z
hwk, �(z, w) :=

�−1∑
h,k=0

ghkz
hwk

and setting

ξ := √
φ(·, 0), 4 ψ := �(·, 0),

we have

inf
t∈I |ψ tanh(tξ)+ ξ | > 0 on �D. (2.22)

Remark 2.24 Note that for any t ∈ R, one has that ψ tanh(tξ)+ ξ is bounded on D, as ξ(z)t
can be a singular point only if ξ(z)2 = φ(z, 0) < 0, which contradicts that z ∈ D. Also note
that condition (2.22) holds with I = R if, e.g., g = 0 or |ψ | ≥ |ξ |.

Considering system (2.11), we see that for any N sufficiently large with respect to � we
have fhk = 0 = ghk if either h or k is negative; hence the limit system as N →∞ will be
given by

− ċhk − c0hc0k +
∑
j∈Z

(
c0,h− j c jk + c0,k− j c jh

) = fhk, chk(T ) = ghk, (2.23)

where fhk and ghk extend to h, k ∈ Z
2 by letting fhk = 0 = ghk if (h, k) /∈ [[�]]2.4 Given

this system, another reduction is possible. Since fhk = 0 = ghk whenever h ∧ k < 0, the
assumption that chk = 0 if h ∧ k < 0 is not a priori incompatible with the structure of
system (2.24). Therefore we will look for a solution with this additional property; in this
way, the coefficients which are not a priori null, (chk)h,k∈N, will define in a natural way a
symmetric operator c(t) ⊗ Id on X which vanishes on �∞(Z<0;Rd), so that it can also be
seen as a trivial extension to X of a symmetric operator on �∞(N;Rd). This reduces the
system of ODEs in (2.23) to

− ċhk − c0hc0k +
h∑
j=0

c0,h− j c jk +
k∑
j=0

c0,k− j c jh = fhk, chk(T ) = ghk, (2.24)

which will be the object of our following study, and will eventually provide a solution with
the particular form presented in the upcoming definition.

Definition 2.25 A quadratic shift-invariant directed (QSD) solution to (2.6) is a classical
solution of the form

ui (t, x) = 1

2

∑
h,k∈N

chk(t)〈xh+i , xk+i 〉Rd +
∫ T

t
tr c(s) ds, (2.25)

for some c : [0, T ] → �1(N2) ⊂ �1(Z2).5

4 The symbol
√· denotes the principal branch of the square root function.

4 Note that the limit operator is exactly the matrix f ∈ S (�) seen as embedded into the space of symmetric
linear operators on RZ.
5 A natural immersion ı : �1(N2) ↪→ �1(Z2) is given by ı(x)i = xi if i ∈ N and ı(x)i = 0 otherwise.
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Theorem 2.26 Under Assumptions (�) with [0, T ] ⊆ I , there exists a unique QSD solution
to (2.6) on [0, T ] × X .

The following lemmata, in whose statement the hypotheses of Theorem 2.26 will be
implied, provide the steps of our proof of Theorem 2.26.

Lemma 2.27 There exists a unique sequence (chk)h,k∈N ⊂ C([0, T ]) ∩ C∞((0, T )), with
chk = ckh, which solves the infinite dimensional system (2.24) on [0, T ].
Proof We perform the change of variables t �→ T − t and prove that there exists a unique
solution on [0, T ] with initial condition c(0) = g to the forward system

ċhk − c0hc0k +
h∑
j=0

c0,h− j c jk +
k∑
j=0

c0,k− j c jh = fhk (2.26)

which smoothly extends to R. Then, the solution to (2.24) on [0, T ] with c(T ) = 0 will be
given by the restriction to [0, T ] of ĉ(T − ·), where ĉ is the unique solution to (2.26) on R

with ĉ(0) = g. Note that ĉ00 is the solution to the Riccati equation ˙̂c00 + ĉ200 = f00, where
f00 = ϕ(0, 0) > 0 by strong gathering, hence

ĉ00(t) = ν
ν sinh(νt)+ g cosh(νt)

g sinh(νt)+ ν cosh(νt)
, g := g00, ν := √

f00.

All the other ĉhk’s satisfy first-order ODEs with coefficient which are second-order poly-
nomials depending only on fhk and ĉh′k′ with (h′, k′) ≺ (h, k), where ≺ denotes the strict
Pareto preference.6 Therefore, existence and uniqueness of the solution to the infinite system
may be proved by induction. Indeed, suppose (ĉ0k′)0≤k′<k ⊂ C∞(R) are given, and note
that

˙̂c0k + 2ĉ00ĉ0k = f0k −
k−1∑
j=1

ĉ0,k− j ĉ0 j ;

then ĉ0k is unique and smooth as well. This proves the existence and uniqueness of ĉ0k for
all k ∈ N; then, looking at this argument as the base step for a new induction over h, one
proves analogously the existence and uniqueness of ĉhk for all h ∈ N and any k ∈ N. Finally,
chk = ckh since equations (2.10) are invariant with respect to the swap (h, k) �→ (k, h). ��

The arguments below show that the coefficients chk can be thought as derivatives of a
generating function �̂, which will play a fundamental role in the long-time analysis.

Lemma 2.28 The solution to (2.24) on [0, T ] is given by

chk(t) = 1

h! k!
∂h+k

∂zh∂wk

∣∣∣∣
(0,0)

�̂(T − t), ∀ t ∈ [0, T ] (2.27)

for some function �̂ : I × �D2 → C, of class C∞ with respect to t ∈ I and analytic in �D2,
such that �̂(·, z, w) = �̂(·, w, z) and �̂(0, ·, ·) = �.

Proof Suppose that, for all z, w ∈ D fixed, there exists a solution �̂ on I to

6 That is, (h′, k′) ≺ (h, k) if and only if h′ ≤ h and k′ ≤ k with at least one strict inequality.
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∂t �̂(t, z, w)− �̂(t, z, 0)�̂(t, 0, w)+ (
�̂(t, z, 0)+ �̂(t, 0, w)

)
�̂(t, z, w) = ϕ(z, w),

(2.28)

with the desired properties of smoothness, invariant with respect the swap (z, w) �→ (w, z)
and such that �̂(0, z, w) = �(z, w). Then by taking the derivatives ∂hz ∂kw|(0,0) one recovers
equation (2.26), and thus the coefficients given by (2.27) satisfy (2.24) on [0, T ].7 To see that
(2.28) admits such a solution, note that �̂(t, z, 0) solves the Riccati equation ∂t �̂(t, z, 0)+
�̂(t, z, 0)2 = ϕ(z, 0); hence,

�̂(t, z, 0) = ξ(z)
ξ(z) sinh(ξ(z)t)+ ψ(z) cosh(ξ(z)t)

ψ(z) sinh(ξ(z)t)+ ξ(z) cosh(ξ(z)t)
, ψ := �(·, 0).

Note that letting

E(t, z; ζ1, ζ2) := ζ1(z) sinh(ξ(z)t)+ ζ2(z) cosh(ξ(z)t)

one can write

�̂(t, z, 0) = ξ(z)
E(t, z; ξ, ψ)

E(t, z;ψ, ξ)
= ∂

∂t
log E(t, z;ψ, ξ).

For any t ∈ I fixed, this function is well-defined for z ∈ �D and analytic therein by the
compatibility assumption (2.22). At this point, (2.28) becomes a first-order ODE in t ∈ I ,
for all z, w ∈ �D fixed, whose solution is given by

�̂(t, z, w) = ξ(z)ξ(w)

E(t, z;ψ, ξ)E(t, w;ψ, ξ)

(
�(z, w)+

∫ t

0

(
E(t, z; ξ, ψ)E(t, w; ξ, ψ)

+ ϕ(z, w)

ξ(z)ξ(w)
E(t, z;ψ, ξ)E(t, w;ψ, ξ)

))
. (2.29)

Note that �̂(t, ·, ·) is well-defined for z, w ∈ �D by the same argument we applied to
�̂(t, ·, 0). Also, it is trivial that �̂(·, z, w) ∈ C∞(I ), and by differentiating under the integral
sign one proves the analyticity of �̂(t, ·, ·). ��
Remark 2.29 Let Ẽ(t, z; ζ1, ζ2) := E(t, z; ζ2, ζ1). As, omitting the dependence on ζ1 and ζ2
in E , we have ∂

∂t E(t, z) = ξ(z)Ẽ(t, z), it is easy to see that

∂

∂t

(Ẽ(t, z)E(t, w)± E(t, z)Ẽ(t, w)
) = (ξ(z)± ξ(w))

(E(t, z)E(t, w)± Ẽ(t, z)Ẽ(t, w)
)

and thus
∫ t

0
E(s, z)E(s, w) ds = 1

2

( Ẽ(·, z)E(·, w)+ E(·, z)Ẽ(·, w)

ξ(z)+ ξ(w)
+ Ẽ(·, z)E(·, w)− E(·, z)Ẽ(·, w)

ξ(z)− ξ(w)

)∣∣∣∣
t

0
.

Letting (ζ1, ζ2) ∈ {(ξ, ψ), (ψ, ξ)} one can then compute the integral in (2.29). Set

σ±(t, z, w) = L(t, z)+ L(t, w)

ξ(z)+ ξ(w)
± L(t, z)− L(t, w)

ξ(z)− ξ(w)
, L(t, ·) := E(t, ·; ξ, ψ)

Ẽ(t, ·; ξ, ψ)
;
(2.30)

then

2 �̂(t, z, w) = �̃(z, w)+ ϕ(z, w)σ+(t, z, w)+ ξ(z)ξ(w)σ−(t, z, w), (2.31)

7 In other words, we are saying that ∂hz ∂kw�̂(t, 0, 0) = h! k! ĉhk (t), where the coefficients ĉhk are those in the
proof of Lemma 2.27.
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where

�̃(z, w) = �(z, w)− ϕ(z, w)σ+(0, z, w)+ ξ(z)ξ(w)σ−(0, z, w).

Lemma 2.30 Let c = (chk)h,k∈N be the solution to system (2.24) on [0, T ]. Then, for any
r ∈ (1, �),

‖chk‖∞;[0,T ] ≤ K (r , T )

rh+k
∀ h, k ∈ N, (2.32)

for some constant K (r , T ) depending only on T , r , f and g. In particular, c ∈
C0([0, T ]; �1(N2)) and the same is true for ċ.8

Proof By the strong gathering assumption, the function �̂(t, ·, ·) given in Lemma 2.28 is
analytic in a neighborhood of Qr := D̄r × D̄r , with r ∈ (1, �). Then, by Cauchy’s theorem
on derivatives,

‖chk‖∞;[0,T ] ≤ 1

rh+k
max[0,T ]×∂Qr

|�̂|. (2.33)

This proves that c ∈ C0([0, T ]; �1(N2)), and further regularity is easily proven by induction
by exploiting system (2.24). ��
Lemma 2.31 Let c be the solution to (2.24) on [0, T ]. The functions ui given by (2.25) are
well-defined for (t, x) ∈ [0, T ] × X , differentiable with respect to t , and twice Fréchet-
differentiable with respect to x.

Proof Since a suitable shift of coordinates inX transforms ui (t, ·) into u0(t, ·), it is sufficient
to prove the result for u0. The existence of a solution follows from Lemma 2.30, and the
differentiability with respect to t follows from the same lemma and the fundamental theorem
of calculus. The differentiability with respect to x follows again from Lemma 2.30, as it is
trivial to see that for any h ∈ X small one has

u0(t, x + h)− u0(t, x)− 〈(c(t)⊗ Id)x, h〉X − 1

2
〈(c(t)⊗ Id)h, h〉X = 0,

where, with an obvious notation, 〈(c(t)⊗ Id)y, z〉X = ∑
h,k∈N chk(t)〈yh, zk〉Rd . ��

Lemma 2.32 Let ui be given by (2.25), where c is the solution to (2.24) on [0, T ]. Let BR be
the closed ball of radius R in X . Then, for any r ∈ (1, �),

∑
j∈Z\{i}

∥∥∥Dju
j D ju

i
∥∥∥∞;[0,T ]×BR

≤ 1

r − 1

(
RKr

r − 1

)2

,

where K = K (r , T ) is the constant appearing in Lemma 2.30.

Proof We have Djui (t, x) = 0 if j < i , and Djui (t, x) = ∑
h∈N c j−i,h(t)xh if j ≥ i .

Then, for x ∈ BR , and r ∈ (1, �) fixed, estimate (2.32) yields

∣∣∣Dju
j (t, x)Dju

i (t, x)
∣∣∣ ≤ R2

∑
h,k∈N

|c0h(t)||c j−i,k(t)| ≤
(
RKr

r − 1

)2 1

r j−i ,

for all t ∈ [0, T ]. The thesis now follows by computing
∑

j>i r
i− j . ��

Since, by construction, choosing ui as in (2.25) satisfying (S1) and (S2) in Definition 2.3
yields a classical solution, the proof of Theorem 2.26 is complete.

8 And for all higher order derivatives.
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2.6 Almost-Optimal Controls for the N-Player Game

We did not prove long-time existence of a solution to the Nash system for the N -player
game, with N > � finite; nevertheless, in Corollary 2.36 below we show that on the horizon
[0, T ] the infinite-dimensional optimal control for the i-th player, given by ᾱ∗i (t, Xt ) :=∑

j≥i c0, j−i (t)X
j
t , if suitably “projected” onto (Rd)N provides an ε-Nash equilibrium for

the N -player game,with ε → 0 as N →∞. In claiming so,we consider classes of admissible
controls in the sense of the following definition.

Definition 2.33 Let R, L ≥ 0. A control α : [0, T ] × (Rd)N → (Rd)N in feedback form
belongs to AR,L if, for all t ∈ [0, T ], x, y ∈ (Rd)N ,

|α(t, 0)| ≤ R, |α(t, x)− α(t, y)| ≤ L|x − y|.
The Lipschitz constant L is said to be admissible if L ≥ ‖c0·‖C0([0,T ];�1(N)).

Remark 2.34 For such controls, it is known (cf., e.g., [2, Theorems 9.1 and 9.2]) that
{
dXt = α(t, Xt ) dt +

√
2 dBt t ∈ [0, T ]

X0 = x0 ∈ (Rd)N
(2.34)

has a unique solution, satisfying E sup[0,T ] |X |2 ≤ C where C is a locally bounded function
of R, L and T , directly proportional to 1+ |x0|2.
Theorem 2.35 Consider the N-player game on [0, T ] with time evolution of the state of the
players given by (2.34) and costs given by (1.1) with f 0, g0 ≥ 0. Let Assumptions (�) be in
force with [0, T ] ⊆ I . Let c solve (2.24) and define the control α∗ by

−α∗i (t, X0
t , . . . , X

N−1
t ) :=

N−i−1∑
j=0

c0 j (t)X
j+i
t +

N−1∑
j=N−i

c0 j (t)X
j+i−N
t , i ∈ [[N ]].

Then, for any R ≥ 0 and admissible L, for any i ∈ [[N ]] and any (α∗,−i , ψ) ∈ AR,L ,9

J i (α∗) ≤ J i ((α∗,−i , ψ))+ Ĉ(δM + (δ−M + N )δN ) ∀ δ ∈ (�−1, 1), ∀M ≥ �,

where � is the dimension appearing in Assumptions (�) and the constant Ĉ is a locally
bounded function of R, L, T and δ, directly proportional to 1+ |x0|2.
Proof Since f i and gi are shift-invariant and α∗ is linear in the state variable with Dα∗ circu-
lant, without loss of generalitywe can prove the thesis for i = 0.We denote by X∗ the solution
to (2.34) when α = α∗ and by X the solution to (2.34) when α = (ψ, α∗1, . . . , α∗,N−1) =:
α̂∗. We wish to estimate from above the quantity

J 0(α∗)− J 0(α̂∗) = 1

2
E

[ ∫ T

0

(|α∗0(t, X∗t )|2 − |ψ(t, Xt )|2

+F(X∗t )− F(Xt )
)
dt + G(X∗T )− G(XT )

]
, (2.35)

9 With this notationwemean that all components are those ofα∗ but the i-th one, which is a suitableRd -valued
function ψ = ψ(t, x). Note that α∗ ∈ AR,L for any R and admissible L .
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where F := 〈F0·, ·〉 and G := 〈G0·, ·〉. Let u be the QSD solution to (2.6) on [0, T ] × X .
Since G is convex and DG = Du0(T , ·),

G(X∗T )− G(XT ) ≤ 〈Du0(T , X∗T ), X∗T − XT 〉RdN =
N−1∑
j=0

�−1∑
k=0

c jk(T )〈X∗kT , X∗ jT − X j
T 〉Rd

=
N−1∑
j=0

�−1∑
k=0

( ∫ T

0
ċ jk(t)〈X∗kt , X∗ jt − X j

t 〉Rd dt

+ c jk(t)〈dX∗kt , X∗ jt − X j
t 〉Rd + c jk(t)〈X∗kt , d(X∗ jt − X j

t )〉Rd

)
.

Note that we can replace � with any M ≥ � because c jk(T ) = g jk(T ) = 0 if k > �. As c
solves (2.24) we obtain

G(X∗T )− G(XT ) ≤
N−1∑
j=0

M−1∑
k=0

( ∫ T

0

j∑
h=1

c0, j−h(t)chk(t)〈X∗kt , X∗ jt − X j
t 〉Rd dt

+
∫ T

0

k∑
h=0

c0,k−h(t)chj (t)〈X∗kt , X∗ jt − X j
t 〉Rd dt

− f jk

∫ T

0
〈X∗kt , X∗ jt − X j

t 〉Rd dt

+
∫ T

0
c jk(t)〈α∗k(t, X∗t ), X∗ jt − X j

t 〉Rd dt

+
∫ T

0
c jk(t)〈X∗kt , α∗ j (t, X∗t )− α̂∗ j (t, Xt )〉Rd dt

)
+ ZT ,

where (Zt )0≤t≤T is a martingale starting from 0. Straightforward computations show that,
omitting the dependence on t ,

−
M−1∑
k=0

c jkα
∗k(X∗) =

M−1∑
k=0

k∑
h=0

c0,k−hchj X∗k +
N−1∑

h=N−M+1

M−1∑
k=N−h

c0hc jk X
∗,h+k−N

and

−
N−1∑
j=0

c jk(α
∗ j (X∗)− α̂∗ j (X)) = −c0k(α∗0(X∗)− ψ(X))+

N−1∑
j=0

j∑
h=1

chkc0, j−h(X∗ j − X j )

+
2N−2∑
h=N

N−1∑
j=h−N+1

c jkc0,h− j (X
∗,h−N − Xh−N );

therefore,

G(X∗T )− G(XT ) ≤ −
M−1∑
k=0

∫ T

0
c0k(t)〈X∗kt , α∗0(X∗)− ψ(X)〉Rd dt

−
N−1∑
j=0

M−1∑
k=0

f jk

∫ T

0
〈X∗kt , X∗ jt − X j

t 〉Rd dt −
∫ T

0
Et dt,

(2.36)
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where we have set

E :=
N−1∑
j=0

N−1∑
h=N−M+1

M−1∑
k=N−h

c0hc jk〈X∗,h+k−N , X∗ j − X j 〉Rd

+
M−1∑
k=0

2N−2∑
h=N

N−1∑
j=h−N+1

c jkc0,h− j 〈X∗k, X∗,h−N − Xh−N 〉Rd .

Note now that by the convexity of 1
2 | · |2, omitting the dependence on t ,

1

2
|α∗0(X∗)|2 − 1

2
|ψ(X)|2 − 〈α∗0(X∗), α∗0(X∗)− ψ(X)〉Rd ≤ 0 (2.37)

and by the convexity of F

F(X∗)− F(X)− 〈DF(X∗), X∗ − X〉Rd ≤ 0. (2.38)

Using (2.36), (2.37) and (2.38) in (2.35) we obatin

J 0(α∗)− J 0(α̂∗) ≤ E

[ N−1∑
k=�

∫ T

0
c0k(t)〈X∗kt , α∗0(X∗)− ψ(X)〉Rd dt −

∫ T

0
Et dt

]
.

(2.39)

As, whenever {Y , Z} ⊆ {X∗, X},

sup
j,k∈[[N ]]

E

∫ T

0
|〈Y k

t , Z j
t 〉Rd | dt ≤ TC,

where C = C(|x0|, R, L, T ) is the constant appearing in Remark 2.34, we have
∣∣∣∣E

∫ T

0
Et dt

∣∣∣∣ ≤ 2TC

(
‖c‖C0([0,T ];�1(N2))

∑
h≥N−M

‖c0h‖∞;[0,T ]

+
∑
h≥N

N−1∑
j=0
‖c j ·‖C0([0,T ];�1(N))‖c0,h− j‖∞;[0,T ]

)
,

so that by Lemma 2.30, for any δ ∈ (�−1, 1), there exists K > 0 such that
∣∣∣∣E

∫ T

0
Et dt

∣∣∣∣ ≤ C̃(δ−M + N )δN , C̃ := 2TCK 2

(1− δ)3
. (2.40)

On the other hand,

sup
k

E

∫ T

0
|〈X∗kt , α∗0(X∗)− ψ(X)〉Rd | ≤ 2R

√
TC + 2LC, (2.41)

where we used again that α∗, α̂∗ ∈ AR,L . Therefore, from (2.39), (2.40), (2.41) and Lemma
2.30 we obtain

J 0(α∗)− J 0(α̂∗) ≤ Ĉ(δM + (δ−M + N )δN ), Ĉ := 2(R
√
TC + LC)

K

1− δ
∨ C̃ .

This concludes the proof. ��
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Corollary 2.36 Let� ⊂ R
d bounded, and assume the same as in Theorem 2.35, but with x0 ∈

�N . Let R ≥ 0 and L be admissible (in the sense of Definition 2.33); consider as admissible
those controls belonging toAR,L . Then, for any ε > 0 there exists N0 = N0(ε, R, L, �, �,�)

such that if N ≥ N0 then the control α∗ provides an ε-Nash equilibrium of the game.

Proof It suffices to require that

Ĉ(δM + (δ−M + N )δN ) ≤ ε ∀ N ≥ N0, (2.42)

where, for instance, one sets δ = 1
2 (1+ �−1). Choose M = M(N ) such that M →∞ and

M = o(N ) as N → ∞; for example, M = "√N# for all N > �2. Since x0 ∈ �N there
exists a constant Ĉ ′, independent of N , such that Ĉ ≤ NĈ ′. Then the conclusion follows
from the fact that the left-hand side of (2.42) goes to 0 as N →∞. ��

2.7 The Ergodic Nash System

Consider now the related ergodic problem, with costs

J̄ i (α) = lim inf
T→+∞

1

2T
E

∫ T

0

(|αi |2 + 〈Fi X , X〉),
where the dynamics and the assumptions on Fi are the same as before. The corresponding
Nash system reads

λi −�vi + 1

2
|Div

i |2 +
∑
j �=i

D jv
j D jv

i = F̄ i on Y, (2.43)

where Y is either (Rd)N , for the N -player game, or X , for the limit game with infinitely
many players. In the latter case we give notions of classical solution and QSD solution which
are analogous as those in the previous section.

Definition 2.37 A sequence of pairs ((λi , vi ))i∈Z of real numbers λi andR-valued functions
vi defined onX is a classical solution to the ergodic Nash system (2.43) onX if the following
hold:

(E1) each vi is of class C2 with respect to x ∈ X , in the Fréchet sense;
(E2) for each i ∈ N, the series

∑
j �=i D jv

j D jv
i uniformly converges on all bounded subsets

of X ;
(E3) system (2.43) is satisfied pointwise for all x ∈ X ;

A QSD ergodic (QSDE) solution will be a classical solution to (2.43) with

λi ≡ λ = tr c̄, vi (x) = 1

2

∑
h,k∈N

c̄hk〈xh+i , xk+i 〉Rd , (2.44)

for some c̄ ∈ �1(N2).

Remark 2.38 By the structure of (2.43), it is clear that if ((λi , vi ))i∈Z is a classical solution,
then so will be ((λi , vi +μi ))i∈Z for any choice of real numbers μi . We will prove that there
exists a special choice of μ ∈ R, and of c̄ ∈ �1(N2), such that the solution ((λ, vi +μ))i∈Z,
with λ and vi given by (2.44), is in a precise sense the limit of the QSD solution as T →+∞
(see Theorem 2.42).
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Arguing as in the previous section, the coefficients c̄hk of a QSDE solution are given by
the solutions of the following system:

− c0hc0k +
h∑
j=0

c0,h− j c jk +
k∑
j=0

c0,k− j c jh = fhk . (2.45)

It is immediate to see that if c solves (2.45), then so does−c, hence we cannot have a unique
solution to this limit system.

Lemma 2.39 There are exactly two sequences (c±hk)h,k∈N which solve (2.45). Such sequences
are one the opposite of the other; that is, c− = −c+.
Proof We have c200 = f00 > 0, hence c00 ∈ {±√ f00 }. Once the sign of c00 is chosen, all
other chk can be uniquely determined by induction on h, k. ��

Both solutions can be represented also in this case by a generating function.

Lemma 2.40 The two solutions to (2.45) are given by

c±hk = ±
1

h! k!
∂h+k

∂zh∂wk

∣∣∣∣
(0,0)

�̄, (2.46)

for some analytic function �̄ : �D2 → C such that �̄(z, w) = �̄(w, z).

Proof A function �̄ is the desired generating function if it solves the equation

−�̄(z, 0) �̄(0, w)+ (
�̄(z, 0)+ �̄(0, w)

)
�̄(z, w) = ϕ(z, w),

for z, w ∈ �D. It follows that �̄(z, 0)2 = ϕ(z, 0), so choose �̄(·, 0) = ξ ; then

�̄(z, w) = ϕ(z, w)+ ξ(z)ξ(w)

ξ(z)+ ξ(w)
. (2.47)

Note that the real part of the denominator in (2.47) can vanish only if |z|, |w| = �, hence �̄

is well-defined and analytic for (z, w) ∈ �D2. ��
This is sufficient to prove the existence of exactly two opposite QSDE solutions, and thus

that the limiting ergodic Nash system in X is soluble. We state this as a theorem.

Theorem 2.41 There exist exactly two QSDE solutions to (2.43) on X . Such solutions are
one the opposite of the other.

Proof Argue as in the first part of the proof of Lemma 2.30 to say that c+ ∈ �1(N2), then
argue as in the proof of Lemma 2.31 to build the QSDE solution determined by choosing
c̄ = c+. Finally note that the solution determined by the choice c̄ = c− is the opposite
function. ��

2.8 Long-Time Asymptotics

As expected by KAM theory and ergodic control, we are going to prove now that, up to a
constant, theQSDE solution corresponding to c+ (that is, the solutionwith c00 > 0) describes
the long-time asymptotics of the QSD solution as T → +∞, while the opposite solution
should be regarded as the result of considering the limit T →−∞ instead. To highlight the
dependence of the QSD solution on T , we will write it as uiT ; on the other hand, since by the
shift-invariance property it will suffice to show the convergence of u0T to the QSDE solution
v0, we will omit the superscript 0.



Dynamic Games and Applications

Theorem 2.42 LetAssumptions (�)be in forcewith [0,+∞) ⊆ I . Let uT be the value function
of the 0-th player corresponding to the QSD solution to the Nash system on [0, T ]×X ; let v
be the value function of the 0-th player corresponding to the QSDE solution onX determined
by c̄ = c+. Let λ := tr c̄. Then, for any t ≥ 0, as t < T → +∞, the following limits hold,
locally uniformly in both x ∈ X and t:

uT (t, x)

T − t
→ λ (2.48)

and there exists a constant μ ∈ R such that

uT (t, x)− λ(T − t) → v(x)+ μ. (2.49)

The proof is based on the following result, which is strictly related to a refinement of
Lemma 2.30 (cf. Remark 2.44 below) and is due to the possibility of explicitly compute the
integral in formula (2.29) as showed in Remark 2.29.

Lemma 2.43 Under Assumptions (�) with [0,+∞) ⊆ I , there exists a nonnegative function
γ ∈ C0

0 ([0,+∞)) ∩ L1([0,+∞)), depending only on r, f and g, such that

sup
(z,w)∈Qr

∣∣∣∣σ±(t, z, w)− 2

ξ(z)+ ξ(w)

∣∣∣∣ ≤ γ (t)

for all t ≥ 0, where σ± are defined as in (2.30).

Proof By the continuity of ξ , given r ′ ∈ (r , �),10 there exists ε > 0 such that

% ξ ≥ ε on D̄r ′ (2.50)

whence

inf
k∈Z |ξ(w)t − (

k + 1
2

)
iπ | ≥ d(t) ∀w ∈ D̄r ′ , t ∈ [0,+∞), (2.51)

for some function d which is uniformly positive on [0,+∞).11 By (2.51) there exists a
uniformly positive function f : [0,+∞) → R+, which depends only on r and f , such that
|cosh(· t)| ≥ f(t) on ξ(D̄r ); also, by (2.50) we can suppose that f be asymptotic to 1

2e
3ε|·| at

∞. Since, with L defined as in (2.30),

∂

∂ξ
L(t, z; ξ(z), ψ(z)) = 1

cosh(ξ(z)t)

(ξ(z)2 − ψ(z)2)t − ψ(z)
cosh(ξ(z)t)

(ψ(z) tanh(ξ(z)t)+ ξ(z))2
,

we obtain, also using (2.22),∣∣∣∣L(t, z)− L(t, w)

ξ(z)− ξ(w)

∣∣∣∣ � t

f(t)2
∀ (t, z, w) ∈ [0,+∞)×Qr , (2.52)

where the implied constant depends only on r , f and g. At this point, it is easy to see that
the desired conclusion follows. ��
Remark 2.44 This proof shows that if [0,+∞) ⊆ I , then the constant K appearing
in Lemma 2.30 is in fact independent of T , since supR×Qr

|�̂| is finite. In particular,
c ∈ C0([0, T ]; �1(N2)) along with its derivatives, and their the norms are bounded uniformly
with respect to T > 0.

10 E.g., r ′ = 1
2 (r + �).

11 For instance, d(t) = (
t ∨ 1

3 ‖ξ‖−2∞;D̄r ′
)
ε.
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Proof of Theorem 2.42 Fix r ∈ (1, �). By comparing expressions (2.31) and (2.47) one sees
that

sup
|z|,|w|≤r

|�(t, z, w)− �̄(z, w)| � γ (T − t), (2.53)

where γ is the function given in Lemma 2.43, and the implied constant depends only on the
L∞-norms of ϕ and ξ on Dr and Qr , respectively. By Lemma 2.28 and Cauchy’s theorem
on derivatives,

|cThk(t)− c̄hk | ≤ 1

rh+k
sup

|z|,|w|≤r
|�(t, z, w)− �̄(z, w)| ∀ h, k ∈ N; (2.54)

where we have used the superscript T to stress the fact that chk(t) = cThk(t) depends on the
horizon T . Plugging (2.53) into (2.54) yields

∑
h,k∈N

|cThk(t)− c̄hk | � γ (T − t) (2.55)

as well as

| tr cT (t)− λ | � γ (T − t), (2.56)

where the implied constants depend only on r and f . As γ is integrable on [0,+∞), by
(2.56) so is tr ĉ − λ, where we use the notation ĉ = c(T − ·) introduced in the proof of
Lemma 2.27; thus by the dominated convergence theorem there exists μ ∈ R such that

∫ T

t
tr cT − (T − t)λ → μ as T →+∞,

locally uniformly in t . Along with (2.55), this proves (2.48) and (2.49). ��
Remark 2.45 The argument of the previous proof also applies to the case when t = sT , with
s ∈ [0, 1]. In this case, we can give the following estimate of the rate of convergence of
(2.48): for any r ∈ (1, �),

sup
‖x‖X≤L, s∈[0,1]

∣∣∣∣uT (sT , x)

T
− (1− s)λ

∣∣∣∣ �L,r
1

T
.

The implied constant can be computed quite explicitly, by retracing the proofs above; we
confine ourselves to pointing out that it depends only on L , r and f , and that it explodes as
L →∞ or r → 1.

2.9 Digression on a Delicate Limit Case

We have noted in Example 2.2 that the case of a cost designed according to an underlying
directed circulant graph structure is limit among those satisfying our assumptions, in the
sense that Definition 2.18 holds with � = 1.

Results like Lemmata 2.27, 2.28, 2.30, 2.39 and 2.40 continue to hold, but the other
methods used in the previous sections are not refined enough to successfully prove all the
previous theorems for those limit cases, even though, along with Remark 2.44, they are
sufficient in order to establish �∞-stability at the level of the system for c; that is, convergence
in �∞(N2) of the solution to (2.24) to a solution of (2.45).
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On the other hand, having a closer look at the simplest limit case, which is the directed
chain given by the choice g = 0, f 000 = f 011 = 1 = − f 001 = − f 010 and f 0hk = 0 for all other
h, k, we note that we are also able to compute QSDE solutions quite easily, thanks to formula
(2.47). In this case we have ϕ(z, 0) = 1− z, and we find the expansion

�̄(z, w) = 1+
∑
j≥1

(−) j
( 1

2
j

)(
z j + w j )+∑

j≥2
(−) j

( 3
2
j

) ∑
h,k≥1
h+k= j

zhwk,

yielding

c±hk = ±(−)h+k
( 3

2 − δ0,hk

h + k

)
. (2.57)

As by Stirling’s formula |c±hk | & (h + k)δ0,hk− 5
2 , one easily sees that these coefficients

well-define a QSDE solution, hence the limit ergodic Nash system has a solution.
One can also note that the coefficients enjoy the property that

c̄hk = c̄0,h+k − c̄0,h+k−1 if hk �= 0, (2.58)

where c̄ is either c+ or c−; this can be seen from (2.57) or proved by induction using
system (2.45). In fact, the same can be done for system (2.24), so that property (2.58) also
holds for the12 solution of (2.24) on [0, T ], for any fixed T > 0. Therefore, the information
about the coefficients of a prospective QSD or QSDE solution is encoded in the functions of
one complex variable �0(t, ·) := �(t, ·, 0) and �̄0 = �̄(·, 0), namely

�0(t, z) =
√
1− z tanh

(√
1− z (T − t)

)
and �̄0(z) =

√
1− z.

This peculiar fact is specific of the directed chain. It could be useful as it allows to conclude
existence of a solution to the infinite-dimensional evolutive Nash system provided that the
sequence of functions (c0k)k∈N is monotone,13 yet this would not still be enough to deal with
convergence to an ergodic solution.

Another property is instead shared by all problems having f of the form (2.1): the poly-
nomial ϕ factors as ϕ(z, w) = ξ2(z)ξ2(w); this makes � and �̄ functions of (ξ(z), ξ(w)),
possibly helping in the analysis of the aforementioned limit cases.

3 Mean-Field-Like Games: Long-Time Existence

In this part we consider the Nash system (2.8) without the shift-invariance assumption.
Instead, we make a mean-field-like assumption, and look for conditions that guarantee the
existence of solutions on arbitrarily large time horizon T . Given (aijk)i, j,k ∈ S (N )N wewill

use the notation B(a) for the matrix B(a)hk = ahhk . Given the i-th vector e
i of the canonical

basis of RN , we will write Ei = ei (ei )T . The indices will range over [[N ]].
Note that system (2.8) can be rewritten in a forward form as{

ċi − (ci )TEici + B(c)Tci + ci B(c) = f i

ci (0) = gi
i ∈ [[N ]], (3.1)

12 Note that it is indeed unique, as Lemma 2.27 is still true with the same proof.
13 As it would seem by computing the first functions of the sequence….
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where ci (t), f i (t), gi ∈ S (N ) for all i ∈ [[N ]] and t ∈ [0, T ].
Theorem 3.1 Let T > 0 and let f ∈ L1((0, T );S (N )N ) and g ∈ S (N )N satisfy

sup
i

(
N

∑
h,k
k �=i

| •ihk |2 + N
∑
k

k �=i

| •kki |2 + | •ii i |2
)
≤ κ•, κ• > 0, for • ∈ { f , g}. (3.2)

Suppose that B( f ) ≥ −K f I and B(g) ≥ −Kg I for some constants K f and Kg such that

Kg < sup
M∈R

Me−2MT= 1

2eT
, K f < sup

M∈R
M(Me−MT − Kg)

T
(
1 ∨ e2MT−1

2MT

) . (3.3)

Then there exists N0 ∈ N such that if N > N0 there exists a unique absolutely continuous
solution c to (3.1) on [0, T ), which satisfies

sup
i

(
N

∑
h,k
k �=i

|cihk |2 + N
∑
k

k �=i

|ckki |2 + |ciii |2
)
≤ C (3.4)

for some constant C which is independent of N .

Note that (3.3) is automatically satisfied when K f , Kg ≤ 0 for any T > 0. Otherwise, for
fixed K f and Kg , it poses a restriction on the size of T (or, similarly, a restriction on the size
of (K f )+ and (Kg)+ once T is fixed). Back to the value functions ui , the previous estimate
reads as follows:

sup
i

(
N

∑
h,k
k �=i

‖D2
hku

i‖2∞ + N
∑
k

k �=i

‖D2
ki u

k‖2∞ + ‖D2
i i u

i‖2∞
)
≤ C;

in particular,

sup
i

∑
j : j �=i

‖Djα
i‖2∞ = sup

i

∑
j : j �=i

‖D2
i j u

i‖2∞ ≤ C

N
.

Remark 3.2 We use the terminology mean-field-like since any f i such that

sup
i
| f ii i | + N sup

i, j
j �=i
| f ii j | + N 2 sup

i, j,k
j �=i, k �=i

| f ijk | ≤ C

satisfies (3.2), with κ f depending on C (and not on N ). In turn, the previous inequality is
satisfied when f i (x) = V i (xi , (N −1)−1

∑
j �=i δx j ), where V i is a smooth enough function

defined over Rd × P(Rd) (see for instance [10, Proposition 6.1.1]). Note that V i here may
depend on i , and it is not the same for all i like in the standard MFG setting.

Remark 3.3 Theorem 2.17 presented in the previous section and Theorem 3.1 can be com-
pared as follows; the former is about short-time solutions for shift-invariant Mean-Field-like
problems, while the latter provides (possibly) long-time solutions, under further structural
conditions involving B( f ) and B(g). Note that the former requires shift-invariance, that is
all players are identical (though they do not observe the population through the empirical
measure necessarily). Note also that the former is more precise in terms of estimates, that
are pointwise with respect to h, k, i , while the latter involves �2 norms. Clearly, the lines of
two proofs are rather different.
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The proof of the theorem is based on the following lemmata.

Lemma 3.4 Let c be an absolutely continuous solution to (3.1) with B(c) ≥ −MI on [0, T )

for some M ∈ R. Assume (3.2). Then the following estimates hold on [0, T ):∑
h,k
k �=i

|cihk |2 ≤ κ0N
−1, κ0(t) := (κg + κ f t)e

(1+4M+)t , (3.5)

sup
k

∑
i �=k

|ciik |2 ≤ κ1N
−1, k1(t) := 2κ0(t)e

2
∫ t
0
√

κ0 , (3.6)

sup
i
|ciii |2 ≤ κ2, κ2(t) = (κg + (κ f + κ0κ1N

−2)t)e(2+M+)t , (3.7)

where M+ = M ∨ 0. As a consequence, c continuously extends on [0, T ].
Proof Multiplying the equation for cihk by cihk and summing over h and k �= i we have

1

2

d

dt

∑
h,k
k �=i

|cihk |2 =
∑
h,k
k �=i

f ihkc
i
hk −

∑
j,h,k
j,k �=i

cihkc
i
jhc

j
jk −

∑
j,h,k
k �=i

cihkc
i
jkc

j
jh

=
∑
h,k
k �=i

f ihkc
i
hk − tr(ĉi TB(c)ĉi )− tr(c̃i TB(c)c̃i ),

where we have set ĉihk := cihk(1− δhi ) and c̃ihk = cihk(1− δki ). It follows that

d

dt

∑
h,k
k �=i

|cihk |2 ≤ κ f N
−1 + (1+ 4M+)

∑
h,k
k �=i

|cihk |2,

thus, by Gronwall’s inequality, (3.5) is proved. Multiplying the equation for ciik by ciik and
summing over i �= k we obtain

1

2

d

dt

∑
i �=k

|ciik |2 =
∑
i �=k

f iikc
i
ik −

∑
i �=k

B(c)kk |ciik |2 −
∑
i, j �=k

ciikc
i
ji c

j
jk −

∑
i �=k
j �=i

ciikc
i
jkc

j
ji

≤
∑
i �=k

f iikc
i
ik −

∑
i �=k

B(c)kk |ciik |2 − tr(B̂(c)TB(c)B̂(c))−
∑
i �=k
j �=i

ciikc
i
jkc

j
ji ,

where B̂(c)hk = B(c)hk if h = k and it is null otherwise. By (3.5)
∣∣∣∣
∑
i �=k
j �=i

ciikc
i
jkc

j
ji

∣∣∣∣ ≤ sup
�

∑
i �=�

|cii�|2
( ∑

i �=k
j �=i

|cijk |2
) 1

2 ≤ √κ0 sup
�

∑
i �=�

|cii�|2.

We have
d

dt

∑
i �=k

|ciik |2 ≤ κ f N
−1 + (1+ 4M+)

∑
i �=k

|ciik |2 + 2
√

κ0 sup
�

∑
i �=�

|cii�|2;

that is,

sup
k

∑
i �=k

|ciik(t)|2 ≤ (κg + κ f t)N
−1 +

∫ t

0
(1+ 4M+ + 2

√
κ0 ) sup

k

∑
i �=k

|ciik |2.
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By Gronwall’s inequality one finds (3.6). Consider at this point that ciii solves

ċii i + |ciii |2 + 2
∑
j �=i

c jj i c
i
i j = f ii i , (3.8)

where by (3.5) and (3.6)
∣∣∣ ∑
j �=i

c jj i c
i
i j

∣∣∣2 ≤ κ0κ1N
−2.

Therefore, multiplying equation (3.8) by ciii one obtains

d

dt
|ciii |2 ≤ κ f + (2+ M+)|ciii |2 + κ0κ1N

−2

and thus (3.7) by Gronwall’s inquality. ��
Lemma 3.5 Under the hypotheses of Theorem 3.1, let c be as in Lemma 3.4. Suppose that

Me−2MT > Kg, K f <
M(Me−MT − Kg)

T
(
1 ∨ e2MT−1

2MT

) .

Then there exists N∗(T ) such that B(c)(T ) > −MI provided that N > N∗(T ). Furthermore,
the map T �→ N∗(T ) is continuous on [0,+∞).

Proof Consider that B(c) solves the equation

Ḃ(c)+ B(c)2 = B( f )− D. where Dik =
∑
j �=i

cik j c
j
j i . (3.9)

By estimates (3.5) and (3.6),

‖D‖22 =
∑
i,k

( ∑
j �=i

cik j c
j
j i

)2

≤ sup
i

∑
j �=i
|c jji |2 ·

∑
i, j,k
j �=i

|cijk |2 ≤ κ0κ1N
−1.

Let now ξ solve the linear equation ξ̇ = B(c)Tξ on [0, T )with terminal condition ξ(T ) = ζ ,
for some arbitrary ζ ∈ S

N−1; note that since d
dt |ξ |2 ≥ −4M |ξ |2 we have

1 ∧ e2M(T−·) ≤ |ξ | ≤ 1 ∨ e2M(T−·) on [0, T ].
By (3.9) we get

(ξTB(c)ξ),̇=ξT(B( f )− D+B(c)B(c)T)ξ≥ξT(B( f )−D)ξ≥−(K f +√κ0κ1N
− 1

2 )|ξ |2.
If K f < 0 and N is large enough, then B(c)(T ) > −νKg I , where

ν :=
{
e2MT if MKg ≥ 0

1 if MKg ≤ 0,

thus it is easily seen that B(c)(T ) > −MI . If K f ≥ 0, then

B(c)(T ) ≥ −
(
νKg +

∫ T

0
(K f +√κ0κ1N

− 1
2 ) (1 ∨ e2M(T−·))

)
I . (3.10)
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It follows that in order to have B(c)(T ) > −MI it suffices that

νKg + T K f (1 ∨ h(MT ))+ N−
1
2 T

√
κ0(T )κ1(T ) h(MT ) < M,

where h(z) := (e2z − 1)/(2z). This is guaranteed by our assumptions on Kg , K f and M (by
which νKg + T K f (1 ∨ h(MT )) < M), provided that N is large enough. The continuity of
N∗(T ) is easily seen as one can write it explicitly using the estimates above. ��
Proof of Theorem 3.1 Fix M according to Lemma 3.5 (note that this implies that M > Kg).
By the Cauchy–Lipschitz theorem there exists τ > 0 such that (3.1) has a unique absolutely
continuous solution on [0, τ ). By taking τ smaller if necessary, we may suppose that by
continuity B(c) > −MI on [0, τ ). Then

τ̄ := sup{τ > 0 : (3.1) has a unique absolutely continuous solution with B(c)

> −MI on [0, τ )}
is well-defined. Seeking for a contradiction, suppose that τ̄ < T . Let N0 := max[0,T ] N∗,
where N∗ is given by Lemma 3.5. By Lemma 3.4, c continuously extends on [0, τ̄ ], with
B(c)(τ̄ ) > −MI as guaranteed by Lemma 3.5, thanks to our choice of N0. By the Cauchy–
Lipschitz theorem one can extend the solution on [0, τ ′) for some τ ′ > τ̄ and by continuity
we may suppose that B(c) > −MI on [0, τ ′). This contradicts the maximality of τ̄ , thus
τ̄ ≥ T . Finally, estimate (3.4) follows from (3.5), (3.6) and (3.7). This concludes the proof.
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