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Abstract
The paper deals with a zero-sum differential game for a dynamical system described by
neutral-type functional-differential equations in Hale’s form with initial conditions deter-
mined by piecewise continuous functions. It is proved that the differential game has a value
and optimal positional (feedback) players’ strategies. If the value functional satisfies cer-
tain smoothness conditions, the optimal strategies are constructed based on its gradient. In
the general case, such strategies are described using quasi-gradient constructions. The fact
that the quasi-gradients under consideration require looking for extremum points only on a
finite-dimensional set is the crucial contribution of this paper.
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1 Introduction

In differential games for dynamical systems described by ordinary differential equations
satisfying the Isaacs condition [11] (or the saddle point condition in a small game in other
terminology [14]), it is known (see, e.g., [14, 25]) that the value of the game exists and can
be achieved by positional (feedback) players’ strategies. If the value function is continuously
differentiable, then the optimal positional strategies can be obtained utilizing its gradient.
If the differentiability of this function is not assumed, they can be constructed by various
regularizing tools [2, 6, 14, 22, 25, 27]. In particular, under fairly general conditions, the
optimal positional strategies can utilize the quasi-gradients of the value function [25]. This
paper aims to describe optimal positional strategies for more general differential games in
which dynamical systems are described by a functional-differential equation of neutral-type
in Hale’s from [10].

Such equations represent a fairly general class of functional-differential systems which
contain not only a delay in the state vector but also a delay in its derivative. They arise in
studying, for example, transmission line nonlinear oscillators [4, 5], torsional motions of
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driven drill strings [1] and other applications (see [13]). As a quality index for the differential
games under consideration, we choose a Boltz cost functional, which is quite a typical choice
for the differential games [14, 25] and natural for applications. In a particular and often used
case, it estimates the distance from the target point at the terminal time and the integral of
the players’ control cost.

Note that the usage of the previously developed optimal positional strategies in differen-
tial games for both time-delay [15–17, 23] and neutral-type [9, 18] functional-differential
systems is problematic since their application requires looking for extremum points on
infinite-dimensional sets of continuous functions (possible histories of system motions).
However, recent papers [20, 21] devoted to optimal control problems and differential games
for time-delay systems established that it is possible to look for extremum points on finite-
dimensional sets if motion histories are piecewise continuous functions. Therefore, starving
to obtain a similar result in differential games for neutral-type systems, we also consider a
motion history space with jumps. Namely, following [24], we choose the space of piece-
wise Lipschitz continuous functions. In particular, paper [24] established the uniqueness of a
generalized (minimax and viscosity) solution of the Hamilton-Jacobi equations arising from
control problems for neural-type systems in this space. Thus, proving that the upper and
lower values of the game in the class of non-anticipatory strategies are the viscosity solu-
tion of the corresponding Hamilton-Jacobi equation, we obtain the value of the game exists
(Theorem 1).

Next, we describe the smoothness conditions under which optimal positional strategies
can be constructed based on the gradient of the value functional (Theorem 2). Note that,
in contrast to time-delay systems (see [16, 17]), we cannot use the ci-smoothness condition
since, even in the simplest case of neutral-type systems, the gradient is not continuous (see
[8]). Instead, we use conditions considering possible discontinuities of the gradient following
[8]. However, the choice of the motion history space with jumps allows us to obtain more
general smoothness conditions than in [8].

Finally, thanks to such a choice of the motion history space, for the general case when
the value functional is not smooth, we prove the optimality of positional strategies based,
in fact, on the classical quasi-gradient definition [25] (Theorem 3). Let us emphasize again
that, unlike previous papers [9, 18] devoted to optimal positional strategies for neutral-type
systems, such quasi-gradient constructions requires looking for extremum points only on a
finite-dimensional set, which is the crucial contribution of this paper.

Note also that the usage of the motion history space with jumps creates various additional
difficulties in proofs. Namely, motions of neutral-type systems on such space have a certain
periodicity of jumps during the control interval (see Remark 1), which is not typical for time-
delay systems, for example. In addition, the value functional has rather specific continuity
properties (see condition (ρ1) and (ρ2)) that are different from [9, 18],whereLipschitzmotion
histories were considered. Nonetheless, the accounting of this specificity in the proofs allows
us to obtain the above results.

2 Results

2.1 Functional Spaces

LetRn be the n-dimensional Euclidean space with the inner product 〈·, ·〉 and the norm ‖·‖. A
function x(·) : [a, b) �→ R

n (or x(·) : [a, b] �→ R
n) is called piecewise Lipschitz continuous



Dynamic Games and Applications

if there exist points a = ξ0 < ξ1 < . . . < ξI+1 = b such that the function x(·) is Lipschitz
continuous on the interval [ξi , ξi+1) for each i ∈ 0, I . Note that such a function x(·) is
right continuous on [a, b) and has a finite left limit x(ξ − 0) for any ξ ∈ (a, b]. Denote by
PLip([a, b),Rn) and Lip([a, b),Rn) the linear spaces of piecewise Lipschitz and Lipschitz
continuous functions x(·) : [a, b) �→ R

n , respectively.
Let ϑ, h > 0. Without loss of generality of the results presented below, we can sup-

pose the existence of J ∈ N such that ϑ = Jh. For the sake of brevity, we set
PLip = PLip([−h, 0),Rn) and, for any w(·) ∈ PLip, we denote

‖w(·)‖1 =
∫ 0

−h
‖w(ξ)‖dξ, ‖w(·)‖∞ = sup

ξ∈[−h,0)
‖w(ξ)‖, w(−0) = w(0 − 0).

Following [24], define the space PLip∗ of functions w(·) ∈ PLip continuously differentiable
on [−h,−h + δw] for some δw > 0 and the spaces

G = [0, ϑ] × R
n × PLip, G∗ = ∪J−1

j=0 ( jh, ( j + 1)h) × R
n × PLip∗. (1)

2.2 Differential Game

For each (τ, z, w(·)) ∈ G, consider a zero-sum differential game for a dynamical system
described by the neutral-type differential equation in Hale’s form [10]

d

dt

(
x(t) − g(t, x(t − h))

)
= f (t, x(t), x(t − h), u(t), v(t)), t ∈ [τ, ϑ],

x(t) ∈ R
n, u(t) ∈ U ⊂ R

l , v(t) ∈ V ⊂ R
m,

(2)

with the initial condition

x(τ ) = z, x(t) = w(t − τ), t ∈ [τ − h, τ ), (3)

and the quality index

γ = σ(x(ϑ), xϑ(·)) +
ϑ∫

τ

f 0(t, x(t), x(t − h), u(t), v(t))dt, (4)

Here t is the time variable; x(t) is the state vector at the time t ; u(t) and v(t) are control
actions of the first and second players, respectively; U and V are compact sets. Hereinafter,
the symbol xt (·) denotes the function on the interval [−h, 0) defined by xt (ξ) = x(t + ξ),
ξ ∈ [−h, 0).

In this differential game, the first player aims to minimize γ , while the second player aims
to maximize it.

We assume that the following conditions hold:

(g1) The function g is continuously differentiable.
(g2) There exists a constant cg > 0 such that

‖g(t, x)‖ ≤ cg
(
1 + ‖x‖), (t, x) ∈ [0, ϑ] × R

n .

( f1) The functions f and f 0 are continuous.
( f2) There exists a constant c f > 0 such that

∥∥ f (t, x, y, u, v)
∥∥ + ∣∣ f 0(t, x, y, u, v)

∣∣ ≤ c f
(
1 + ‖x‖ + ‖y‖)

for any t ∈ [0, ϑ], x, y ∈ R
n , u ∈ U, and v ∈ V.
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( f3) For every α > 0, there exists a number λ f = λ f (α) > 0 such that∥∥ f (t, x, y, u, v) − f (t, x ′, y′, u, v)
∥∥ + ∣∣ f 0(t, x, y, u, v) − f 0(t, x ′, y′, u, v)

∣∣
≤ λ f

(‖x − x ′‖ + ‖y − y′‖)
for any t ∈ [0, ϑ], x, y, x ′, y′ ∈ B(α) = {x ∈ R

n : ‖x‖ ≤ α}, u ∈ U, and v ∈ V.
( f4) The equality

min
u∈U max

v∈V χ(t, x, y, u, v, s) = max
v∈V min

u∈U χ(t, x, y, u, v, s)

holds for any t ∈ [0, ϑ] and x, y, s ∈ R
n , where

χ(t, x, y, u, v, s) = 〈 f (t, x, y, u, v), s〉 + f 0(t, x, y, u, v). (5)

(σ1) For every α > 0, there exists λσ = λσ (α) > 0 such that∣∣σ(x, r(·)) − σ(x ′, r ′(·))∣∣ ≤ λσ

(‖x − x ′‖ + ‖r(·) − r ′(·)‖1
)

for any (x, r(·)), (x ′, r ′(·)) ∈ P(α), where

P(α) = {
(x, r(·)) ∈ R

n × PLip : ‖x‖ ≤ α, ‖r(·)‖∞ ≤ α
}
. (6)

(σ2) There exists cσ > 0 such that∣∣σ(x, r(·))∣∣ ≤ cσ

(
1 + ‖x‖ + ‖r(·)‖∞

)
, (x, r(·)) ∈ R

n × PLip.

Note that these conditions are quite typical for differential games theory [11, 14, 25]. In
particular, condition ( f4), called the Isaacs’s condition [11] or the saddle point condition in
a small game in other terminology [14, 25], is crucial for proving the existence of a value
(see Theorem 1 below).

Define the set of piecewise Lipschitz continuous right extensions from the point
(τ, z, w(·)) as follows:

�(τ, z, w(·)) = {
x(·) ∈ PLip([τ − h, ϑ],Rn) : x(τ ) = z, xτ (·) = w(·)}.

By admissible control realizations of the first and second players, we mean Lebesgue mea-
surable functions u(·) : [τ, ϑ] �→ U and v(·) : [τ, ϑ] �→ V, respectively. Denote by Uτ and
Vτ the sets of admissible control realizations of the first and second players. Under conditions
(g1) and ( f1) − ( f3), following, for example, the scheme from [7, Section 7] (see also [12,
Section 4.2]), one can show that each pair of realizations u(·) ∈ Uτ and v(·) ∈ Vτ uniquely
generates the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) of system (2), (3) that is the func-
tion from �(τ, z, w(·)) such that the function x(t) − g(t, x(t − h)), t ∈ [τ, ϑ] is Lipschitz
continuous and x(·) satisfies Eq. (2) almost everywhere.

Remark 1 Note that the motions of system (2), (3) have a certain structure of Lipschitz
continuous pieces (and discontinuity points). Namely, if −h = ξ0 < ξ1 < . . . < ξI+1 = 0
such that the function w(·) is Lipschitz continuous on [ξi , ξi+1), i ∈ 0, I then the motion
x(·) = x(· | τ, z, w(·), u(·), v(·)) is Lipschitz continuous on the intervals [τ + ξi + jh, τ +
ξi+1 + jh) ∩ [τ, ϑ], i ∈ 0, I , j ∈ 0, J . This fact can be proved similar to Proposition 8.

We first consider differential game (2)–(4) in classes of non-anticipative strategies of
players (see, e.g. [2, Chapter VIII, Section 1]) or quasi-strategies in another terminology
(see, e.g. [25, Chapter III, Section 14.2]).

By a non-anticipative strategy of the first player, we mean a mapping Qu
τ : Vτ �→ Uτ such

that, for each v(·), v′(·) ∈ Vτ and t ∈ [τ, ϑ], if the equality v(ξ) = v′(ξ) is valid for a.e.
ξ ∈ [τ, t] then the equality Qu

τ [v(·)](ξ) = Qu
τ [v′(·)](ξ) holds for a.e. ξ ∈ [τ, t].
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A non-anticipative strategy of the first player Qu
τ and a control realization of the second

player v(·) ∈ Vτ define the control realization of the first player u(·) = Qu
τ [v(·)](·), the

motion x(·) = x(· | τ, z, w(·), u(·), v(·)) and the value γ = γ (τ, z, w(·), Qu
τ , v(·)) of quality

index (4). The lower value of differential game (2)–(4) is defined by

ρu(τ, z, w(·)) = inf
Qu

τ

sup
v(·)∈Vτ

γ (τ, z, w(·), Qu
τ , v(·)). (7)

The functional G � (τ, z, w(·)) �→ ρu = ρu(τ, z, w(·)) ∈ R is the lower value functional
of differential game (2)–(4).

Similarly, a non-anticipative strategy of the second player is a mapping Qv
τ : Uτ �→ Vτ

such that, for each u(·), u′(·) ∈ Uτ and t ∈ [τ, ϑ], if the equality u(ξ) = u′(ξ) is valid for a.e.
ξ ∈ [τ, t] then the equality Qv

τ [u(·)](ξ) = Qv
τ [u′(·)](ξ) holds for a.e. ξ ∈ [τ, t]. Such a non-

anticipative strategy together with u(·) ∈ Uτ define the realization v(·) = Qv
τ [u(·)](·), the

motion x(·) = x(· | τ, z, w(·), u(·), v(·)), and the quality index γ = γ (τ, z, w(·), u(·), Qv
τ ).

The upper value of differential game (2)–(4) is

ρv(τ, z, w(·)) = sup
Qv

τ

inf
u(·)∈Uτ

γ (τ, z, w(·), u(·), Qv
τ ). (8)

The functionalG � (τ, z, w(·)) �→ ρv = ρv(τ, z, w(·)) ∈ R is the upper value functional of
differential game (2)–(4).

Note that the functionals ρu and ρv satisfy the following conditions:

(ρ0) The equality ρ(ϑ, z, w(·)) = σ(z, w(·)), (z, w(·)) ∈ R
n × PLip holds.

(ρ1) For each pair (τ, w(·)) ∈ [0, ϑ] × Lip([−h, 0),Rn), the function ρ̂(t) =
ρ(t, w(−0), w(·)) is continuous on [τ, ϑ].

(ρ2) For every α > 0, there exists λρ = λρ(α) > 0 such that∣∣ρ(τ, z, w(·)) − ρ(τ, z′, w′(·))∣∣ ≤ λρυ(τ, z − z′, w(·) − w′(·)) (9)

for any τ ∈ [0, ϑ] and (z, w(·)), (z′, w′(·)) ∈ P(α), where

υ(τ, z, w(·)) = ‖z‖ + ‖w(·)‖1 + ‖w(−h)‖ + ‖w( jh − τ)‖ (10)

in which j ∈ −1, J − 1 is such that τ ∈ ( jh, ( j + 1)h].
(ρ3) For every (τ, z, w(·)) ∈ G, τ < ϑ , ζ > 0, t∗ ∈ (τ, ϑ], and v(·) ∈ Vτ , there exists

u(·) ∈ Uτ such that the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimate

ρ(t∗, x(t∗), xt∗(·)) +
∫ t∗

τ

f 0(t, x(t), x(t − h), u(t), v(t))dt ≤ ρ(τ, z, w(·)) + ζ.

(ρ4) For every (τ, z, w(·)) ∈ G, τ < ϑ , ζ > 0, t∗ ∈ (τ, ϑ], and u(·) ∈ Uτ , there exists
v(·) ∈ Vτ such that the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimate

ρ(t∗, x(t∗), xt∗(·)) +
∫ t∗

τ

f 0(t, x(t), x(t − h), u(t), v(t))dt ≥ ρ(τ, z, w(·)) − ζ.

The fulfillment of terminal condition (ρ0) follows directly from definitions (7) and (8)
of value functionals ρu and ρv . Conditions (ρ1), (ρ2) naturally generalize the continuity
properties of value functionals to the case of neural-type systems considered on a set G (see
[24, Remark 2]) and are proved in Proposition 10. Conditions (ρ3), (ρ4) describe the dynamic
programming principle for the functionals ρu and ρv and can be proved following the scheme
from [2, Chapter VIII, Theorem 1.9] if we take into account that any non-anticipative strategy
Qu

τ defines a rule—for every v(·) ∈ Vτ there exists u(·) ∈ Uτ and similarly for Qv
τ . Note

also the fact that system (2) has a delay does not in any way affect the proof scheme.
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2.3 Hamilton–Jacobi Equation

In this section, we consider the corresponding to differential game (2)–(4) Hamilton-Jacobi
equation with coinvariant derivatives to prove the existence of the value and other auxiliary
properties.

Following [24] (see also [12, 15]), a functional ρ : G �→ R is called coinvariantly (ci-)
differentiable at a point (τ, z, w(·)) ∈ G, τ < ϑ if there exist ∂ci

τ,wρ(τ, z, w(·)) ∈ R and
∇zρ(τ, z, w(·)) ∈ R

n such that, for every t ∈ [τ, ϑ], y ∈ R
n , and x(·) ∈ �(τ, z, w(·)), the

relation below holds

ρ(t, y, xt (·)) − ρ(τ, z, w(·)) = (t − τ)∂ci
τ,wρ(τ, z, w(·))

+〈y − z,∇zρ(τ, z, w(·))〉 + o(|t − τ | + ‖y − z‖), (11)

where the value o(δ) can depend on x(·) and o(δ)/δ → 0 as δ ↓ 0. Then ∂ci
τ,wρ(τ, z, w(·))

is called the ci-derivative of ρ with respect to {τ,w(·)} and ∇zρ(τ, z, w(·)) is the gradient of
ρ with respect to z.

Denote

G(t, x, y) = ∂g(t, x)/∂t + ∇x g(t, x)y
H(t, x, y, s) = min

u∈U max
v∈V χ(t, x, y, u, v, s) t ∈ [0, ϑ], x, y, s ∈ R

n, (12)

and consider the Cauchy problem for the Hamilton-Jacobi equation

∂ci
τ,wρ(τ, z, w(·)) + 〈G(τ, w(−h), d+w(−h)/dξ),∇zρ(τ, z, w(·))〉

+H(τ, z, w(−h),∇zρ(τ, z, w(·))) = 0, (τ, z, w(·)) ∈ G∗,
(13)

and the terminal condition

ρ(ϑ, z, w(·)) = σ(z, w(·)), (z, w(·)) ∈ R
n × PLip, (14)

where d+w(−h)/dξ is the right derivative of the function w(ξ), ξ ∈ [−h, 0) at the point
ξ = −h. The properties and singularities of such Cauchy problems were studied in [24].
In particular, this paper proves the existence and uniqueness of the generalized (minimax
or viscosity) solution of such a problem. Thus, showing in Proposition 11 that the both
functionals ρu and ρv are the viscosity solution of problem (13), (14), we obtain the following
statement.

Theorem 1 Differential game (2)–(4) has the value functional

ρ◦(τ, z, w(·)) = ρu(τ, z, w(·)) = ρv(τ, z, w(·)), (τ, z, w(·)) ∈ G. (15)

Note also that from this theorem and [24, Theorem 5], we get the following auxiliary
property which directly connects ρ◦ and equation (13):

(ρ5) Let the value functional ρ◦ be ci-differentiable on G∗. Then ρ◦ satisfies Hamilton-
Jacobi equation (13) for any (τ, z, w(·)) ∈ G∗.

2.4 Optimal Positional Strategies

In this section, we introduce the concept of positional (feedback) players’ strategies following
the scheme from [14] (see also [16] for time-delay systems). Note that the positional strategies
are a particular case of non-anticipative strategies, and therefore, their guaranteed results
cannot be better than values (7) and (8). Below, we present positional strategies capable
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of providing precisely these values (i.e. optimal strategies), which is the main result of
this paper. Namely, following the differential game theory [25], firstly, we describe optimal
strategies based on the value functional gradient if it satisfies certain smoothness conditions,
are secondly, we present strategies utilizing quasi-gradients for the general case.

By a positional strategy of the first player, we mean an arbitrary function U : G �→ U. Let
us fix (τ, z, w(·)) ∈ G and a partition of the interval [τ, ϑ]:

�δ = {t j : t1 = τ, 0 < t j+1 − t j ≤ δ, j = 1, k, tk+1 = ϑ}. (16)

The pair {U ,�δ} defines a control law that forms a piecewise constant function u(·) ∈ Uτ

according to the following step-by-step rule:

u(t) = U (t j , x(t j ), xt j (·)), t ∈ [t j , t j+1), j = 1, k. (17)

This control law together with any function v(·) ∈ Vτ uniquely determine the motion x(·) =
x(· | τ, z, w(·), u(·), v(·)) and the quality index γ = γ (t, z, w(·), U ,�δ, v(·)) of quality
index (4). The guaranteed result of the strategy U is defined by

ρu(τ, z, w(·), U ) = lim
δ↓0 sup�δ

sup
v(·)

γ (τ, z, w(·), U ,�δ, v(·)). (18)

Similarly, with the corresponding changes, for the second player, we define a positional
control strategy V : G �→ V, control law {V ,�δ} that forms a function v(·) ∈ Vτ by

v(t) = V (t j , x(t j ), xt j (·)), t ∈ [t j , t j+1), j = 1, k,

the guaranteed result of the strategy V

ρv(τ, z, w(·), V ) = lim
δ↓0 inf

�δ

inf
u(·) γ (τ, z, w(·), u(·), V ,�δ). (19)

Theorem 2 Let the value functional ρ◦ = ρ◦(t, z, w(·)) is differentiable by z on G and
ci-differentiable on G∗ (see (1)). Let the functional ∇zρ

◦ = ∇zρ
◦(τ, z, w(·)) satisfy the

condition

(ρ∗
1 ) For each (τ, w(·)) ∈ [0, ϑ] × Lip, the function ρ̂(t) = ∇zρ

◦(t, w(−0), w(·)) is
continuous on [τ, ϑ] ∩ ( jh, ( j + 1)h) for each j ∈ 0, J − 1.

and condition (ρ2). Then, for every (τ, z, w(·)) ∈ G, the players’ strategies

U (t, x, r(·)) ∈ argmin
u∈U

max
v∈V χ

(
t, x, r(−h), u, v,∇zρ

◦(t, x, r(·)))
V (t, x, r(·)) ∈ argmax

v∈V
min
u∈U χ

(
t, x, r(−h), u, v,∇zρ

◦(t, x, r(·)))

provide the equalities

ρu(τ, z, w(·), U ) = ρ◦(τ, z, w(·)) = ρv(τ, z, w(·), V ). (20)

Thus, the positional strategies U and V described above are optimal.
The simplest example of a differential game in which the conditions of Theorem 2 are

satisfied can be found in [8]. This example also forces us to use a weaker condition (ρ∗
1 ) than

(ρ1) in this theorem because we can see that even in such straightforward cases, condition
(ρ1) for the value functional gradient does not hold.

Next, determine the optimal strategies for the general case following [25]. For every
λ, ε > 0, denote

ηλ,ε(t, x) = θλ,ε(t)με(x), θλ,ε(t) = (e−λt − ε)/ε,

με(x) = √
ε4 + ‖x‖2, (t, x) ∈ [0, ϑ] × R

n (21)
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and consider the functionals

pλ,ε(t, x, r(·)) = argmin
p∈Rn

(
ρ◦(t, p, r(·)) + ηλ,ε(t, x − p)

)
,

qλ,ε(t, x, r(·)) = argmax
q∈Rn

(
ρ◦(t, q, r(·)) − ηλ,ε(t, x − q)

)
,

(22)

where (t, x, r(·)) ∈ G. Proposition 14 proves the argmin and argmax values are archived
for sufficiently small ε and therefore, these functionals are well defined. Let us consider the
quasi-gradients

∇λ,ε,+
z ρ◦(t, x, r(·)) = ∇zη

λ,ε(t, x − pλ,ε(t, x, r(·))),
∇λ,ε,−

z ρ◦(t, x, r(·)) = ∇zη
λ,ε(t, x − qλ,ε(t, x, r(·))), (23)

and describe the optimal strategies that does not require additional smoothness conditions
for the value functional.

Theorem 3 For every (τ, z, w(·)) ∈ G and ζ > 0, there exist λ > 0 such that the players’
strategies

Uλ,ε(t, x, r(·)) ∈ argmin
u∈U

max
v∈V χ

(
t, x, r(−h), u, v,∇λ,ε,+

z ρ◦(t, x, r(·)))

V λ,ε(t, x, r(·)) ∈ argmax
v∈V

min
u∈U χ

(
t, x, r(−h), u, v,∇λ,ε,−

z ρ◦(t, x, r(·))) (24)

provide the equities

lim
ε↓0 ρu(τ, z, w(·), Uλ,ε) = ρ◦(τ, z, w(·)) = lim

ε↓0
ρv(τ, z, w(·), V λ,ε). (25)

Note that, in contrast to Theorem 2, Theorem 3 describes strategies providing
ρ◦(τ, z, w(·)) only in the limit. Nonetheless, this result is typical for the theory of differential
games (see, e.g., [25, Section 12.2]) since, even for ordinary differential equations, universal
positional strategies (i.e. positional strategies independent of a particular initial condition)
that provide the value without ε may not exist [26].

3 Proof

3.1 Properties of the Dynamical System

In this section, we give some properties of dynamical system (2). Proposition 4 follows
directly from condition (g1). Proposition 6 was proved in [24, Lemma 1]. The proofs of the
remaining propositions are given below.

Proposition 4 For every α > 0, there exists λg = λg(α) > 0 such that∣∣g(t, x) − g(t ′, x ′)
∣∣ ≤ λg

(|t − t ′| + ‖x − x ′‖)
for any t, t ′ ∈ [0, ϑ] and x, x ′ ∈ B(α) := {x ∈ R

n : ‖x‖ ≤ α}.
Proposition 5 There exists cX > 0 such that, for every (τ, z, w(·)) ∈ G, u(·) ∈ Uτ , and
v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimate

‖x(t)‖ ≤ cX
(
1 + ‖z‖ + ‖w(·)‖∞

)
, t ∈ [τ, ϑ]. (26)
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Proof Define cg, c f > 0 according to conditions (g2), ( f2). Denote c∗ = 1+ 2cg + 2ϑ and
put cX = c J+1∗ ec f ϑ , where J is from (1). Then, due to (2), we have

‖x(t)‖ ≤ cg(1+‖x(t −h)‖)+‖z‖+cg(1+‖w(−h)‖)+c f

t∫

τ

(1+‖x(ξ)‖+‖x(ξ −h)‖)dξ

for any t ∈ [τ, ϑ]. Define the function κ(t) = 1 + max{‖x(ξ)‖ | ξ ∈ [τ − h, t]}, t ∈ [τ, ϑ].
Denote t j = min{τ + jh, ϑ}, j ∈ 0, J . Then, we derive

κ(t) ≤ c∗κ(t j ) + c f

t∫

t j

κ(ξ)dξ, t ∈ [t j , t j+1], j ∈ 0, J − 1.

From this estimate, applying the method of mathematical induction and Gronwall–Bellman
Lemma (see, e.g., [3, p. 31]), we obtain the estimate

κ(t) ≤ c j+1∗ κ(τ)ec f (t−τ), t ∈ [t j , t j+1], j ∈ 0, J − 1. (27)

which implies (26). ��
Proposition 6 For every α > 0, there exist αX = αX (α) > 0, α

g
X = α

g
X (α) > 0, and

λ
g
X = λ

g
X (α) > 0 such that, for each τ ∈ [0, ϑ], (z, w(·)) ∈ P(α) (see (6)), u(·) ∈ Uτ ,

and v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) and the function xg(t) = x(t) −
g(t, x(t − h)), t ∈ [τ, ϑ], satisfy the relations

(x(t), xt (·)) ∈ P(αX ), ‖xg(t)‖ ≤ α
g
X , ‖xg(t) − xg(t ′)‖ ≤ λ

g
X |t − t ′|, t, t ′ ∈ [τ, ϑ].

Proposition 7 For every α > 0, there exist λX X = λX X (α) > 0 such that, for every
τ ∈ [0, ϑ], (z, w(·)), (p, r(·)) ∈ P(α), u(·) ∈ Uτ , and v(·) ∈ Vτ , the motions x(·) =
x(·|τ, z, w(·), u(·), v(·)) and y(·) = x(·|τ, p, r(·), u(·), v(·)) satisfy the inequality

‖x(t) − y(t)‖ +
∫ t

τ−h
‖x(ξ) − y(ξ)‖dξ ≤ λX Xυ(τ, z − p, w(·) − r(·)), t ∈ [τ, ϑ].

Proof Let α > 0. According to Propositions 4, 6 and condition ( f3), define the numbers
αX = αX (α) > 0, λg = λg(αX ) > 1, and λ f = λ f (αX ) > 0. Define also the numbers
λ

g
0 = 1, λs

0 = 1, and

λ
g
j = (1 + λ f (2 + λg)λ

s
j−1)e

λ f h, λs
j = 1 + jhλ

g
j + λgλ

s
j−1, j ∈ 1, J . (28)

Put λX X = (JλJ
g λ

g
J + λs

J )λg .
Let τ ∈ [0, ϑ], (z, w(·)), (p, r(·)) ∈ P(α), u(·) ∈ Uτ , and v(·) ∈ Vτ . Define the motions

x(·) = x(·|τ, z, w(·), u(·), v(·)) and y(·) = x(·|τ, p, r(·), u(·), v(·)). Denote
s(t) = x(t)−y(t), t ∈ [τ −h, ϑ], sg(t) = s(t)−g(t, x(t−h)+g(t, y(t−h)), t ∈ [τ, ϑ].
Let us prove the estimates

‖sg(t)‖ ≤ λ
g
j

(‖sg(τ )‖ + ‖sτ (·)‖1
)
,

∫ t

τ−h
‖s(ξ)‖dξ ≤ λs

j

(‖sg(τ )‖ + ‖sτ (·)‖1
)

(29)

for any t ∈ [τ, τ + jh] ∩ [τ, ϑ] and j ∈ 0, J . Note that these estimates hold for j = 0.
Following the method of mathematical induction, we assume that these estimates are proved
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for j − 1 and prove them for j . Due to the definitions of x(·), y(·), s(·), and λg , λ f , using
the second estimate in (29) for j − 1, we derive

‖sg(t)‖ ≤ ‖sg(τ )‖ + λ f

t∫

τ+( j−1)h

‖sg(ξ)‖dξ + λ f (2 + λg)

τ+( j−1)h∫

τ−h

‖s(ξ)‖dξ

≤ (1 + λ f (2 + λg)λ
s
j−1)

(‖sg(τ )‖ + ‖sτ (·)‖1
) + λ f

t∫

τ+( j−1)h

‖sg(ξ)‖dξ.

Then, applying Gronwall–Bellman Lemma (see, e.g., [3, p. 31]), we get the first estimate in
(29) on [τ + ( j − 1)h, τ + jh]. Since λ

g
j > λ

g
i for any i ∈ 0, j − 1, this estimate also holds

on [τ, τ + jh]. The second estimate for j follows from the relations
∫ t

τ−h
‖s(ξ)‖dξ ≤ ‖sτ (·)‖1 +

∫ t

τ

‖sg(ξ)‖dξ + λg

∫ t−h

τ−h
‖s(ξ)‖dξ

≤ ‖sτ (·)‖1 + jhλ
g
j

(‖sg(τ )‖ + ‖sτ (·)‖1
) + λgλ

s
j−1

(‖sg(τ )‖ + ‖sτ (·)‖1
)
,

in which, we use the choice of λg , the first estimate in (29) for j , and the second estimate in
(29) for j − 1. Thus, we have proved (29) for any j ∈ 0, J .

Let t ∈ [τ, ϑ]. Let jt ∈ 0, J be such that t − ( jt + 1)h ∈ [τ − h, τ ). Then, applying (29)
for i ∈ 0, jt , taking into account the choice of λg and λX X , we conclude

‖s(t)‖+
∫ t

τ−h
‖s(ξ)‖dξ ≤

jt∑
i=0

λi
g‖sg(t − ih)‖+λ

jt +1
g ‖sg(t − ( j∗ +1)h)‖+

∫ t

τ−h
‖s(ξ)‖dξ

≤ (JλJ
g λ

g
J + λs

J )
(‖sg(τ )‖ + ‖sτ (·)‖1

) + λJ
g ‖sg(ϑ − ( j + 1)h)‖ ≤ λX Xυ(τ, s(τ ), sτ (·))

and, hence, prove the proposition. ��
Let (τ, w(·)) ∈ [0, ϑ] × PLip. Let −h = ξ0 < ξ1 < . . . < ξI+1 = 0 be such that the

function w(·) is Lipschitz continuous on [ξi , ξi+1) for each i ∈ 0, I . Denote jτ ∈ 0, J such
that jτ h − τ ∈ [−h, 0). Then, without loss of generality, we can assume that ξi = jτ h − τ

for some i ∈ 0, I . Denote

�ν(τ,w(·)) = {[τ + ξi + jh, τ + ξi+1 + jh − ν) ∩ [τ, ϑ) : i ∈ 0, I , j ∈ 1, J
}
, (30)

where ν ∈ [0, ν∗) and ν∗ = min{(ξi+1 − ξi )|i ∈ 0, I }/2.
Proposition 8 For each w(·) ∈ PLip, there exists λX = λX (w(·)) > 0 such that, for every
τ ∈ [0, ϑ], z ∈ R

n, u(·) ∈ Uτ , and v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·))
satisfies the inequality

‖x(t) − x(t ′)‖ + ‖x(t − h) − x(t ′ − h)‖ ≤ λX |t − t ′|, t, t ′ ∈ θ, θ ∈ �0(τ, w(·)).
Proof Due to the inclusion xτ (·) = w(·) ∈ PLip, there exists λw > 0 such that

‖x(t − h) − x(t ′ − h)‖ = ‖w(t − τ − h) − w(t ′ − τ − h)‖ ≤ λw|t − t ′|
for any t, t ′ ∈ [ξi , ξi+1) and i ∈ 0, I . Let α > 0. Taking αX = αX (α) > 0, λg

X = λ
g
X (α) > 0,

and λg = λg(αX ) > 0 from Propositions 6 and 4, respectively, define

λ0 = λw, λ j+1 = λ
g
X + (1 + λg)λ j , j ∈ 0, J , λX = λJ .
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Then, denoting xg(t) = x(t) − g(t, x(t − h)), we derive

‖x(t) − x(t ′)‖ + ‖x(t − h) − x(t ′ − h)‖
≤ ‖xg(t) + xg(t)‖ + (1 + λg)‖x(t − h) − x(t ′ − h)‖ ≤ λ

g
X + (1 + λg)λ j = λ j+1

for any t, t ′ ∈ [τ + ξi + jh, τ + ξi+1 + jh), i ∈ 0, I , and j ∈ 1, J . Since λX = λJ > λ j ,
j ∈ 0, J , from this inequalty, we get the statement of the proposition. ��

3.2 Property of the Value Functional

Proposition 9 Let ρ satisfy (ρ∗
1 ) and (ρ2). Let (τ, z, w(·)) ∈ G and ν ∈ (0, ν∗). Then, for

every ζ > 0, there exists δ > 0 such that, for every u(·) ∈ Uτ and v(·) ∈ Vτ , the motion
x(·) = x(·|τ, z, w(·), u(·), v(·)) satisfies the inequality

∣∣ρ(t, x(t), xt (·)) − ρ(t ′, x(t ′), xt ′(·))
∣∣ ≤ ζ

for any t, t ′ ∈ θ : |t − t ′| ≤ δ, and θ ∈ �ν(τ,w(·)).

Proof For the sake of contradiction, we assume the existence of ζ > 0, um(·) ∈ Uτ ,
vm(·) ∈ Vτ , θm ∈ �, and tm, t ′m ∈ θm such that |tm − t ′m | ≤ 1/m and the motion
xm(·) = x(·|τ, z, w(·), um(·), vm(·)) satisfies

∣∣ρ(tm, xm(tm), xm
tm (·)) − ρ(t ′m, xm(t ′m), xm

t ′m (·))∣∣ > ζ. (31)

Without loss of generality, taking into account definition (30) of�ν(τ,w(·)), we can assume
the existence of t∗ ∈ [τ, ϑ] such that |t∗ − tm | + |t∗ − t ′m | ≤ 1/m, m ∈ N and tm, t ′m, t∗ ∈ θ∗
for some θ∗ ∈ �ν(τ,w(·)). Moreover, in accordance with (10) and Proposition 8, we can
assume the existence of x∗(·) ∈ Lip([τ − h, T ],Rn) such that

υ(t, xm(t) − x∗(t), xm
t (·) − x∗

t (·)) ≤ 1/m, t ∈ θ∗, m ≥∈ N .

Let λ∗ be a Lipschitz constant of x∗(·). Then, due to (10) and Proposition 8, we have

υ(tm, x∗(tm) − x∗(t∗), x∗
tm (·) − x∗

t∗(·)) = ‖x∗(tm) − x∗(t∗)‖
+‖x∗(tm − h) − x∗(t∗ − h)‖ + ‖x∗

tm (·) − x∗
t∗(·)‖1 ≤ (2 + h)λ∗/m,

m ∈ N.

According to (ρ∗
1 ), there exists M∗ > 0 such that

‖ρ(tm, x∗(t∗), x∗
t∗(·)) − ρ(t∗, x∗(t∗), x∗

t∗(·))‖ ≤ ζ/4, m ≥ M∗.

Thus, defining α = max{‖z‖, ‖w(·)‖∞} and taking αX = αX (α) and λρ = λρ(αX ) in
accordance with Propositions 6 and condition (ρ2), we derive∥∥ρ(tm, xm(tm), xm

tm (·)) − ρ(t∗, x∗(t∗), x∗
t∗(·))

∥∥ ≤ ζ/4 + λρ(1 + (2 + h)λ∗)/m ≤ ζ/2

for any m > M1 := max{M∗, 4λρ(1 + (2 + h)λ∗)/ζ }.
By the same way, we can find M2 > 0 such that

∥∥ρ(t ′m, xm(t ′m), xm
t ′m (·)) − ρ(t∗, x∗(t∗), x∗

t∗(·))
∥∥ ≤ ζ/2, m > M2,

and, thus, obtain the contradiction with (31). ��

Proposition 10 The functionals ρu and ρv satisfy conditions (ρ1) and (ρ2).
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Proof We prove the statement only for ρu since it is proved similarly for the ρv .
First, we prove that ρu satisfies condition (ρ2). Let α > 0. According to Propositions 6, 7

and conditions ( f3), (σ1), define αX = αX (α) > 0, λX X = λX X (αX ) > 0, λ f = λ f (αX ) >

0, and λσ = λσ (αX ) > 0. Put λρ = (λσ + 2λ f )λX X . To prove that ρu satisfies condition
(ρ2), it suffices to show the inequality

ρu(τ, p, r(·)) − ρu(τ, z, w(·)) ≤ λρυ(τ, z − p, w(·) − r(·)) + ζ,

for any τ ∈ [0, ϑ], (z, w(·)), (p, r(·)) ∈ P(α), and ζ > 0.
Let us take τ ∈ [0, ϑ], (z, w(·)), (p, r(·)) ∈ P(α), and ζ > 0. According to definition

(18) of ρu , there exists Q̂u
τ such that

sup
v(·)∈Vτ

γ (τ, z, w(·), Q̂u
τ , v(·)) ≤ ρu(τ, z, w(·)) + ζ/2,

there exists v̂(·) ∈ Vτ such that

sup
v(·)∈Vτ

γ (τ, p, r(·), Q̂u
τ , v(·)) ≤ γ (τ, p, r(·), Q̂u

τ , v̂(·)) + ζ/2,

and therefore we have

ρu(τ, p, r(·)) − ρu(τ, z, w(·)) ≤ γ (τ, p, r(·), Q̂u
τ , v̂(·)) − γ (τ, z, w(·), Q̂u

τ , v̂(·)) + ζ.

Define û(·) = Q̂u
τ [v̂(·)](·), the motions x(·) = x(· | τ, z, w(·), û(·), v̂(·)) and y(·) =

x(· | τ, p, r(·), û(·), v̂(·)), and the function s(t) = x(t) − y(t), t ∈ [τ − h, ϑ]. Then, due to
the definition (4) of γ and the choice of the numbers λσ , λ f , and λX X , we derive

γ (τ, p, r(·), Q̂u
τ , v̂(·)) − γ (τ, z, w(·), Q̂u

τ , v̂(·)) ≤ λσ ‖s(ϑ)‖ + (λσ + 2λ f )

∫ ϑ

τ−h
‖s(t)‖dt

≤ λρυ(τ, z − p, w(·) − r(·)).
Thus, we has shown that ρu satisfies (ρ2).

Now, let us prove that the functional ρu satisfies condition (ρ1). Let (τ, w(·)) ∈ [0, ϑ] ×
Lip. Let us show the function ρ̂u(t) = ρu(t, w(−0), w(·)) is uniformly continuous on [τ, ϑ].
Let ζ > 0. According to Proposition 6 and conditions ( f2) and (ρ2) proved above, define
αX (α0) > 0, c f > 0, and λρ(αX ) > 0, where α0 = ‖w(·)‖∞. Note also that, since
w(·) ∈ Lip due to [19, Lemma 3], there exists λX = λX (w(·)) > 0 such that, for every
t ∈ [τ, ϑ], u(·) ∈ Ut , and v(·) ∈ Vt , the motion x(·) = x(· | t, w(−0), w(·), u(·), v(·))
satisfies ∥∥x(ξ ′) − x(ξ)

∥∥ ≤ λX |ξ ′ − ξ |, ξ, ξ ′ ∈ [t − h, ϑ].
Put δ = ζ/3max{λρ(2 + h)λX , c f (1 + 2αX )}.

Let t, t∗ ∈ [τ, ϑ] be such that |t − t∗| ≤ δ. Without loss of generality, suppose that
t ≤ t∗. Let v(·) ∈ Vτ . According to (ρ3), there exists u(·) ∈ Uτ such that, for the motion
x(·) = x(· | t, w(−0), w(·), u(·), v(·)), we have

ρu(t∗, x(t∗), xt∗(·)) +
t∗∫

t

f 0(ξ, x(ξ), xξ (·), u(ξ), v(ξ))dξ ≤ ρu(t, w(−0), w(·)) + ζ/3.

Due to the choice of λρ , λX , and δ, we derive

|ρu(t∗, x(t∗), xt∗(·)) − ρu(t∗, w(−0), w(·))|
≤ λρυ

(
t∗, x(t∗) − w(−0), xt∗(·) − w(·)) ≤ λρ(2 + h)λX δ ≤ ζ/3.



Dynamic Games and Applications

According to the choice of αX , c f , and δ, we get

t∗∫

t

∣∣ f 0(ξ, x(ξ), xξ (·), u(ξ), v(ξ))
∣∣dξ ≤ c f (1 + 2αX )(t∗ − t) ≤ ζ/3.

Thus, we obtain ρu(t∗, w(−0), w(·)) − ρu(t, w(−0), w(·)) ≤ ζ . The inequality
ρu(t∗, w(−0), w(·)) − ρu(t, w(−0), w(·)) ≥ −ζ can be proved in the similar way, using
(ρ4) instead of (ρ3). ��

The subdifferential of a functional ρ : G �→ R at a point (τ, z, w(·)) ∈ G, τ < ϑ is a set,
denoted by D−(τ, z, w(·)), of pairs (p0, p) ∈ R × R

n such that

lim
δ→0

inf
(t,x)∈O+

δ (τ,z)

ϕ(t, x, κt (·)) − ϕ(τ, z, w(·)) − (t − τ)p0 − 〈x − z, p〉
|t − τ | + ‖x − z‖ ≥ 0, (32)

where κ(t) = w(t − τ), t ∈ [τ − h, τ ), κ(t) = z, t ∈ [τ, ϑ] and O+
δ (τ, z) = {(t, x) ∈

[τ, ϑ]×R
n : t ∈ [τ, τ +δ], ‖x − z‖ ≤ δ}. The superdifferential of a functional ϕ : G �→ R at

a point (τ, z, w(·)) ∈ G, τ < ϑ is a set, denoted by D+(τ, z, w(·)), of pairs (q0, q) ∈ R×R
n

such that

lim
δ→0

sup
(t,x)∈O+

δ (τ,z)

ϕ(t, x, κt (·)) − ϕ(τ, z, w(·)) − (t − τ)q0 − 〈x − z, q〉
|t − τ | + ‖x − z‖ ≤ 0. (33)

Proposition 11 Let a functional ρ : G �→ R satisfy conditions (ρ2)–(ρ4). Then, for every
(τ, z, w(·)) ∈ G∗, the following inequalities holds:

p0 + 〈G(τ, w(−h), d+w(−h)/dξ), p〉
+H(τ, z, w(−h), p) ≤ 0, (p0, p) ∈ D−ρ(τ, z, w(·))

q0 + 〈G(τ, w(−h), d+w(−h)/dξ), q〉
+H(τ, z, w(−h), q) ≥ 0, (q0, q) ∈ D+ρ(τ, z, w(·))

(34)

Proof We prove only the first inequality from (34) since the second one can be shown
similarly. Let (τ, z, w(·)) ∈ G∗ and (p0, p) ∈ D−ρ(τ, z, w(·)). Note that the estimate

p0 + 〈G(τ, w(−h), d+w(−h)/dξ), p〉 + H(τ, z, w(−h), p) ≤ ζ (35)

for any ζ > 0 implies the first inequality from (34).
Let ζ > 0. According to Proposition 8, define λX = λX (w(·)) > 0. Due to definition (32)

of D−ρ(τ, z, w(·)), there exists δ > 0 such that

ρ(t, x, κt (·)) − ρ(τ, z, w(·)) − (t − τ)p0 − 〈x − z, p〉
|t − τ | + ‖x − z‖ ≥ − ζ

3(1 + λX )
(36)

for every (t, x) ∈ O+
δ (τ, z). Since w(·) ∈ PLip∗ (see (1)), taking into account (5), (12), and

(ρ2), there exists t ∈ (τ, τ + δ/(1 + λX )) such that, for every u(·) ∈ Uτ and v(·) ∈ Vτ , the
motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimates∣∣χ(τ, z, w(−h), u, v) − χ(ξ, x(ξ), x(ξ − h), u, v)

∣∣ ≤ ζ/6,∣∣G(τ, w(−h), d+w(−h)/dξ) − G(ξ, x(ξ − h), d+x(ξ − h)/dξ)
∣∣ ≤ ζ/6,∣∣ρ(ξ, x(ξ), κξ (·)) − ρ(ξ, x(ξ), xξ (·))

∣∣ ≤ (ξ − τ)ζ/3
(37)

for any ξ ∈ [τ, t], u ∈ U, and v ∈ V. Define

v∗ ∈ argmax
v∈V

min
u∈U χ

(
τ, z, w(−h), u, v, p

)
. (38)
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Due to condition (ρ3), there exists u(·) ∈ Uτ such that the motion x(·) =
x(· | τ, z, w(·), u(·), v(·) = v∗) satisfies

ρ(t, x(t), xt (·)) +
∫ t

τ

f 0(ξ, x(ξ), x(ξ), u(ξ), v∗)dξ ≤ ρ(τ, z, w(·)) + (t − τ)ζ/2. (39)

Thus, due to (2), (5), (12), (37), and (38), we derive

〈G(τ, w(−h), d+w(−h)/dξ), p〉 + H(τ, z, w(−h), p)

≤ 1

t − τ

∫ t

τ

(
d

dξ

(
g(ξ, x(ξ − h)

)
+ χ(ξ, x(ξ), x(ξ − h), u(ξ), v∗, p)

)
dξ + ζ/3

= 〈x(t) − z, p〉
t − τ

+ 1

t − τ

∫ t

τ

f 0(ξ, x(ξ), x(ξ), u(ξ), v∗)dξ + ζ/3.

From this inequality, using (36), (37), and (39), we obtain (35).

Proposition 12 There exists cρ > 0 such that ρ◦ satisfies the equality∣∣ρ◦(τ, z, w(·))∣∣ ≤ cρ

(
1 + ‖z‖ + ‖w(·)‖∞

)
, (τ, z, w(·)) ∈ G. (40)

Proof Let us take c f , cσ , and cX from conditions ( f2), (σ2) and the Proposition 6. Then,
putting cρ = cσ (1+ cX (1+ h)) + c f ϑ(1+ 2cX ), for every (τ, z, w(·)) ∈ G, u(·) ∈ Uτ , and
v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies

σ(x(ϑ), xϑ(·)) +
∫ ϑ

τ

f 0(t, x(t), x(t − h), u(t), v(t))dt

≤ cσ

(
1 + ‖x(ϑ)‖ + ‖xϑ(·)‖∞

) + c f

∫ ϑ

τ

(
1 + ‖x(t)‖ + ‖x(t − h)‖)dt

≤ cσ (1 + cX (1 + h)) + c f ϑ(1 + 2cX ) + cX (cσ (1 + h) + 2c f ϑ)α0 ≤ cρ

(
1 + α0

)
where α0 = max{‖z‖, ‖w(·)‖∞}. Thus, from (4), (7), and Theorem 1, we obtain (40). ��
Proposition 13 Let the value functional ρ◦ = ρ◦(t, z, w(·)) be differentiable by z. Then, for
every α > 0, there exists λρ = λρ(α) > 0 such that∥∥∇zρ

◦(τ, z, w(·))∥∥ ≤ λρ, τ ∈ [0, ϑ], (z, w(·)) ∈ P(α). (41)

Proof Due to Theorem 1 and Proposition 10, there exists λρ = λρ(α) > 0 such that∣∣ρ◦(τ, z, w(·)) − ρ◦(τ, p, w(·))∣∣ ≤ λρ‖z − p‖, τ ∈ [0, ϑ], (z, w(·)) ∈ P(α).

Since ρ◦ is differentiable by z, from this estimate, we obtain (41). ��
Proposition 14 Let λ > 0. Let ε∗ = ε∗(λ) > 0 be such that θλ,ε(t) > 2cρ for any t ∈ [0, ϑ]
and ε ∈ (0, ε∗), where θλ,ε and cρ are from (21) and Proposition 12, respectively. Then, the
argmin and argmax values in (22) are achieved.

Proof Let us prove the statement for the argmin value. Let (t, x, r(·)) ∈ G. Consider the
function ϕ(p) = ρ◦(t, p, r(·)) + ηλ,ε(t, x − p), p ∈ R

n . According to Theorem 1 and
Proposition 10, this function is continuous. Due to the choice of ε∗ and cρ , we derive

ϕ(p) ≥ −cρ

(
1 + ‖p‖ + ‖r(·)‖∞

) + θλ,ε(t)‖x − p‖ ≥ cρ

(
1 + ‖p‖ − 2‖x‖ + ‖r(·)‖∞

)
.

Hence, the functionϕ(p) is bounded belowandϕ(p) → +∞ as p → ∞. Thus, theminimum
of ϕ(p) is achieved. ��
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3.3 Proof of Theorem 2

Proof The proof is carried out by the scheme from [16] (see also [8]).
Let us fix (τ, z, w(·)) ∈ G. According to Proposition 6, define α∗ = αX (αX (α0)) and

λ
g∗ = λ

g
X (αX (α0)), where α0 = max{‖z‖, ‖w(·)‖∞}. Then, for every u(·) ∈ Uτ , v(·) ∈ Vτ ,

t∗ ∈ [τ, ϑ], and for every r(·) ∈ PLip such that ‖r(·)‖∞ ≤ ‖xt∗(·)‖∞, where x(·) =
x(· | τ, z, w(·), u(·), v(·)), the motion y(·) = x(· | t∗, x(t∗), r(·), u(·), v(·)) and the function
yg(t) = y(t) − g(t, y(t − h)), t ∈ [t∗, ϑ] satisfy the relations

(y(t), yt (·)) ∈ P(α∗),
∣∣yg(t) − yg(t ′)

∣∣ ≤ λ
g∗|t − t ′|, t, t ′ ∈ [t∗, ϑ]. (42)

Moreover, due to condition ( f2) and Proposition 13, there exist β f , β∇ > 0 such that∥∥ f (t, y(t), y(t − h), u(t), v(t))
∥∥ + ∣∣ f 0(t, y(t), y(t − h), u(t), v(t))

∣∣ ≤ β f ,∥∥∇zρ
◦(t, y(t), yt (·))

∥∥ ≤ β∇ , t ∈ [t∗, ϑ]. (43)

Note that (42) and (43) are also valid for x(·) if we take t∗ = τ and r(·) = w(·).
Since both equalities in (20) are proved similarly, we present only the proof of the first

equality which, according to (18), will be proved if we show that, for every ζ > 0, there
exists δ > 0 such that, for every partition �δ (see (16)) and every v(·) ∈ Vτ , if u(·) ∈ Uτ

satisfies the relation

u(t) = u j ∈ argmin
u∈U

max
v∈V χ

(
t j , x(x j ), x(t j − h), u, v,∇zρ

◦(t j , x(t j ), xt j (·))
)

(44)

for any t ∈ [t j , t j+1) and j ∈ 1, k, then the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies
the estimate

σ(x(ϑ), xϑ(·)) +
∫ ϑ

τ

f 0(t, x(t), x(t − h), u(t), v(t))dt ≤ ρ◦(τ, z, w(·)) + ζ. (45)

Let ζ > 0. According to the definition (30) of the set�ν(τ,w(·)), the number of intervals
in the set [τ, ϑ] \�ν(τ,w(·)) does not depend on ν ∈ (0, ν∗). Denote this number as l∗. Due
to Proposition 10, define λρ = λρ(α∗). Set

ν = min
{ ζ

6β∗l∗
,
ν∗
6

}
, β∗ = max

{
4β f , 4λρ

(
4λg∗ + 2hα∗

)}
, ζ∗ = ζ

2(ϑ − τ)
. (46)

Due to condition ( f1), Propositions 8, 9, and (43), there exists δ ∈ (0,min{ν, h}) such that,
for every u(·) ∈ Uτ , v(·) ∈ Vτ , θ ∈ �ν(τ,w(·)), t, t ′ ∈ θ : |t − t ′| ≤ δ, and u ∈ U, v ∈ V,
the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the inequality∣∣χ(t, x(t), x(t − h), u, v,∇zρ

◦(t, x(t), xt (·)))
−χ(t ′, x(t ′), x(t ′ − h), u, v,∇zρ

◦(t ′, x(t ′), xt ′(·)))
∣∣ ≤ ζ∗/16.

(47)

and, taking into account (12), as a consequence, the estimate∣∣H(t, x(t), x(t − h),∇zρ
◦(t, x(t), xt (·)))

−H(t ′, x(t ′), x(t ′ − h),∇zρ
◦(t ′, x(t ′), xt ′(·)))

∣∣ ≤ ζ∗/16.
(48)

Let us take a partition �δ and a realization v(·) ∈ Vτ . Define the index sets

K1 = {
j ∈ 0, k

∣∣ ∃θ ∈ �ν(τ,w(·)) : [t j , t j+1] ⊂ θ
}
, K2 = {

j ∈ 0, k
∣∣ j /∈ K1

}
. (49)

Then, according to the choice of the numbers ν, l∗ and δ, we have∑
j∈K1

(t j+1 − t j ) ≤ ϑ − τ,
∑
j∈K2

(t j+1 − t j ) ≤ 3νl∗ ≤ ζ/(2β∗).
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Thus, to show (45), we need to prove the inequality

ρ◦(t j+1, x(t j+1), xt j+1(·)) +
∫ t j+1

t j

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))dξ

≤ ρ◦(t j , x(t j ), xt j (·)) + (t j+1 − t j )ζ∗, j ∈ K1,

(50)

and the inequality

ρ◦(t j+1, x(t j+1), xt j+1(·)) +
∫ t j+1

t j

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))dξ

≤ ρ◦(t j , x(t j ), xt j (·)) + (t j+1 − t j )β∗, j ∈ K2.

(51)

Let us prove (50). Let j ∈ K1. Then, due to Proposition 8, the function x(·) is Lipschitz
continuous on [t j − h, t j+1 − h]. One can take a sequence of continuously differentiable on
[−h,−h + t j+1 − t j ] functions rm(·) ∈ PLip, m ∈ N such that

‖rm(·)‖∞ ≤ ‖xt j (·)‖∞, ‖xt j (·) − rm(·)‖∞ ≤ 1/m, m ∈ N.

Define the sequence of motions ym(·) = x(·|t j , x(t j ), rm(·), u(·), v(·)). Note that, according
to Proposition 7 and (10), there exists λX X = λX X (α∗) > 0 such that

‖x(t) − ym(t)‖ ≤ λX X (2 + h)/m, m ∈ N.

Then, due to condition ( f3), Proposition 10, and relations (42), (43), we can take y(·) ∈
{ym(·) | m ∈ N} such that∣∣ρ◦(t, x(t), xt (·)) − ρ◦(t, y(t), yt (·))

∣∣ ≤ (t j+1 − t j )ζ∗/4,∥∥ f 0(t, x(t), x(t − h), u(t), v(t)) − f 0(t, y(t), y(t − h), u(t), v(t))
∥∥ ≤ ζ∗/4,∣∣χ(t, x(t), x(t − h), u(t), v(t),∇zρ

◦(t, x(t), xt (·)))
−χ(t, y(t), y(t − h), u(t), v(t),∇zρ

◦(t, y(t), yt (·)))
∣∣ ≤ ζ∗/16

(52)

for any t ∈ [t j , t j+1], and, taking into account (12), as a consequence∣∣H(t, x(t), x(t − h),∇zρ
◦(t, x(t), xt (·)))

−H(t, y(t), y(t − h),∇zρ
◦(t, y(t), yt (·)))

∣∣ ≤ ζ∗/16
(53)

for any t ∈ [t j , t j+1]. Thus, in order to conclude (50), it is necessary to prove

ρ◦(t j+1, y(t j+1), yt j+1(·)) +
∫ t j+1

t j

f 0(ξ, y(ξ), y(ξ − h), u(ξ), v(ξ))dξ

≤ ρ◦(t j , y(t j ), yt j (·)) + (t j+1 − t j )ζ∗/4.
(54)

Let us consider the function

ω(t) = ρ◦(t, y(t), yt (·)) +
∫ t

t j

f 0(ξ, y(ξ), y(ξ − h), u(ξ), v(ξ))dt, t ∈ [t j , t j+1]. (55)

Since y(·) is continuously differentiable on [t j − h, t j+1 − h], we have yt (·) ∈ PLip∗
for any t ∈ [t j , t j+1). Then, taking into account definition (1) of the set G∗ we derive
(t, y(t), yt (·)) ∈ G∗ for almost every t ∈ [t j , t j+1). Since y(·) is Lipschitz continuous
on [t j , t j+1], there exists dy(t)/dt for almost every [t j , t j+1]. Then, from the coinvariant
differentiability of ρ◦ on G∗, we obtain

d

dt
ω(t) = ∂ci

τ,wρ◦(t, y(t), yt (·)) + 〈 d

dt
y(t),∇zρ

◦(t, y(t), yt (·))〉
+ f 0(t, y(t), y(t − h), u(t), v(t))
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for almost every t ∈ [t j , t j+1]. Then, due to property (ρ5), taking into account (5) and (12),
we have

d

dt
ω(t) = χ(t, y(t), y(t − h), u(t), v(t),∇zρ

◦(t, y(t), yt (·)))
−H(t, y(t), y(t − h),∇zρ

◦(t, y(t), yt (·)))
(56)

for almost every t ∈ [t j , t j+1]. Next, in accordance with (44), (47), and (52), we derive

χ(t, y(t), y(t − h), u(t), v(t),∇zρ
◦(t, y(t), yt (·)))

≤ χ(t, x(t), x(t − h), u(t), v(t),∇zρ
◦(t, x(t), xt (·))) + ζ∗/16

≤ χ(t j , x(t j ), x(t j − h), u(t), v(t),∇zρ
◦(t j , x(t j ), xt j (·))) + ζ∗/8

≤ max
v∈V χ(t j , x(t j ), x(t j − h), u j , v,∇zρ

◦(t j , x(t j ), xt j (·))) + ζ∗/8
= min

u∈U max
v∈V χ(t j , x(t j ), x(t j − h), u, v,∇zρ

◦(t j , x(t j ), xt j (·))) + ζ∗/8.

Finally, according to (12), (48), and (53), we get

min
u∈U max

v∈V χ(t j , x(t j ), x(t j − h), u, v,∇zρ(t j , x(t j ), xt j (·)))
≤ H(t, x(t), x(t − h),∇zρ

◦(t, x(t), xt (·))) + ζ∗/16
≤ H(t, y(t), y(t − h),∇zρ

◦(t, y(t), yt (·))) + ζ∗/8.

Thus, we obtain dω(t)/dt ≤ ζ∗/4 and conclude (54) which proves (50).
Let us prove (51). Let j ∈ K2. According to condition (ρ3), there exists u j (·) ∈ Ut j such

that the motion y(·) = x(· | t j , x(t j ), xt j (·), u j (·), v(·)) satisfies the estimate

ρ◦(t j+1, y(t j+1), yt j+1(·)) +
∫ t j+1

t j

f 0(ξ, y(ξ), y(ξ − h), u(ξ), v(ξ))dξ

≤ ρ◦(t j , x(t j ), xt j (·)) + (t j+1 − t j )β∗/4.
(57)

Define the function s(t) = x(t) − y(t), t ∈ [t j − h, ϑ]. Then, since t j+1 − t j ≤ δ < h and
according to (42), we have

s(t) = 0, t ∈ [t j − h, t j ], ‖s(t)‖ ≤ 2α∗,
‖s(t)‖ = ‖x(t) − g(t, x(t − h)) − y(t) + g(t, x(t − h))‖ ≤ 2λg∗(t j+1 − t j )

(58)

for any t ∈ [t j , t j+1]. Hence, according to the choice of λρ and β∗ (see (46)), we derive∣∣ρ(t j+1, x(t j+1), xt j+1(·)) − ρ(t j+1, y(t j+1), yt j+1(·))
∣∣

≤ λρ

(‖s(t j+1)‖ + ‖s(lh)‖ + ‖s j+1(·)‖1
) ≤ (t j+1 − t j )β∗/4,

(59)

where l ∈ −1, J − 1 satisfies lh ∈ [t j+1 − h, t j+1). Due to (43) and (46), we have
∫ t j+1

t j

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))dξ ≤ (t j+1 − t j )β∗/4,
∫ t j+1

t j

f 0(ξ, y(ξ), y(ξ − h), u j (ξ), v(ξ))dξ ≤ (t j+1 − t j )β∗/4.
(60)

From (57)–(60), we obtain (51). Thus, we have proved (57), (51), and the theorem. ��

3.4 Proof of Theorem 3

Define the functional

ϕλ,ε(t, x, r(·)) = min
p∈Rn

(
ρ◦(t, p, r(·)) − ηλ,ε(t, x − p)

)
, (t, x, r(·)) ∈ G, (61)
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where ηλ,ε is from (21).

Proposition 15 Let (τ, z, w(·)) ∈ G and λ, ζ1 > 0. There exists ε1 > 0 such that, for every
ε ∈ (0, ε1], u(·) ∈ Uτ , and v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies
the estimates ∥∥pλ,ε(t, x(t), xt (·)) − x(t)

∥∥ ≤ ζ1, t ∈ [τ, ϑ], (62)

where the functional pλ,ε is defined in (22).

Proof Define αX = αX (α0), where α0 = max{‖z‖, ‖w(·)‖∞}, and cρ according to
Propositions 6 and 12. Due to definitions (21), we can take ε1 > 0 so that

θλ,ε(t) ≥ cρ + 3β/ζ1, ηλ,ε(t, 0) ≤ β, β = cρ(1 + (1 + h)αX ), t ∈ [0, ϑ], ε ∈ (0, ε1].
Let u(·) ∈ Uτ , v(·) ∈ Vτ , ε ∈ (0, ε1], and t ∈ [τ, ϑ]. Denote p = pλ,ε(t, x(t), xt (·)). Then,
we have

3β/ζ1‖x(t) − p‖ − β ≤ (
θλ,ε(t) − cρ

)∥∥x(t) − p
∥∥ − cρ

(
1 + ‖x(t)‖ + ‖xt (·)‖∞

)
≤ θλ,ε(t)‖x(t) − p‖ − cρ

(
1 + ‖p‖ + ‖xt (·)‖∞

) ≤ ρ◦(t, p, xt (·)) + ηλ,ε(t, x(t) − p)

= ϕλ,ε(t, x(t), xt (·)) ≤ ρ◦(t, x(t), xt (·)) + ηλ,ε(t, 0) ≤ 2β.

Thus, we obtain (62). ��
Proposition 16 Let (τ, z, w(·)) ∈ G and λ, ζ2 > 0. There exists ε2 > 0 such that, for every
ε ∈ (0, ε2], u(·) ∈ Uτ , and v(·) ∈ Vτ , the motion x(· | τ, z, w(·), u(·), v(·)) satisfies the
estimates ∥∥ϕλ,ε(t, x(t), xt (·)) − ρ◦(t, x(t), xt (·))

∥∥ ≤ ζ2, t ∈ [τ, ϑ]. (63)

Proof In accordance with Proposition 6, define αX = αX (α0) > 0, where α0 =
max{‖z‖, ‖w(·)‖∞}. Due to Theorem 1 and Proposition 10, the value functional ρ◦ sat-
isfies condition (ρ2). According to this condition, determine λρ = λρ(αX ) > 0. Due to
Proposition 15, putting ζ1 = ζ2/λρ , define ε1 > 0. Set ε2 = min{ε1, ζ2}. Then, in particular,
due to (21), we have ηλ,ε(t, 0) ≤ ζ2, t ∈ [0, ϑ], ε ∈ (0, ε2]. Thus, taking into account (61),
for every ε ∈ (0, ε2] and t ∈ [τ, ϑ], we obtain

−ζ2 ≤ −ηλ,ε(t, 0) ≤ ρ◦(t, x(t), xt (·)) − ϕλ,ε(t, x(t), xt (·))
= ρ◦(t, x(t), xt (·)) − ρ◦(t, p, r(·)) − ηλ,ε(t, x − p) ≤ λρ‖x(t) − p‖ ≤ ζ2,

where we denote p = pλ,ε(t, x(t), xt (·)). ��
Proposition 17 Let (τ, z, w(·)) ∈ G and ζ3 > 0. There exists λ, ε3 > 0 with the following
properties. For every ε ∈ (0, ε3], there exists δ > 0 such that, for every partition �δ and
every v(·) ∈ Vτ , if u(·) ∈ Uτ is defined according to the strategy Uλ,ε (see (24)), then the
motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimate

ϕλ,ε(ϑ, x(ϑ), xϑ(·)) +
∫ ϑ

τ

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ)) ≤ ϕλ,ε(τ, z, w(·)) + ζ3.

Proof Let (τ, z, w(·)) ∈ G. According to Propositions 6 and 8, define α∗ = αX (αX (α0)+1),
λ

g∗ = λ
g
X (αX (α0) + 1), and λ∗ = λX (αX (α0) + 1), where α0 = max{‖z‖, ‖w(·)‖∞}. Then,

for every u(·) ∈ Uτ , v(·) ∈ Vτ , and t∗ ∈ [τ, ϑ], for every p ∈ R
n such that ‖p‖ ≤ ‖x(t∗)‖+1,

where x(·) = x(· | τ, z, w(·), u(·), v(·)), the motion y(·) = x(· | t∗, p, xt∗(·), u(·), v(·)) and
the function yg(t) = y(t) − g(t, y(t − h)), t ∈ [t∗, ϑ] satisfy the relations

(y(t), yt (·)) ∈ P(α∗), ‖yg(t) − yg(t ′)‖ ≤ λ
g∗|t − t ′|, ‖y(t) − y(t ′)‖ ≤ λ∗|t − t ′| (64)
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for any t ∈ [t∗, ϑ]. Moreover, due to condition ( f2), there exist β f > 0 such that
∥∥ f (t, y(t), y(t − h), u(t), v(t))

∥∥ + ∣∣ f 0(t, y(t), y(t − h), u(t), v(t))
∣∣ ≤ β f (65)

for any t ∈ [t∗, ϑ]. Note that relations (64) and (65) are also valid for the motion x(·) and
the function xg(t) = x(t) − g(t, x(t − h)) if we take t∗ = τ and p = z. In accordance with
condition ( f3), put

λ = λ f (α∗). (66)

Let ζ3 > 0. Denote
ζ∗ = ζ3/(2(ϑ − τ)). (67)

In accordance with condition (ρ2), define λρ = λρ(α∗). Due to Propositions 15 and 16, there
exists ε3 > 0 such that, for every ε ∈ (0, ε3], u(·) ∈ Uτ , v(·) ∈ Vτ , and t ∈ [τ, ϑ], the motion
x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimates∥∥pλ,ε(t, x(t), xt (·)) − x(t)

∥∥ ≤ ζ∗/(12λρ). (68)

Let us take ε ∈ (0, ε3]. Recall that, according to (30), the number l∗ of intervals in the set
[τ, ϑ] \�ν(τ,w(·)) does not depend on ν ∈ (0, ν∗). Set

ν = ζ3/(6l∗β∗), β∗ = 2λα∗(1 + 1/ε). (69)

Using condition ( f1), Proposition 8, and (43), one can show the existence of

δ ∈ (0, δ∗], δ∗ = min
{
ν, h, ζ∗/(12λρλ

g∗)
}

(70)

such that, for each u(·) ∈ Uτ and v(·) ∈ Vτ , the motion x(·) = x(· | τ, z, w(·), u(·), v(·))
satisfies the inequality∣∣χ(t, x(t), x(t − h), u, v,∇xη

λ,ε(t, s(t)))
−χ(t ′, x(t ′), x(t ′ − h), u, v,∇xη

λ,ε(t ′, s(t ′)))
∣∣ ≤ ζ∗/6

(71)

for any t, t ′ ∈ θ : |t − t ′| ≤ δ, θ ∈ �ν(τ,w(·)), any u ∈ U, v ∈ V, and any function s(·),
satisfying ∣∣s(t) − s(t ′)

∣∣ ≤ 2λg∗|t − t ′|, t, t ′ ∈ θ, θ ∈ �ν(τ,w(·)). (72)

Let us take �δ and v(·) ∈ Vτ . Let x(·) = x(· | τ, z, w(·), u(·), v(·)) be the motion with
u(·) ∈ Uτ defined by the strategy Uλ,ε. In accordance with (17), it means that

u(t) = u j ∈ argmin
u∈U

max
v∈V χ

(
t j , x(t j ), x(t j − h), u, v,∇zη

λ,ε(t, x(t j ) − p j )
)

(73)

for any t ∈ [t j , t j+1) and j ∈ 1, k, where we denote p j = pλ,ε(t j , x(t j ), xt j (·)). Let us
consider the index sets K1 and K2 from (49) and prove the inequalities

ϕλ,ε(t j+1, x(t j+1), xt j+1(·)) +
∫ t j+1

t j

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))dξ

≤ ϕλ,ε(t j , x(t j ), xt j (·)) + (t j+1 − t j )ζ∗, j ∈ K1,

(74)

and

ϕλ,ε(t j+1, x(t j+1), xt j+1(·)) +
∫ t j+1

t j

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))dξ

≤ ϕλ,ε(t j , x(t j ), xt j (·)) + (t j+1 − t j )β∗, j ∈ K2.

(75)

Let j ∈ 1, k. From (22) and (61), we have

ϕλ,ε(t j , x(t j ), xt j (·)) = ρ◦(t j , p j , xt j (·)) + ηλ,ε(t j , x(t j ) − p j ). (76)
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Define

v j (t) = v j ∈ argmax
v∈V

min
u∈U χ(t j , x(t j ), x(t j − h), u, v,∇xη

λ,ε(t j , x(t j ) − p j )) (77)

for any t ∈ [t j , ϑ]. Then, due to condition (ρ3), there exists u j (·) ∈ Ut j such that the motion
y(·) = x(· | t j , p j , xt j (·), u j (·), v j (·)) satisfies the inequality

ρ◦(t j+1, y(t j+1), yt j+1(·)) +
∫ t j+1

t j

f 0(ξ, y(ξ), y(ξ − h), u j (ξ), v j (ξ))dξ

≤ ρ◦(t j , p j , xt j (·)) + (t j+1 − t j )ζ∗/3.
(78)

Denote s(t) = x(t) − y(t), t ∈ [t j − h, ϑ]. Due to the inequality t j+1 − t j ≤ δ < h and
(64), the function s(·) satisfies estimates (58). Then, due to the choice of λρ , the inclusion
j ∈ K1, and the relations (70), we have∣∣ρ◦(t j+1, y(t j+1), yt j+1(·)) − ρ◦(t j+1, y(t j+1), xt j+1(·))

∣∣ ≤ λρ‖st j+1(·)‖1
≤ λρ

∫ t j +1

t j

‖s(ξ) − s(t j )‖dξ + 2λρ(t j+1 − t j )‖x(t j ) − p j‖ ≤ (t j+1 − t j )ζ∗/3.
(79)

Denote

κ(t) = ηλ,ε(t, s(t)) +
∫ t

t j

(
f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))

− f 0(ξ, y(ξ), y(ξ − h), u j (ξ), v j (ξ))
)

dξ.

Note that, due to (21), we have

∂ηλ,ε(t, x)/∂t = −λ(θλ,ε(t) + 1)με(x), ∇xη
λ,ε(t, x) = (θλ,ε(t)/με(x))x (80)

Then, taking (58) into account, the function s(·) and, as a consequence the function κ(·) are
Lipschitz continuous on [t j , t j+1], and, in accordance with (5), we obtain

dκ(t)/dt = ∂ηλ,ε(t, s(t))/∂t + χ(t, x(t), x(t − h), u(t), v(t),∇xη
λ,ε(t, s(t)))

−χ(t, y(t), y(t − h), u j (t), v j (t),∇xη
λ,ε(t, s(t))).

(81)

Now, let us consider the case j ∈ K1. Due to (58), estimate (72) holds for the function s(t).
Then, using (12), (71), (73), and (77), we derive

χ
(
t, x(t), x(t − h), u(t), v(t),∇xη

λ,ε(t, s(t))
)

≤ max
v∈V χ

(
t j , x(t j ), x(t j − h), u j , v,∇xη

λ,ε(t j , s(t j ))
) + ζ∗/6

= H
(
t j , x(t j ), x(t j − h),∇xη

λ,ε(t j , s(t j ))
) + ζ∗/6

≤ min
u∈U χ

(
t j , x(t j ), x(t j − h), u, v j ,∇xη

λ,ε(t j , s(t j ))
) + ζ∗/6

≤ χ
(
t, x(t), x(t − h), u j (t), v j (t),∇xη

λ,ε(t, s(t))
) + ζ∗/3

and, hence, taking into account the inclusion in (64), choice (66) of λ, and equalities (58),
(80), we obtain

dκ(t)/dt ≤ ∂ηλ,ε(t, s(t))/∂t + λ f ‖s(t)‖(1 + ∇xη
λ,ε(t, s(t))

) + ζ∗/3 ≤ ζ∗/3. (82)

Thus, due to (61), (76), (78), (79), and (82), we conclude (74).
In the case of j ∈ K2, according to (21), (58), (64), (66), (69), (80), (81), we get

dκ(t)/dt ≤ λ‖s(t)‖(1 + ∇xη
λ,ε(t, s(t))

) ≤ 2λα∗(1 + 1/ε) ≤ β∗.

and, taking into account (61), (76), and (78), we obtain (75).
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From the inequalities (74), (75), and definitions in (69), we conclude the statement of the
lemma. ��
Proof Let us prove the first equality in Theorem 3. Let (τ, z, w(·)) ∈ G and ζ > 0. According
to Proposition 17, taking ζ3 = ζ/3, define λ3, ε3 > 0. Due to Proposition 16, taking λ = λ3
and ζ2 = ζ/3, define ε2 > 0. Put ε∗ = min{ε2, ε3}. Then, for every ε ∈ (0, ε∗], there exists
δ > 0 such that, for every partition �δ and every v(·) ∈ Vτ , if u(·) ∈ Uτ is defined by Uλ,ε

(see (24)), then the motion x(·) = x(· | τ, z, w(·), u(·), v(·)) satisfies the estimate

ρ◦(ϑ, x(ϑ), xϑ(·)) +
∫ ϑ

τ

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ)))dξ

≤ ϕλ,ε(ϑ, x(ϑ), xϑ(·)) +
∫ ϑ

τ

f 0(ξ, x(ξ), x(ξ − h), u(ξ), v(ξ))) + ζ/3

≤ ϕλ,ε(τ, z, w(·)) + 2ζ/3 ≤ ρ◦(τ, z, w(·)) + ζ.

According to definition (18), the statement abovemeans the first equality in Theorem 3 holds.
The second equality can be proved by the similar way based on the statements symmetrical
to Proposition 15–17. ��
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