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Abstract
This paper characterizes an efficiency-inducing policy for a polluting oligopoly when pollu-
tion abatement is technologically feasible and when environmental damage depends on the
pollution stock. Using a dynamic policy game between the regulator and the oligopolists, we
show that a tax–subsidy scheme can implement the efficient outcome as a regulated market
equilibrium. The scheme consists of a tax on production and a subsidy that can either be on
abatement efforts or on abatement costs. Both schemes prescribe a different tax rule, but both
implement the efficient outcome. If firms act strategically, taking into account the evolution
of the pollution stock when they decide on abatement and production, the subsidy reflects
the divergence between the social and private valuation of the pollution stock associated with
the abatement decision. Consequently, the tax has to correct the two market failures associ-
ated with production: the market power of the firms and the negative externality caused by
pollution. Using an LQ (differential) policy game, we show that the tax increases with the
pollution stock for both schemes, and that the application of a subsidy on abatement costs
leads to a laxer tax rule. Interestingly, it also yields a lower fiscal deficit at the steady state.
Thus, from a fiscal perspective, the policy recommendation is the application of a subsidy
on abatement costs.
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1 Introduction

A very influential and seminal paper by Benchekroun and Long [3] shows that there is a
time-independent tax rule for polluting oligopolists that implements the efficient allocation
as a regulated market equilibrium. The optimal tax increases with the pollution stock, but the
authors found that it may be negative when the pollution stock is low, i.e., the optimal policy
could consist of subsidizing production for an initial time interval. 1 This result is not so
surprising if we consider that a polluting oligopoly is inefficient because two market failures
are operating at the same time but with a different bias. On the one hand, firms have market
power which causes a reduction of production below the efficient level. On the other hand,
pollution is an example of a negative externality that tends to increase production above the
efficient level. In the first case, the optimal policy consists of a subsidy on production to
close the gap between the price and the marginal revenue of the firms. In the second case,
the optimal policy is to apply a tax on emissions to drive firms to internalize the negative
externality. If the first market distortion dominates the second one, the optimal policy for
polluting oligopolists would be a subsidy on production. Nevertheless, Martín-Herrán and
Rubio [21] have shown that if environmental damages are high enough, the optimal policy
consists of taxing production for any level of the pollution stock.

The aim of this paper is to characterize the efficiency-inducing policy for polluting
oligopolists if pollution abatement is technologically feasible. In this case, we have to dis-
tinguish between gross emissions linked to production and net emissions that depend on
abatement efforts developed by the firms. In this framework, a tax on net emissions cannot
implement the efficient solution because it penalizes production and rewards abatement at
the same rate, and we would need to do it at different rates to adjust the two control variables
of the model: abatement and production. Recently, Martín-Herrán and Rubio [19] addressed
this issue for the case of a polluting monopoly. Following the argument we have previously
presented, they showed that the regulated market equilibrium is efficient for a policy mix
that combines a tax on emissions with a subsidy on production. But still in this case the tax
could be negative for low values of the pollution stock. 2 Although a subsidy on production
in this framework is a policy to recover the efficiency of the market, it could be seen by the
regulatory agencies as a policy against competition and it could be questioned and difficult
to apply. To avoid this criticism, in this paper we propose, following Pal and Saha [24], a
policy that consists of penalizing production and rewarding abatement but a different rate,
i.e., using two different instruments. 3 In fact, we propose two tax–subsidy schemes that can
implement the efficient allocation—one policy mix that combines a tax on production with a
subsidy on abatement effort, and a second policy mix for which the subsidy is on abatement

1 In their model a unit of production generates one unit of emissions and there is no abatement. Thus, the tax
on emissions operates as a tax on production.
2 Borrero [7] shows that this is a particular result that only happens for the monopoly. He proves that when
the number of firms is higher than or equal to two, the first-best emission tax is always positive for any level
of the pollution stock. Thus in this case, the tax would correct the externality and the subsidy would correct
the market power of the firms.
3 Pal and Saha [24] show in a static model of a mixed duopoly with pollution that the government can
implement the socially optimal outcome by applying a tax on production and a subsidy on the abatement
effort and keeping the public firm fully public.
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costs.4 Our model can be read as either an extension of Martín-Herrán and Rubio [19] for the
case of a polluting oligopoly, or an extension of Benchekroun and Long [3] to incorporate
an abatement technology.

For a general version of the model, we find that the subsidy will depend solely on the
divergence between the social and private valuation of the pollution stock. When the subsidy
is applied to abatement efforts, the subsidy is proportional to the difference between the
social and private shadow price of the pollution stock. If the subsidy is on abatement costs, it
is equal to the ratio between the private and social shadow prices. In both cases, the subsidy
will be positive. On the other hand, the tax, as in Benchekroun and Long [3], has to correct
the two market failures associated with production. Thus, we find that the optimal tax is
equal to the difference between the marginal revenue and the price, which is negative, plus
the difference between the social and private shadow prices, which is positive. The net effect
could be negative. In any case, it is clear that the production tax rate will be lower than the
abatement subsidy rate when this is applied to the abatement effort.

To advance in the analysis of the optimal policy rules, we solve, in the second part of the
paper, an LQ (differential) policy game between the regulator and the oligopolists. The results
confirm that, regardless of whether a subsidy is applied to abatement effort or to abatement
costs, the tax could be negative for low levels of the pollution stock. Nevertheless, the tax
increaseswith the pollution stock.Anumerical exercise allows us to evaluate how the different
parameters of the model influence the optimal tax rule and its steady-state value. We find that
with high environmental damages, high efficiency of the resources devote to abatement, and
more competition in the market, we should expect a tax that is always positive. On the other
hand, the subsidies are always positive and increase with the pollution stock. Interestingly, we
find that although the differential game is linear-quadratic the subsidy rule when the subsidy
is for abatement costs is not linear. Moreover, we would like to highlight that the model
predicts that competition is good for the environment. We show analytically that with more
firms in the industry, the steady-state pollution stock decreases, and the numerical exercise
shows that although each firm’s abatement and production decreases, the total production
and abatement of the industry increases. Thus, total abatement monotonically increases with
competition, and this increase is enough to yield decreasing total emissions compatible with
an increasing total output. Finally, we compare the optimal tax rules that are obtained when
the two different subsidies are applied. From this comparison, we find that the optimal tax
rule is laxer when a subsidy on abatement costs is applied. In this case, both the intersection
point with the vertical axis and the slope of the tax rule are lower and consequently the steady-
state tax will be lower. Notice that both policy mixes implement the same efficient solution.
Thus, if the tax rule is less strict, the tax at the steady state will be lower. This means that
lower tax revenues will be collected by the government if the subsidy is on abatement costs.
However, from a fiscal point of view, what is important is the fiscal balance of the policy mix.
Unfortunately, the complexity of the fiscal balance expression prevents finding any analytical
conclusion for the comparison of the fiscal balances. Nevertheless, we can indicate that the
numerical exercise shows that both policies present a fiscal deficit, but that the fiscal deficit is
lower when the government subsidizes the abatement costs. Therefore, we can conclude that

4 A classic paper on environmental regulation that incorporates a subsidy on costs is Katsoulacos and Xepa-
padeas [16]. In this paper, the authors analyze in a static setting the efficiency-inducing policy for a duopoly
with spillovers consisting of a tax on emissions and a subsidy onR&D investment costs,whereR&D investment
reduces the emissions to output ratio. More recently, Saltari and Travaglini [25] and Menezes and Pereira[23]
study environmental regulationwith subsidies in a dynamic setting. Saltari and Travaglini [25] analyze a policy
mix consisting of a tax on a polluting input and a subsidy on abatement investment, whereas Menezes and
Pereira [23] focus on a tax–subsidy scheme based on a tax on emissions and a subsidy on investment costs.
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when this type of subsidy is used both the fiscal revenues and subsidy expenses are lower and
that the net effect is a lower fiscal balance. We should take this conclusion with caution, since
this result is based on numerical simulations. If the criterion for selecting the type of subsidy
to accompany the tax is to select the one that leads to the most favorable fiscal balance, the
policy recommendation would be to opt for a subsidy on abatement costs.5

1.1 Literature Review5

A list of papers addressing the regulation of firms with market power in the context of stock
dynamics includes Bergstrom et al. [5] , Karp and Livernois [14], and Karp [13] for the case
of a non-renewable resource and Benchekroun and Long [3, 4], Stimming [26], Feenstra et al.
[10], andYanase [28] for the case of pollutingfirms.6 Bergstromet al. [5] show that there exists
a continuum of tax/subsidy schedules on output that lead to a monopoly to extract efficiently
a non-renewable resource. However, as these taxes/subsidies are time-dependent, they are not
in general subgame perfect. Karp and Livernois [14] design a subgame-perfect tax rule that
implements the efficient outcome for a monopoly. Karp [13] extends this result to the case
of an oligopoly that extracts a common property non-renewable resource, and Benchekroun
and Long extends this to the case of a polluting oligopoly. 7 The two papers by Stimming
[26] and Feenstra et al. [10] studying the case of a duopoly assume that environmental
damages depend on current emissions and focus on investment in an abatement technology.
The environmental policy in these papers is given and the analysis assesses the effects of
a stricter environmental policy comparing taxes vs. emission standards. After the papers
by Benchekroun and Long [3, 4], Yanase [28] is the first paper where the environmental
policy is endogenously determined. The author examines a non-cooperative (differential)
policy game between national governments in a model of international pollution control of a
stock pollutant in which duopolists compete myopically in quantities in a third country with
product differentiation and expense resources in abatement activities. The comparison of the
Markov perfect Nash equilibrium of the game for different policy instruments establishes
that an emission tax produces more pollution and lower welfare than those generated by a
standard. This author assumes an end-of-the-pipe abatement technology like the one used in
this paper.8

Other papers addressing environmental regulation of polluting firms with market power in
a dynamic context include Benchekroun and Chaudhuri [1], Martín-Herrán and Rubio [19],
and Dragone et al. [9]. Benchekroun and Chaudhuri [1] show that the imposition of a tax on
emissions that depends on the pollution stock can induce stable cartelization in a polluting
oligopoly, making the regulation of the market undesirable. Martín-Herrán and Rubio [19]

5 Some of the references that appear in this review have already been commented on Martín-Herrán and
Rubio [19, 20].
6 Xepapadeas [27] and Kort [17] could be included in this list, but in their papers the market power of the
polluting firms is not clearly recognized.
7 Benchekroun and Long [4] focused on the case of a polluting monopoly. For this case, they show that
tax rules are not unique. Im [12] shows that for a monopoly extracting a non-renewable resource, a constant
ad valorem subsidy induces the monopoly to behave efficiently if the demand is isoelastic and the marginal
costs of extraction are constant. Daubanes [8] clarifies that this is one case of a family of paths of ad valorem
taxes/subsidies that induce efficiency in the resource’s extraction, and shows that some of the paths may be
strict taxes.
8 Recently, Yanase and Kamei [29] study a two-country differential game model of transboundary pollution
with international polluting oligopolies. The authors assume that governments use permits to regulate pollution.
They compare autarky and bilateral free trade and conclude that free trade is better for the environment than
autarky.
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show that a tax–subsidy scheme, consisting of taxing emissions and subsidizing production,
implements the efficient outcome as a regulated market equilibrium for a polluting monopoly
with an abatement technology of the type proposed by Yanase [29]. They also show that taxes
and standards are equivalent in a second-best setting. In this paper, we extend this model to
the case of an oligopoly, but focusing on different tax–subsidy schemes. Dragone et al. [9]
study the case of a polluting oligopoly with spillovers on the abatement effort where the
damages depended on the pollution stock and the total output of the industry. However, the
authors considered a tax on firms’ accumulated emissions and focused mainly on the effect
of competition on the aggregate abatement.

Another set of papers analyzes investment in pollution abatement capital in different
settings includes Saltari and Travaglini [25], Karp and Zhang [15] , Menezes and Pereira
[23] , and Martín-Herrán and Rubio [19]. Saltari and Travaglini [25] assume that uncertainty
over the dynamics of pollution stock affects firm investment decisions and study, for the
case of a competitive firm, how a tax–subsidy scheme based on a tax on the polluting input
and a subsidy on investment influences the firm’s decisions on investment. However, in their
model, there is no connection between the use of the polluting input and the evolution of
the pollution stock. Karp and Zhang [15] compare emission taxes and standards when a
regulator and a representative firm have asymmetric information about abatement costs, and
all agents use Markov perfect decision rules. The firm can reduce future abatement costs
through investment. For a linear-quadratic specification of the model and using numerical
methods, they find that a tax has some advantage over a standard. Menezes and Pereira
[23] study the dynamic competition of a duopoly in supply schedules that can invest in
an abatement technology. In their model, damages are linear in the pollution stock and
there are also technological spillovers. The focus is on the characterization of the optimal
policy mix consisting of a tax on emissions and a subsidy on investment costs, assuming
that the regulator can commit for the entire temporal horizon and that firms’ production,
investment, and abatement capital are given by their steady-state values when the regulator
decides the optimal policy. Our paper differs from this work mainly in three aspects. Firstly,
we do not assume that the regulator can commit for the entire temporal horizon; instead,
we look for the feedback Stackelberg equilibrium of the differential game played by the
regulator and the oligopolists, i.e., the regulator maximizes net social welfare subject to best
responses of the firms to the policy adopted by the regulator. Secondly, we assume quadratic
environmental damages while Menezes and Pereira [23] assume a linear damage function.
Thirdly, we consider two tax–subsidy schemes that are based on a tax on production instead
of a tax on emissions, and we also consider a subsidy on the abatement effort. Finally,Martín-
Herrán and Rubio [20] analyzed the second-best emission tax for a polluting monopoly with
abatement investments investigating the consequences for investment of two different damage
structures—one linear and one quadratic in the pollution stock.

Recently,Bisceglia [6] characterized the efficiency-inducing tax rule imposedonoutput for
an oligopoly that exploits a commonproductive resource, andBenchekroun at al. [2] proposed
for an oligopoly that extracts a common non-renewable resource, a novel tax scheme to
implement the efficient outcome where the tax bill paid by a firm depends only on the current
resource stock. Finally, Feichtinger et al. [11] presented a model of a polluting common
renewable resource exploited by an oligopoly in which firms can invest in an abatement
technology. The authors show that if the demand is linear, the extraction costs are linear, and
the access is regulated to induce the industry to harvest at the maximum sustainable yield,
then there exists a tax on accumulated emissions of the firm at which aggregate emissions
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drop to zero. Taxation induces firms to invest in the abatement technology and eliminate
emissions.9

The remainder of the paper is organized as follows. Section 2 presents the model and
derives the efficient conditions. Section 3 characterizes the first-best policy mix, distinguish-
ing between the two tax–subsidy schemes studied in this paper. In Sect. 4 an LQ policy game
is solved. Section 5 offers some concluding remarks and points out lines for future research.

2 TheModel and the Efficient Conditions

We consider a Cournot oligopoly that faces a market demand represented by the decreasing
inverse demand function P(Q(t)) where Q(t) = ∑n

i=1 qi (t) is the output of the industry
at time t and n ≥ 2 is the number of firms. Firms produce a homogeneous good using the
same productive technology, described by the cost function PC = cqi (t).The production
process generates pollution emissions, but after an appropriate choice of measurement units
we can say that each unit of output generates one unit of pollution. However, emissions can be
reducedwithout declining output if the firms employ an abatement technology. The abatement
technology is assumed to be the end-of-the-pipe type. For this type of abatement technology,
the emission function is: ei (t) = qi (t) − wi (t), where wi (t) is the abatement effort of
firm i .10 The abatement cost function is represented by AC(wi (t)) with both (AC)′(wi ) and
(AC)′′(wi ) being positive. The focus of the paper is on a stock pollutant that evolves according
to the following differential equation:

ẋ(t) =
n∑

i=1

(qi (t) − wi (t)) − δx(t), x(0) = x0 ≥ 0, (1)

where x(t) stands for the pollution stock and δ > 0 for the decay rate of pollution. The
environmental damages are given by the function D(x(t)) and is assumed to be strictly
convex. Thus, the policy game we analyze in this paper is a differential game between a
welfare maximizing regulator and profit maximizing oligopolists. Before analyzing it, we
first derive the first-order conditions that characterize the efficient outcome.

The efficient conditions are obtained from the maximization of the discounted present
value of net social welfare defined as the difference between gross consumer surplus minus
costs and environmental damages. 11

max
q1,...,qn ,w1,...,wn

∫ ∞

0
e−r t

{∫ Q

0
P(Q′)dQ′ − cQ −

n∑

i=1

AC(wi ) − D(x)

}

dt

s.t. ẋ =
n∑

i=1

(qi − wi ) − δx, x(0) = x0 ≥ 0,

where r is the time discount rate.

9 In their model, if access to the common resource is limited to attain the maximum sustainable yield, the
emission tax has no impact on the environmental damages.
10 This approach has been adopted in a dynamic setting by other authors such as Yanase [28], Martín-Herrán
and Rubio [19], and Dragone et al. [9]. The model we propose can be seen in a certain way, as already
mentioned in the introduction, as an extension of the model studied in Martín-Herrán and Rubio [19] for an
oligopolistic market, instead of a monopoly. As such, both models share certain important ingredients and
features that are repeated here for completeness and readability.
11 The time argument will be eliminated when no confusion arises.
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Solving by dynamic programming, the solution to this dynamic optimization problem
must satisfy the following Hamilton–Jacobi–Bellman (HJB) equation:

rW (x) = max
q1,...,qn ,w1,...,wn

{∫ Q

0
P(Q′)dQ′ − cQ −

n∑

i=1

AC(wi ) − D(x)

+W ′(x)
(

n∑

i=1

(qi − wi ) − δx

)}

, (2)

where W (x) represents the maximum discounted present value of net social welfare for the
current value, x, of the pollution stock.

The maximization of the right-hand side (RHS) of the HJB equation yields the following
first-order conditions (FOCs):

P = c − W ′(x), i = 1, . . . n, (3)

(AC)′(wi ) = −W ′(x), i = 1, . . . , n. (4)

The first FOC establishes that the price must be equal to the marginal costs which include the
marginal cost of production plus the social valuation (shadow price) of the pollution stock.
The latter is given by the reduction in the present value of the net social welfare because of
an increase in the pollution stock caused by an increase in production. On the other hand,
the second FOC requires that the marginal cost of abatement is equal to the marginal benefit
defined by the increase in the present value of the net social welfare. This increase is caused by
a reduction in the stock because of an increase in abatement. Notice thatW ′(x) is a marginal
cost when we are considering an increase in production, and it stands for a marginal benefit
when we are evaluating an increase in abatement.

To implement these conditions as a regulated market equilibrium, we propose two tax–
subsidy schemes. The first scheme combines a tax on gross emissions, which in our model
operates as a tax on production, with an abatement subsidy. The second scheme uses a
subsidy on abatement costs instead of an abatement subsidy. In the next section, we calculate
the stagewise feedback Stackelberg equilibrium (SFSE) of a (differential) policy game where
the regulator who selects the level of the policy instruments is the leader, and the firms that
choose the levels of production and abatement are the followers. We show that using these
schemes the regulated market equilibrium will be efficient.

3 The First-Best Policy

The SFSE is based on the assumption that the regulator moves first in each moment. To find
the regulator’s optimal policy, we apply backward induction, substituting the firms’ reaction
functions in the regulator’s HJB equation, and computing the optimal strategy by maxi-
mizing the right-hand side of this equation. The resulting outcome is a stagewise feedback
Stackelberg solution, which is a Markov perfect equilibrium. For this kind of equilibria, no
commitment is required for the entire temporal horizon. For our model, this equilibrium is
time consistent and also satisfies subgame perfection.12

12 Martín-Herrán and Rubio [21] showed that the SFSE coincides with the Global Stackelberg Equilibrium
used by Benchekroun and Long [3] if the focus is on the design of the first-best policy that implements the
efficient outcome as a regulated market equilibrium.
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3.1 Tax–Subsidy Scheme I

The output and abatement selection occurs in the second stage. Firm i chooses its output and
abatement to maximize the discounted present value of net profits:

max
qi ,wi

∞∫

0

e−r t {P(Q)qi−cqi−AC(wi )−τqi+vwi } dt,

subject to differential equation (1) where τ is the production tax and v stands for a subsidy on
abatement. Following the seminal article by Benchekroun and Long [3] and other papers in
the theoretical literature on the topic, we assume that the firm acts strategically at this stage
taking into account the dynamic constraint given by (1).

The solution to this dynamic optimization problem must satisfy the following HJB
equation:

rV I (x)=max
qi ,wi

{

P(Q)qi − cqi−AC(wi )−τqi+vwi + (V I )
′
(x)

(
n∑

i=1

(qi−wi ) − δx

)}

,

where V I (x) stands for the maximum discounted present value of net profits for the current
value, x, of the pollution stock. 13

From the FOCs for the maximization of the right-hand side of the HJB equation, we get:

P ′qi + P = c + τ − (V I )
′
(x), i = 1, . . . , n, (5)

(AC)′(wi ) = v − (V I )
′
(x), i = 1, . . . , n. (6)

The left-hand side (LHS) of the first FOC stands for the marginal revenue of the firm and
the RHS represents the marginal costs that include the marginal cost of production, the tax,
and the private valuation (shadow price) of the pollution stock. The latter is given by the
reduction in the present value of the firm’s net profits because of an increase in the pollution
stock caused by an increase in production. On the other hand, the LHS of the second FOC
represents the marginal cost of abatement while the marginal benefits appear on the RHS.
Thesemarginal benefits include the subsidy, and the increase in the present value of the firm’s
profits because of the reduction in the pollution stock. Notice that (V I )

′
(x) is a marginal cost

when we are considering an increase in production, and it stands for a marginal benefit when
we are evaluating an increase in abatement. The system of reaction functions (5) implicitly
defines the firm’s strategy qi (τ, x)and (6) directly yields wi (v, x). Notice that the optimal
production does not depend on the subsidy and the optimal abatement effort does not depend
on the tax. This is because of the assumption that firms use an end-of-the-pipe technology
and that the regulator sets up a tax on gross emissions/output instead of on net emissions.14

In the first stage, the regulator selects the emission tax rate and subsidy by unit of abatement
that maximizes net social welfare defined as the sum of consumer surplus and oligopoly net

13 The superscript I stands for Tax–Subsidy Scheme I .
14 If the regulator were to tax net emissions, the tax rate would affect both production and abatement.
However, since net emissions are given by the difference between gross emissions/output and the abatement,
this tax–subsidy scheme would imply a “ double” subsidy on abatement since, on the one hand, firms would
receive an explicit subsidy on abatement and, on the other hand, they would obtain an implicit subsidy equal
to the tax rate on net emissions because abatement reduces taxes paid by firms for a given level of output.
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profits plus tax revenues minus subsidies and environmental damages:

max
τ,v

∞∫

0

e−r t

{∫ Q

0
P(Q′)dQ′ − PQ +

n∑

i=1

πi + τQ − v� − D(x)

}

dt,

subject to differential equation (1), where πi stands for firm i’s net profits and� = ∑n
i=1 wi .

Notice that consumer expenses and firms’ revenues on one hand, and firms’ tax expenses
and subsidies and regulator tax revenues and subsidy expenses on the other hand, cancel out.
Therefore, this optimization problem can be rewritten as:

max
τ,v

∞∫

0

e−r t

{∫ Q(τ,x)

0
P(Q′)dQ′ − cQ(τ, x) −

n∑

i=1

AC(wi (v, x)) − D(x)

}

dt,

where Q(τ, x) = ∑n
i=1 qi (τ, x).

The solution to this dynamic optimization problem must satisfy the following HJB
equation:15

rW (x) = maxτ,v

{∫ Q(τ,x)
0 P(Q′)dQ′ − cQ(τ, x) − ∑n

i=1 AC(wi (v, x)) − D(x)

+ W ′(x)
(
Q(τ, x) − ∑n

i=1 wi (v, x) − δx
)}

. (7)

From the FOCs for the maximization of the RHS of the HJB equation, we get:

(
P − c + W ′(x)

) ∂Q

∂τ
= 0, (8)

−
n∑

i=1

(
(AC)′(wi ) + W ′(x)

) ∂wi

∂v
= 0. (9)

Assuming that both output and abatement are affected by the tax and subsidy, these conditions
are immediately satisfied if the efficient conditions hold. Thus, using the efficient conditions
along with FOCs (5) and (6), we can characterize the first-best policy. Conditions (3 ) and
(5) allow us to define the optimal tax:

τ I ∗(x) = P ′qi − (W ′(x) − (V I )
′
(x)), (10)

and conditions (4) and (6) the optimal subsidy:

v I ∗(x) = −(W ′(x) − (V I )
′
(x)). (11)

Notice that in both cases the policy instrument reflects the difference between the social and
private valuations of a variation in the pollution stock. In the case of the tax, the variation is
due to an increase in the pollution stock caused by an increase in net emissions provoked by an
increase in output. In the case of the subsidy, the variation is due to a decrease in the pollution
stock explained by a decrease in net emissions as a result of an increase in the abatement

15 Although in Sect. 2, the discounted present value of net social welfare was maximized with respect
to production and abatement and now it is maximized with respect to the tax and the subsidy, as long as
the optimal values of these policy instruments implement the efficient solution characterized in Sect. 2, the
dynamic optimization problem solved in this section yields the same discounted present value of net social
welfare as that obtained in Sect. 2. For this reason, we will use the same notation for the regulator’s value
function in both cases, W . The same argument applies in the analysis of the Tax–Subsidy Scheme II. The
first-best policy implements the efficient solution and consequently yields the same value function for the
regulator.
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effort. In the case of the tax, we find an additional term equal to the difference between the
marginal revenue of the firms and the price that appears because the firms have market power.
With the tax, the regulator is correcting two distortions in the market allocation: the market
power of the firms and a negative externality. For this reason, the tax has two components.
The first, that is negative, operates as a subsidy on production to correct the market power
of the firms, closing the gap between the price and the marginal revenue. The second, that is
expected to be positive, operates as a tax on emissions to correct the negative externality.16

Thus, we can state that:

Remark 1 The production tax could be negative if the distortion cause by the market power
of the firms is bigger than the distortion caused by the negative externality.

Nevertheless, if themain problem in themarket is pollution, we should expect the opposite
result and the optimal policywould be to tax gross emissions.Observe that evenwith a subsidy
on abatement, the tax still has to correct the two distortions associated with production as
occurs in Benchekroun and Long [3].

On the other hand, if we compare the optimal levels of the two instruments, we obtain the
following expression

τ I ∗(x) − v I ∗(x) = P ′qi .

Then, we can conclude that:

Remark 2 The production tax rate is lower than the abatement subsidy rate.

The difference between the two rates is due to the firms’ market power. Obviously, if the
firms are price-takers, the two rates coincide.

Remark 2 suggests that we should not expect that the proposed tax–subsidy scheme to
be self-financing. In fact, the difference between the tax rate and the abatement subsidy rate
indicates that the government could run a fiscal deficit. Of course, whether the policy yields
a fiscal surplus or deficit also depends on the levels of production and abatement, but for a
given pair of total production and abatement efforts, it will more likely obtain a fiscal deficit
if the subsidy rate is larger than the tax rate. The numerical exercise solved in Sect. 4 is
consistent with this conjecture since for the baseline case the fiscal balance is negative. Thus,
the Tax–Subsidy Scheme I would implement the efficient outcome, but it would create a
fiscal deficit.

3.2 Tax–Subsidy Scheme II

With a subsidy on abatement costs, firm i chooses its output and abatement to maximize the
discounted present value of net profits given in this case by:

max
qi ,wi

∞∫

0

e−r t {P(Q)qi − cqi − (1 − v)AC(wi ) − τqi } dt,

subject to differential equation (1) where τ again is the production tax and v ∈ (0, 1) stands
for a subsidy on abatement cost. v represents the percentage of the abatement costs that are

16 In the LQ policy game we study in the next section we confirm that
∣
∣W ′(x)

∣
∣ >

∣
∣
∣(V I )

′
(x)

∣
∣
∣ so that

−(W ′(x) − (V I )
′
(x)) is positive. Notice that if this was not the case, the tax and the subsidy would be

negative for all x .
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covered by the subsidy.With this scheme, FOC (5) does not change, but FOC (6) will read:17

(1 − v)(AC)′(wi ) = −(V I I )
′
(x). (12)

Then, using (4), we find that the optimal subsidy is given by the following expression:

1 − v I I ∗(x) = (V I I )
′
(x)

W ′(x)
. (13)

In this case, the subsidy is also given by the different valuation that firms give to the pollution
stock, but not as a difference between the social and private shadow prices of the pollution
stock, as occurs when the subsidy is on abatement effort, but as a ratio, as a percentage of the
private shadow price over the social shadow price. Notice that the subsidy will be positive

only if
∣
∣
∣(V I I )

′
(x)

∣
∣
∣ <

∣
∣W ′(x)

∣
∣. This point is confirmed in the LQ policy game we analyze in

the next section.
Thus, the efficient solution could be implemented as a regulated market equilibrium using

these two tax–subsidy schemes. Consequently, we cannot rank them looking at the net social
welfare that is achieved using the two tax–subsidy schemes because both implement the
efficient solution, i.e., with both schemes the maximum net social welfare is achieved. An
alternative would be to assess them from a fiscal perspective. The scheme to recommend
would be the one that yields a higher/lower fiscal surplus/deficit. In the next section, we
introduce anLQpolicy game that allows us to advance in the analysis of these two tax–subsidy
schemes.

4 The LQ Policy Game

The LQ differential gamewe analyze in this section considers a polluting oligopoly that faces
a linear (inverse) demand function given by P = a− Q,where P is the price and Q the total
output of the industry with a > c. On the other hand, we assume a quadratic abatement cost
function given by AC(w) = γw2/2. The abatement technology has decreasing returns to
scale, with the parameter γ measuring the extent of such decreasing returns. The disutility
from environmental deterioration is given by the damage function D(x) = dx2/2, d > 0.
Next, we characterize the efficient solution.

4.1 The Efficient Solution

If we focus on the symmetric solution, the optimal strategies for production and abatement
from (3) and (4) are:

q∗(x) = 1

n
(a − c + W ′(x)), (14)

w∗(x) = − 1

γ
W ′(x). (15)

Then, optimal emissions can be obtained as the difference between optimal production (gross
emissions) and abatement:

e∗(x) = q∗(x) − w∗(x) = a − c

n
+ γ + n

nγ
W ′(x). (16)

17 The superscript I I stands for Tax–Subsidy Scheme I I .
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Now, substituting production and abatement by the efficient strategies (14) and (15) in the
regulator’s HJB equation (5) for the LQ policy game and rearranging terms, we obtain the
following nonlinear differential equation:

rW (x) = 1

2
(s2 − dx2) + (s − δx)W ′(x) + γ + n

2γ
(W ′(x))2, (17)

where s = a − c > 0.
In order to find the solution for this equation, we guess a quadratic representation for the

value function W :
W (x) = Ar

2
x2 + Br x + Cr ,

which implies that W ′(x) = Ar x + Br and where Ar , Br , and Cr are unknowns to be
determined.18

The substitution of W (x) and W ′(x) into (17) gives a system of Riccati equations that
must be satisfied for every x . Selecting the stable solution of this system, which requires that
dẋ/dx < 0, we obtain the following values for the first two coefficients of the regulator’s
value function:

Ar = γ (r + 2δ) − (γ 2(r + 2δ)2 + 4dγ (γ + n))1/2

2(γ + n)
< 0, (18)

Br = sγ Ar

γ (r + δ) − (γ + n)Ar
< 0. (19)

Then, the optimal strategies for production, abatement, and emissions read:

q∗(x) = s(γ (δ + r) − nAr )

n(γ (δ + r) − (γ + n)Ar )
+ Ar

n
x, (20)

w∗(x) = s Ar

(γ + n)Ar − γ (δ + r)
− Ar

γ
x, (21)

e∗(x) = γ s(r + δ)

n(γ (δ + r) − (γ + n)Ar )
+ (γ + n)Ar

nγ
x . (22)

From the optimal strategy for emissions and the differential equation (1), and taking into
account the first Riccati equation for Ar , the steady-state pollution stock is obtained:

x SS = sγ (r + δ)

(γ + n)d + γ δ(r + δ)
.

From the expression above, it can be easily shown that the steady-state pollution stock
increases with s, r and γ, and decreases with n and d. The different parameters influence
the steady-state pollution stock in different ways. On the one hand, the market size, s, is
like a scale parameter in these kinds of models so that the higher s, the higher gross and net
emissions. Therefore, we should expect that the pollution stock increases with the market
size as the previous expression confirms. The rate of discount, as it is well known, gives more
or less weight to the future in current decisions. Thus, a higher rate of discount will reduce
the importance of the future environmental damages in today’s decisions on production and
emissions, resulting in a larger accumulation of emissions. Finally, we also expect that a larger
γ yields a larger steady-state pollution stock because when the marginal costs of abatement
are higher, firmswill reduce the abatement efforts producingmore net emissions that will lead

18 The subscript r refers to the regulator and stands for the efficient solution.
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to a higher pollution stock. On the other hand, an increase in the marginal damage function
caused by an increase in parameter d will cause a reduction in the pollution stock through
an increase in its shadow price. Notice that an increase in the shadow price will reduce the
production and increase the abatement effort resulting in lower net emissions. Finally, we find
that more competition not only reduces the market power of the firms, but also reduces the
long-run equilibrium pollution stock. In our model, competition is good for the environment.

According to the optimal strategies, production and emissions decrease with the pollution
stock, whereas abatement increases with the pollution stock. Thus, there exists a level for the
pollution stock for which emissions are zero. From equation e∗(x) = 0 this value reads:

xe = − sγ 2(r + δ)

Ar (γ + n) (γ (δ + r) − (γ + n)Ar )
. (23)

This threshold can be easily compared with the steady-state value of the pollution stock, as
follows:

xe − x SS = − sγ 3δ(r+δ)

Ar (γ + n) (γ δ − (γ + n)Ar ) (γ (δ+r) − (γ + n)Ar )
.

The difference above is positive because Ar is negative.

Proposition 1 The efficient solutions for the total output, the abatement, and the emissions
are nonnegative in the interval [0, xe] with the steady-state pollution stock x SS belonging to
this interval. In this interval, total output and emissions decrease and abatement increases
with the pollution stock.

Finally, we characterize the dynamics of the pollution stock. Substituting emissions given
by (22) in the dynamics of the pollution stock defined by (1), we obtain the following
differential equation for the pollution stock:

ẋ = sγ (r + δ)

γ (r + δ) − (γ + n)Ar
+

(
(γ + n)Ar

γ
− δ

)

x,

whose solution is:

x∗(t) = (x0 − x SS)eαt + x SS, with α = (γ + n)Ar

γ
− δ < 0, (24)

for x0 in the interval [0, xe]. Then, the dynamics of the model can be summarized as follows

Remark 3 If x0 is lower than x SS, abatement increases asymptotically to its steady-state
value, whereas production and emissions decrease. However, if x0 ∈ (x SS, xe], the dynamics
are the opposite and abatement decreases asymptotically to its steady-state value, whereas
production and emissions increase.

Observe that the optimal strategy for emissions (22) only gives non-negative emissions
in the interval of the pollution stock [0, xe] which includes the steady-state pollution stock.
If the initial pollution stock is larger than xe, then the non-negative constraint applies and
the efficient level of emissions is zero. In this case, the pollution would decrease according
to the differential equation ẋ = −δx until xe were reached in a finite time. From this
level, the dynamics of the pollution stock is given by (24) and the pollution stock converges
asymptotically to its steady-state value.
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4.2 Tax–Subsidy Scheme I

Once the efficient solution has been obtained, we calculate the optimal policy rules that
implement the efficient outcome as a regulated market equilibrium. According to (10), the
optimal tax for a linear demand function is τ I ∗(x) = −q∗(x) − (W ′(x) − (V I )

′
(x)), when

using (14) yields:

τ I ∗(x) = (V I )
′
(x) − s + (n + 1)W ′(x)

n
. (25)

Thus, in order to completely characterize the optimal tax and the optimal subsidy, we need
to solve the firm’s HJB equation. With this aim, we substitute the tax and the subsidy given
by (25) and (11) and substitute the production and abatement defined by (14) and (15 ), in
the firm’s HJB equation:

rV I (x) = (a − nq)q − cq − τq + vw − γ

2
w2 + (V I )

′
(x)(n(q − w) − δx),

and we obtain the following differential equation

rV I (x) = 1
n2

(s + W ′(x))2 + 1
2γ W

′(x)2 + (n − 1) γ+n
γ n (V I )

′
(x)W ′(x) +

+ (n−1)s−δnx
n (V I )

′
(x). (26)

In order to solve this equation, we also guess a quadratic representation:

V I (x) = AI
f

2
x2 + BI

f x + C I
f ,

which yields (V I )
′
(x) = AI

f x + BI
f .

19

The substitution of V I (x) and (V I )
′
(x) along with W ′(x) into (26) gives a system of

Riccati equations whose solution for coefficients AI
f and BI

f is:

AI
f = (2γ + n2)A2

r

n(nγ (r + 2δ) − 2(n − 1)(γ + n)Ar )
> 0,

BI
f = nγ (r + 2δ)(2sγ + (2γ + n2)Br )Ar

n(nγ (r + δ) − (n − 1)(γ + n)Ar )(nγ (r + 2δ) − 2(n − 1)(γ + n)Ar )
(27)

+ (n − 1)(sγ (n(n − 4) − 2γ ) − (γ + n)(2γ + n2)Br )A2
r

n(nγ (r + δ) − (n − 1)(γ + n)Ar )(nγ (r + 2δ) − 2(n − 1)(γ + n)Ar )
, (28)

where Ar < 0 is given by (18) 20. Then, eliminating (V I )
′
(x) and W ′(x) in (25) using the

coefficients of the value functions, the optimal tax is obtained.

Proposition 2 The optimal tax is given by the following rule:

τ I ∗(x) = −1

n
(s + (n + 1)Br − nBI

f )

+n(2(n2 − 1) + (1 + 2γ )n)A2
r − (n + 1)γ (r + 2δ)Ar

n2γ (r + 2δ) − 2(n − 1)n(n + γ )Ar
x, (29)

19 The subscript f is used to represent the coefficients of the firm’s value function and the superscript I
denotes that the Tax–Subsidy Scheme I is applied.
20 For the monopoly (n = 1) and the duopoly (n = 2) cases, BI

f can be proven to be negative. However, for

n ≥ 3 we have shown that BI
f can take either positive or negative values.
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where Ar is negative. The tax increases with the pollution stock, but it could be negative for
low values of the pollution stock.

It is easy to find values of the parameters for which the intersection point with the vertical
axis of the tax rule (29) is negative.21 When this is the case, the optimal policy consists of
setting up a subsidy for low values of the pollution stock, as in Benchekroun and Long [3] and
for exactly the same reasons. In our model, the subsidy only corrects the divergence between
the private and social valuation of a variation in the pollution stock caused by a variation of
the abatement effort. Then, the tax, as expression (10) shows, must correct the market power
of the firms and the negative externality caused by production. The result is that the sign
of the optimal policy given by expression (10) remains undetermined. Nevertheless, Prop. 2
establishes that the sign of the policy given by (29) also depends on the pollution stock, and
that regardless of whether the tax is negative or positive when x = 0, the tax increases with
the pollution stock.

To obtain the optimal subsidy, we only need to eliminate (V I )
′
(x) andW ′(x) in (11) using

the coefficients of the value functions already computed.

Proposition 3 The optimal subsidy is given by the following rule:

v I ∗(x) = BI
f − Br + (2γ + n2 + 2(n − 1)n(γ + n))A2

r − n2γ (r + 2δ)Ar

n(nγ (r + 2δ) − 2(n − 1)(γ + n)Ar )
x, (30)

where Ar is negative. The subsidy increases with the pollution stock and it is positive for all
x ∈ [0, xe].
Proof See Appendix. ��

Unlike the tax, the subsidy cannot be negative. This result establishes, according to expres-
sion (11), that the social shadow price of the pollution stock is larger than the private shadow

price for all x , i.e.,
∣
∣W ′(x)

∣
∣ >

∣
∣
∣(V I )

′
(x)

∣
∣
∣ . Then, we can confirm that the second term on the

LHS of expression (10) is positive. Thus, the tax presents two components, one negative—
equal to the difference between themarginal revenue and the price, and one positive—equal to
the difference between the social shadow price of the pollution stock and its private valuation.

4.2.1 Numerical Example and Sensitivity Analysis

In Sect. 4.1 we analyzed the effects of the model parameters on the steady-state pollution
stock. However, it is difficult to do the same exercise for the other variables of the model,
becausewhen a parameter changes not only is the pollution stock affected, but also the optimal
policy rules obtained in the previous subsection. Thus, to know the effect of a change in one
parameter on the variables of the model, we need to evaluate how the steady-state pollution
stock is affected, and how the change affects the slope and the intersection point with the
vertical axis of the optimal policy rules. The same occurs for the optimal strategies for

21 For instance, for s = 1000, γ = 1.5, δ = 0.01, d = 0.01, n = 2, and r = 0.03, the intersection point
with the vertical axis of the tax rule is negative. For the same values, except γ = 1.25 and d = 0.025, we have
also a negative value for the intersection point with the vertical axis. However, with γ = 1.5 and d = 0.025,
the optimal tax is positive for x = 0. This possibility does not exist in the case of a monopoly. It is easy to
show that for this case, the tax is always negative for low values of the pollution stock. Thus, to have a positive
tax for all values of the pollution stock, it is necessary, although not sufficient, to have at least two firms in the
market.
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Table 1 Sensitivity analysis of the optimal policies and firm’s controls with respect to changes in parameter
d

d = 0.01 d = 0.015 d = 0.025 d = 0.035 d = 0.05

τ I
∗
(x) 92.54 + 0.12x 139.70 + 0.15x 190.98 + 0.21x 219.97 + 0.25x 246.83 + 0.31x

v I
∗
(x) 374.46 + 0.09x 408.24 + 0.11x 445.37 + 0.15x 466.51 + 0.18x 486.21 + 0.23x

x SS 2343.75 1574.80 950.87 681.04 477.71

τ I
∗
(x SS) 368.14 377.73 385.94 389.67 392.57

v I
∗
(x SS) 575.18 582.45 588.79 591.71 594.01

q I
∗
(x SS) 207.03 204.72 202.85 202.04 201.43

w I ∗(x SS) 195.31 196.85 198.09 198.64 199.05

eI
∗
(x SS) 11.72 7.87 4.75 3.41 2.39

Table 2 Sensitivity analysis of the optimal policies and firm’s controls with respect to changes in parameter
γ

γ = 2.5 γ = 2.75 γ = 3 γ = 3.25 γ = 3.5

τ I
∗
(x) 146.24 + 0.198x 169.87 + 0.202x 190.98 + 0.205x 209.94 + 0.207x 227.08 + 0.210x

v I
∗
(x) 417.07 + 0.146x 432.02 + 0.149x 445.37 + 0.151x 457.34 + 0.153x 468.15 + 0.154x

x SS 881.06 917.81 950.87 980.76 1007.92

τ I
∗
(x SS) 321.20 355.29 385.94 413.65 438.81

v I
∗
(x SS) 545.87 568.47 588.79 607.16 623.84

q I
∗
(x SS) 224.67 213.18 202.85 193.51 185.03

w I ∗(x SS) 220.26 208.59 198.09 188.61 179.99

eI
∗
(x SS) 4.41 4.59 4.75 4.90 5.04

production, abatement and emissions. The complexity of the expressions prevents obtaining
analytical results. For this reason, we present a numerical exercise to get an intuition.

Let us consider the following values of the parameter as a baseline case:

a − c = 1000, δ = 0.01, r = 0.03, n = 2, γ = 3, d = 0.025. (31)

From this baseline case, we carry out a sensitivity analysis with respect to the following
parameters: environmental damage (d), abatement efficiency (γ ), and degree of industry
competition (n). For each parameter, we consider five different values. In each table (Tables
1, 2 and 3), we present the optimal policy rules and the steady-state pollution stock, as well
as the regulator’s policies and the firm’s control variables, output, q , and abatement, w, as
well as the net emissions, e, evaluated at the steady-state pollution stock.

First, we consider the environmental damage coefficient d: 0.01, 0.015, 0.025, 0.035, and
0.05.

An easy comparison of the emission tax and the abatement subsidy for the different entries
in Table 1 allows us to conclude that as the environmental damage parameter increases, both
the intersection point with the vertical axis and the slope of the tax and the subsidy increase,
and hence, the tax and the subsidy also increase for any level of the pollution stock. The
steady-state of the pollution stock decreases as parameter d increases. However, this fall
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Table 3 Sensitivity analysis of the optimal policies and firm’s controls with respect to changes in parameter
n

n = 2 n = 3 n = 5 n = 7 n = 9

τ I
∗
(x) 190.98 + 0.205x 238.81 + 0.151x 208.50 + 0.113x 173.84 + 0.095x 147.59 + 0.084x

v I
∗
(x) 445.37 + 0.151x 433.25 + 0.118x 344.43 + 0.095x 279.47 + 0.084x 234.27 + 0.076x

x SS 950.87 793.65 596.42 477.71 398.41

τ I
∗
(x SS) 385.94 358.55 275.90 219.44 181.27

v I
∗
(x SS) 588.79 526.54 401.34 319.65 264.71

q I
∗
(x SS) 202.85 167.99 125.48 100.20 83.44

w I ∗(x SS) 198.09 165.34 124.25 99.52 83.00

eI
∗
(x SS) 4.75 2.65 1.19 0.68 0.44

QI ∗(x SS) 405.70 503.97 627.40 701.40 750.96

�I ∗(x SS) 396.18 496.02 621.25 696.64 747

E I ∗(x SS) 9.50 7.95 5.95 4.76 3.96

W (x SS) 6.48 × 106 8.20 × 106 1.03 × 107 1.16 × 107 1.25 × 107

is more than compensated by the increase in the regulator’s optimal tax and subsidy rules,
implying that at the steady state both instruments augment with d . Concerning the firm’s
instruments at the steady-state, any increase of the environmental damage parameter reduces
output and augments abatement, and consequently net emissions are reduced. As expected,
more damages imply higher taxes and subsidies leading to less net and gross emissions and
a lower steady-state pollution stock.

Next, we focus on the effect of the abatement efficiency parameter (γ ). We consider the
following five values of γ : 2.5, 2.75, 3, 3.25, and 3.5.

Table 2 states that as γ increases and firms operate with higher abatement costs, the
regulator’s optimal policies increase for any value of the pollution stock (both the intersection
point with the vertical axis and the slope of the policies increase with γ ) as occurs with an
increase in d . But now that γ, has a larger value, the steady-state of the pollution stock is
higher. Consequently, both the long-run emission tax and subsidy on abatement increase too.
The stricter tax policy and laxer subsidy policy as γ becomes higher reduce the output and
the abatement level, with the later effect being stronger than the former and hence implying
a rise in net emissions.

Next, we analyze the effect of industry competition measured by the number of firms on
the optimal regulatory rules and the firms’ decisions.We start from the base case of a duopoly
(n = 2) and increase the number of firms in the industry, n: 3, 5, 7, and 9.

Table 3 shows that as industry competition increases both the optimal tax on emissions
and the optimal subsidy on abatement decrease, because for both policy rules the ordinate at
the origin and the slope decrease as the number of firms in the industry increases. However,
there is a case for which this does not occur, when comparing a duopoly with a triopoly.
In this case, the intersection point with the vertical axis increases. However, this increase
is not enough as to yield a higher tax when the number of firms goes from 2 to 3 and the
steady-state tax decreases when the number of firms augments. The decrease in the tax and
in the subsidy comes with a reduction in the steady-state pollution stock. A laxer tax policy
and less generous subsidy as competition increases lead to lower levels of output, abatement,
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and net emissions in the long run for firms. Thus, as we already pointed out in Sect. 4.1,
competition is good for the environment since it reduces net emissions and the pollution
stock. Moreover, we should highlight that competition also increases the total output and the
total abatement of the industry, although the individual production and abatement decrease.
The total output for the duopoly is 450.7, and when the industry is formed by 9 firms it is
equal to 750.9. The total abatement is 396.2 for the duopoly, but it is equal to 747 when there
are 9 firms in the industry. More firms in the industry means more production and abatement.
Thus, competition, on the one hand, increases the consumer surplus and reduces the damages,
and—on the other hand, increases production and abatement costs. But the net effect is a
larger welfare as the last row of Table 3 shows. Then, we can conclude that competition not
only improves the efficiency of resource allocation, but is also good for the environment.

4.3 Tax–Subsidy Scheme II

The efficient outcome can also be implemented combining a tax on production with a subsidy
on abatement costs. However, the use of a different policy mix implies that the value function
of the firm changes. Now, the HJB equation of the firm is:

rV I I (x) = (a − nq)q − cq − τq − (1 − v)
γ

2
w2 + (V I I )

′
(x)(n(q − w) − δx),

so that if we substitute the subsidy and the tax by expressions (13) and (25) and the production
and the abatement by the efficient strategies given by (14) and (15), we obtain the following
differential equation:

rV I I (x) = 1

n2
(s + W ′(x))2 +

(
n − 1

n
+ 2n − 1

2γ

)

(V I I )
′
(x)W ′(x)

+ (n − 1)s − δnx

n
(V I I )

′
(x). (32)

For solving this equation, we propose a quadratic specification:

V I I (x) = AI I
f

2
x2 + BI I

f x + C I I
f ,

for which (V I I )
′
(x) = AI I

f x + BI I
f .22 Substituting V I I (x), (V I I )

′
(x), and W ′(x) into (32)

gives a system of Riccati equations whose solution for the first two coefficients is: 22

AI I
f = 2A2

r

n2(r + 2δ − 2ηAr )
> 0, (33)

BI I
f = 2(n(s + Br )(r + 2δ) + ((n − 1)s − nη(2s + Br )) Ar )Ar

n3(r + 2δ − 2ηAr )(r + δ − ηAr )
< 0, (34)

where

η = n − 1

n
+ 2n − 1

2γ
> 0, (35)

22 Again the subscript f is used to represent the coefficients of the firm’s value function, but now the superscript
I I stands for the tax–subsidy scheme with a subsidy on abatement costs.
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and Ar < 0 is given by (18).23 Then, substituting (V I I )
′
(x) and W ′(x) in (25) using the

coefficients of the value functions, we can calculate the optimal tax.

Proposition 4 The optimal tax is defined by the following rule:

τ I I ∗(x) = −1

n
(s + (n + 1)Br − nBI

f ) + 2(n(n + 1)η + 1)A2
r − n(n + 1)(r + 2δ)Ar

n2(r + 2δ − 2ηAr )
x,

(36)

where Ar is negative. The tax increases with the pollution stock, but it can be negative for
low values of the pollution stock.

As occurs when a subsidy is applied to the abatement effort and for the same reasons, the
optimal policy could consist of fixing a subsidy on production for low values of the pollution
stock. Finally, eliminating (V I I )

′
(x) and W ′(x) in (13) using the coefficients of the value

functions, we obtain the optimal subsidy.

Proposition 5 The optimal subsidy is given by the following rule:

1 − v I I ∗(x) = 2A2
r x + BI I

f n2(r + 2δ − 2ηAr )

n2(r + 2δ − 2ηAr )(Ar x + Br )
. (37)

For x ≤ xe < xv = −BI I
f n2(r + 2δ − 2ηAr )/(2A2

r ), v I I ∗(x) is an increasing strictly
concave function of the pollution stock in the interval [0, 1].
Proof See the Appendix. ��

Observe that although the policy game we have proposed is an LQ differential game, in
this case the subsidy rule is not linear. The subsidy rule is an increasing and strictly concave
function of the pollution stock for all x ∈ [0, xe]. Thus, we find that the subsidy on abatement
costs increases with the pollution stock, but at a decreasing rate.

We have also carried out a sensitivity analysis for Tax–Subsidy Scheme II, but we only
report here the cases for whichwe have found qualitative differences with the results obtained
for Tax–Subsidy Scheme I. For the rest of cases we have found the same qualitative results.
For the lowest value of d , the intersection point with the vertical axis of the tax rule is negative.
Thus, in this case, the optimal policy consists of subsidizing the production for low values
of the pollution stock, although the taxes at the steady state are positive. This result suggests
that we should expect that the lower the environmental damage parameter, d , the higher the
chances that the tax rule crosses the vertical axis at a negative value. With low values of d ,
the market distortion caused by the market power of firms can be more serious than the one
caused by the environmental externality, and then we should expect that the tax becomes
a subsidy. We also find differences in the effects that the different parameters have on the
subsidy. Whereas an increase in d augments the subsidy when it is applied to the abatement
effort, it reduces the subsidy on the abatement costs. Finally, in the case of the number of
firms, the opposite occurs. More firms in the market reduce the subsidy on the abatement
effort, but increase the subsidy on abatement costs. Thus, not only can two different incentive
structures implement the same outcome, but they respond in a different way to changes in
the parameter values of the model.

23 We show that BI I
f is negative in the Appendix.
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4.4 Comparison of the Tax–Subsidy Schemes

Although, as we have just seen, the two schemes implement the efficient solution, we expect
that they yield differences in fiscal terms. In this subsection we try to assess these differences.
The next proposition evaluates the effect on the tax rule of using a different subsidy.

Proposition 6 The optimal taxes for the two tax–subsidy schemes compare as follows:

τ I ∗(x) > τ I I ∗(x) for any x ≥ 0.

Proof See the Appendix. ��
The proposition establishes that for any value of the pollution stock, the optimal tax when

the subsidy is for the abatement effort is greater than when it is for abatement costs. In the
proof of this result, we show that both the slope of the optimal rule and the intersection with
the vertical axis when a subsidy is applied to abatement costs are lower thanwhen a subsidy is
directly applied to abatement. As both tax–subsidy schemes implement the efficient solution,
the steady-state pollution stock will be the same and consequently the steady-state tax will
be higher when a subsidy is applied to abatement rather than to abatement costs. Therefore,
as a direct consequence of the proposition we can conclude that:

Corollary 1 The tax revenues at the steady state are higher when the subsidy is applied to
the abatement effort rather than to abatement costs.

However, from a fiscal point of view, what is relevant is the fiscal balance, i.e., the dif-
ference between the tax revenues and the subsidy expenses. For the example at hand, we
can compute the fiscal balance for the two schemes. For the baseline case, if a subsidy on
abatement is applied, the fiscal balance is given by the following expression:

τ I ∗(x)q∗(x) − v I ∗(x)w∗(x) = −0.017x2 + 1.017x − 24343.0.

It can be easily shown that the expression above always takes negative values for any value
of the pollution stock, and therefore, there is always a fiscal deficit.

For the baseline case, if instead a subsidy on abatement costs is applied the fiscal balance
reads:

τ I I ∗(x)q∗(x) − v I I ∗(x)γ
2

(w∗(x))2 = −0.0074x2 + 4.426x − 11798.7.

In this case, there is a fiscal deficit too.
Finally, if we compare the fiscal balances at the steady state, we see that the fiscal deficit is

lower when the subsidy is on abatement costs which means that subsidy expenses are lower
in this case, since we have already showed that the tax revenues are also lower. Thus, when
Tax–Subsidy Scheme II is used, the government will collect less taxes and spend less money
on subsidies for the firms, resulting in a negative fiscal balance that is lower than the fiscal
deficit the government will obtain applying Tax–Subsidy Scheme I. Then, if the criterion for
choosing the type of subsidy by the regulator is the one that generates the most favorable
fiscal balance, the regulator will choose to subsidize the abatement costs.

5 Conclusions

This paper studies an efficiency-inducing policy for a polluting oligopoly when pollution
abatement is technologically feasible and environmental damages depend on the pollution
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stock. Using a dynamic policy game between the regulator and the oligopolists, we show that
a tax–subsidy scheme can implement the efficient outcome as a regulatedmarket equilibrium.
The scheme consists of a combination of a tax on production and a subsidy. For the subsidy,
we consider two alternatives. A subsidy on the abatement effort and a subsidy on abatement
costs. Both schemes yield a different tax rule, but both implement the efficient outcome.
We have shown that the subsidy only reflects the divergence between the social and private
valuation of the pollution stock associated with the decision on abatement, and consequently,
the tax has to correct the two market failures associated with production: the market power
of firms and the negative externality caused by pollution. Thus, the tax could be negative if
the first distortion dominates the second. Nevertheless, if the main distortion in the market
allocation is the one caused by pollution, the efficiency-inducing policy will consist of a tax
on production and a subsidy either on the abatement effort or the abatement costs. Although
both policies implement the efficient outcome, they yield different fiscal balances. Using an
LQ policy game, we find that the application of a subsidy on abatement costs relaxes the tax
rule. Interestingly, it also yields a lower fiscal deficit at the steady state. A numerical exercise
shows that both tax–subsidy schemes present a negative balance at the steady state for all
parameter values we have studied, but when a subsidy on abatement costs is applied, the fiscal
deficit is always lower. Thus, our policy recommendation is that, from a fiscal perspective, a
subsidy on abatement costs should be adopted instead of a subsidy on abatement.

A limitation of our approach is that it is assumed an emission function that is additively
separable in production (gross emissions) and abatement. To overcome this limitation, a pos-
sibility would be to consider an abatement technology that could reduce the emissions to
output ratio.24 We could also consider that the abatement capital could be adjusted through
investment.25 In this case, we could analyze the dynamic interdependence between the accu-
mulation of emissions and the investment. A further step in this line of research would be
to characterize the optimal environmental policy when the pollution stock or the abatement
capital are subject to a stochastic evolution.26 Finally, another interesting issue to address
would be to investigate which would be the optimal environmental policy with free entry in
the market. All these questions are part of our research agenda.
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Appendix

Proof of Proposition 3
As the subsidy increases with the pollution stock, we can conclude that the subsidy is

guaranteed to be positive for all x ≥ 0 if the intersection with the vertical axis, BI
f − Br , is

positive too. According to (28), this difference is given by the following expression

BI
f − Br

= nγ (r+2δ)(2sγ +(2γ +n2)Br )Ar +(n−1)(sγ (n(n−4)−2γ )−(n+γ )(2γ +n2)Br )A2
r

n(nγ (r+δ)−(n−1)(n+γ )Ar )(nγ (r+2δ)−2(n−1)(n+γ )Ar )

−Br .

Next, we develop this difference

BI
f − Br

= nγ (r + 2δ)(2sγ + (2γ + n2)Br )Ar

n(nγ (r + δ) − (n − 1)(n + γ )Ar )(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )

+ (n − 1)(sγ (n(n − 4) − 2γ ) − (n + γ )(2γ + n2)Br )A2
r

n(nγ (r + δ) − (n − 1)(n + γ )Ar )(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )

− Brn(nγ (r + δ) − (n − 1)(n + γ )Ar )(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )

n(nγ (r + δ) − (n − 1)(n + γ )Ar )(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )
. (38)

As the denominator in the expressions above is positive because Ar is negative, we focus on
the sign of the numerator. Substituting Br by (19) and developing the numerator yields

sγ Ar ( f0A2
r + f1Ar + f2)

(n + γ )Ar − (r + δ)γ
> 0,

since

f0 = (n − 1)n(2
(
n2 − 2

)
n + 2

(
2n2 − n − 2

)
γ + 2 (n − 1) γ 2) > 0,

f1 = −γ (n3(n − 2)(r + 2δ) + n (n − 1)
(
2n2 + n − 4

)
(r + δ)

+n2(n − 1)(r + 2δ)γ + 2 (n + 1) (n − 1)2 (r + δ)γ ) < 0,

f2 = n(r + 2δ)(r + δ)γ 2 (
n2 − 2

)
> 0,

for n ≥ 2.Thus, the numerator of (38) is positive and hence the difference BI
f −Br is positive

too and we can conclude that the subsidy on abatement effort is positive for all x ≥ 0.

Sign of Coefficient BI I
f

The sign of coefficient BI I
f according to (34) depends on the sign of the following expres-

sion (one of the factors in the numerator) since the denominator is positive because Ar is
negative

n(s + Br )(r + 2δ) + ((n − 1)s − nη(2s + Br )) Ar . (39)
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Substituting Br by (19), expression (39) reads:

s

γ (δ + r) − (γ + n)Ar

(
nγ (δ + r)(r + 2δ) − n2(r + 2δ)Ar

+γ (n − 1 − 2nη)(δ + r)Ar + (nη(γ + 2n) − (n − 1)(γ + n))A2
r

)
. (40)

Now, we use (35) to eliminate η resulting in

n − 1 − 2nη = −
(

(n − 1) + n(2n − 1)

γ

)

< 0,

and

nη(γ + 2n) − (n − 1)(γ + n) = (n − 1)n + n(2n − 1)

2γ
(γ + 2n) > 0.

Then, expression (40) is positive because Ar is negative. Consequently (39) is positive, hence,
multiplied by Ar gives a negative value for the numerator of (34) and then we can conclude
that BI I

f is negative.

Proof of Proposition 5

For the subsidy rule defined by (37), the denominator is negative since Ar and Br are
negative.On the other hand, the numerator is an increasing linear function that takes a negative
value for x = 0, because BI I

f is negative. Then, we can conclude that 1− v I I ∗(x) is positive
for all x < xv = −BI I

f n2(r+2δ−2ηAr )/(2A2
r ), where xv is the pollution stock forwhich the

numerator is null. We have to ensure that v I I ∗(x) is in the interval (0, 1). To show this point,
first we check that v I I ∗(0) belongs to this interval. As 1− v I I ∗(0) = BI I

f /Br > 0, v I I ∗(0)
must be lower than 1 and it will be higher than 0 if Br < BI I

f . The difference between these
two coefficients according to (34) is given by

Br − BI I
f = Br − 2(n(s + Br )(r + 2δ) + ((n − 1)s − nη(2s + Br )) Ar )Ar

n3(r + 2δ − 2ηAr )(r + δ − ηAr )

= n3(r + 2δ − 2ηAr )(r + δ − ηAr )Br
n3(r + 2δ − 2ηAr )(r + δ − ηAr )

−2(n(s + Br )(r + 2δ) + ((n − 1)s − nη(2s + Br )) Ar )Ar

n3(r + 2δ − 2ηAr )(r + δ − ηAr )
, (41)

where the denominator is positive because Ar is negative. Substituting Br by (19) in the
numerator and developing it gives

− s Ar (k0A2
r + k1Ar + k2)

(n + γ )Ar − (r + δ)γ
< 0,

since

k0 = (n(n − 1) − 1)γ + n

2
(n(2n − 1) − 4) > 0,

k1 = −
(
n(2n − 1) − 4

2
+ γ (n − 1)

)

< 0,

k2 = n(n2 − 2)(r + 2δ))(r + δ)γ > 0,
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for n ≥ 2. Thus, we can establish that (41) is negative that implies Br < BI I
f . Then, we

can conclude that v I I ∗(0) ∈ (0, 1). Finally, we calculate the derivative of 1 − v I I ∗(x) with
respect to the pollution stock

(1 − v I I ∗)′(x) = 2A2
r n

2(r + 2δ − 2ηAr )(Ar x + Br )

n4(r + 2δ − 2ηAr )2(Ar x + Br )2

− (2A2
r x + B f n2(r + 2δ − 2ηAr ))n2(r + 2δ − 2ηAr )Ar

n4(r + 2δ − 2ηAr )2(Ar x + Br )2
,

that takes a negative value for x < xv. Then, we have that v I I ∗(x) must be increasing, but
as 1 − v I I ∗(x) is positive for all x < xv, v I I ∗(x) cannot reach a value higher than 1 for
x ∈ [0, xv). In order to find the sign of the second derivative of the subsidy, we will use (13)
instead of (37). The second derivative of this expression yields

(v I I ∗)′′(x) = 1

(W ′(x))3
{
W ′(x)

[
(V I I )

′
(x)W ′′′(x) − (V I I )

′′′
(x)W ′(x)

]

− 2W ′′(x)
[
(V I I )

′
(x)W ′′(x) − (V I I )

′′
(x)W ′(x)

]}
,

that for the LQDG simplifies resulting in

(v I I ∗)′′(x) = − 2W ′′(x)
(W ′(x))3

[
(V I I )

′
(x)W ′′(x) − (V I I )

′′
(x)W ′(x)

]
, (42)

where W ′(x) and W ′′(x) are negative and (V I I )
′′
(x) is positive. On the other hand, we have

just concluded that 1−v I I ∗(x) is positive for all x < xv that according again to (13) implies
that (V I I )

′
(x) must be negative for those values of the pollution stock. Then, for the LQ

formulation (v I I ∗)′(x) is negative and v I I ∗(x) is a strictly concave function in the pollution
stock.

Finally, to conclude the proof of the proposition we prove that xv > xe . First, we rewrite
the expression of xv = −BI I

f n2(r + 2δ − 2ηAr )/(2A2
r ), substituting the expression of BI I

f
in ( 34). After some easy computations using the expressions of η in ( 35) xv reads:

xv = −s
n(γ (r + δ) − nAr )(r + 2δ − 2ηAr ) + ((n − 1)(γ (r + δ) − (n + γ )Ar ) + nγ ηAr )

n(γ (r + δ) − Ar )(r + δ − ηAr )Ar
.

Taking into account the expression of the threshold xe in (23), the difference xv − xe reads:

s
nγ 2(r + δ)(r + δ − ηAr )

n(n + γ )(γ (r + δ) − (γ + n)Ar )(r + δ − ηAr )Ar

− s
(n+γ )

[
n(γ (r+δ)−nAr )(r+2δ−2ηAr )+Ar ((n−1)(γ (r+δ)−(n+γ )Ar )+nγ ηAr )

]

n(n+γ )(γ (r+δ)−(n+γ )Ar )(r+δ−ηAr )Ar
.

The denominator is negative because Ar < 0; hence, the difference xv − xe is positive
if and only the numerator is negative too. The numerator can be rewritten as a second-order
polynomial in variable Ar as follows:

l0A
2
r + l1Ar + l2,
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with

l0 = −(γ + n) (γ + γ (η − 1)n + n((2η − 1)n + 1)) ,

l1 = (δ + r)
(
n3 + γ 2((η − 1)n + 1) + γ n(2ηn + 1)

) + δn2(γ + n),

l2 = −γ n(δ + r) (γ δ + n(2δ + r)) < 0.

We can conclude that l0A2
r + l1Ar + l2 < 0, and consequently, xv − xe > 0, because

as shown below l0 < 0 and l1 > 0 for any n ≥ 2, once the expressions of η, in (35) is
substituted:

l0 = −(n + γ )(2n(2n − 1) + γ (4n − 3)),

l1 = n

(

δn (γ + n) + 1

2
(δ + r) (2n(3n − 1) + 3γ (2n − 1))

)

.

Proof of Proposition 6
We begin with the comparison of the slope of the tax rules. From (29) and (36) we know

that the difference in the slopes is given by

n
(
(1 + 2γ )n + 2(n2 − 1)

)
A2
r − (n + 1)γ (r + 2δ)Ar

n2γ (r + 2δ) − 2(n − 1)n(n + γ )Ar

− 2(n(n + 1)η + 1)A2
r − n(n + 1)(r + 2δ)Ar

n2(r + 2δ − 2ηAr )
,

that yields

n2(n
(
(1 + 2γ )n + 2(n2 − 1)

)
A2r − (n + 1)γ (r + 2δ)Ar )(r + 2δ − 2ηAr )

n3(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )(r + 2δ − 2ηAr )

−n(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )(2(n(n + 1)η + 1)A2r − n(n + 1)(r + 2δ)Ar )

n3(nγ (r + 2δ) − 2(n − 1)(n + γ )Ar )(r + 2δ − 2ηAr )
,

(43)

where the denominator is positive because Ar is negative. Developing the numerator and
simplifying terms, we obtain the following expression

nA2
r (n

3(r + 2δ) − n

γ
(n2(2n − 1) + 2(n2 − n + 1)γ )Ar ) > 0. (44)

Therefore, (44) is positive and we can conclude that the slope of the optimal tax rule when a
subsidy is applied on abatement costs is lower than the slope of the optimal tax rule when a
subsidy is applied directly on abatement.

On the other hand, the difference in the intersection point with the vertical axis is given by
the difference BI

f − BI I
f . The intersection point with the vertical axis for scheme I is greater

than for scheme I I if and only if BI
f > BI I

f . From (28) and (34), one has

BI
f − BI I

f = Ar (
1 − 
2)

n3
,

where


1= n2(Ar (n−1)(γ s(n2−4n−2γ )−Br (n+γ )(2γ +n2))+γ n(2δ+r)(Br (2γ +n2)+2γ s))

(γ n(δ+r)−Ar (n+γ )(n−1))(γ n(2δ+r)−2Ar (n + γ )(n − 1))
,


2= 2(Ar Brηn + n(Br + s)(−2Arη + 2δ + r) + Ar (n − 1)s)

(−2Arη + 2δ + r)(−Arη + δ + r)
.
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Because Ar < 0, the sign of the difference BI
f − BI I

f is the opposite to the sign of the
difference 
1 − 
2.

The difference 
1 − 
2 can be rewritten as:


1 − 
2

= Num(
1−
2)

(−2Arη+2δ+r)(−Arη+δ+r)(γ n(δ+r)−Ar (n + γ )(n−1))(γ n(2δ+r)−2Ar (n + γ )(n−1))
,

where

Num(
1 − 
2)=(−2Arη + 2δ + r)(−Arη + δ + r)Num(
1)

−(γ n(δ+r)−Ar (n+γ )(n−1))(γ n(2δ+r)−2Ar (n+γ )(n−1))Num(
2),

with

Num(
1) = n2(Ar (n − 1)(γ s(n2 − 4n − 2γ ) − Br (n + γ )(2γ + n2))

+γ n(2δ + r)(Br (2γ + n2) + 2γ s)),

Num(
2) = 2(Ar Brηn + n(Br + s)(−2Arη + 2δ + r) + Ar (n − 1)s).

The denominator of 
1 − 
2 is positive because Ar is negative, and hence, the sign of the
difference 
1 − 
2 is the same as the sign of its numerator, Num(
1 − 
2). Substituting
the expression of Br given in (19), and after some simplifications Num(
1 − 
2) can be
rewritten as

Num(
1 − 
2) = Ar (�1 + �2Ar + �3A2
r + �4A3

r )

Ar (n + γ ) − γ (δ + r)
, (45)

where

�1 = −γ 2n2s(δ + r)(2δ + r)[(2δ + r)((2γ + n2)n + 2(n + γ )(n + 1))

+(δ + r)(2γ + (2γ + n2)(n − 1)) − 2γ n(δ(2η + 3) + (η + 2)r ],
�2 = γ ns[2(n + γ )(n − 1)((2γ + n2)n(δ + r)(2δ + r) + 2γ δ2(2 − 7n) + (3 − 7n)γ r2

+(7 − 20n)γ δr) − γ ηn((2γ + n2)(4δ + 3r)(δ(1 − 3n) + (1 − 2n)r)

+2γ n(2η + 1)(δ + r)(2δ + r)) + 2(n + γ )2(n − 1)(2δ + r)((3n − 2)r − 2δ(1 − 2n))

−2γ η(n + γ )n2(2δ + r)2],
�3 = 2s[γ η(n + γ )n2(−(n − 1)(γ + n2)(4δ + 3r) + 2γ η(2δ(2n − 1) + r(3n − 2)))

−γ 2(2γ + n2)η2n2((n − 1)(δ + r) + n(2δ + r)) − 2n(n + γ )3(n − 1)2(2δ + r)

−γ (n + γ )2(n − 1)2(2(δ + δ(2η − 5)n) + r((4η − 7)n + 2))],
�4 = 4(n + γ )(n − 1)s[γ (2γ + n2)η2n2 + (n + γ )2(n − 1)((2η − 1)n + 1)

−γ ηn(n + γ )(n − 1 + 2ηn)].

Taking into account that Ar is negative, the sign of Num(
1 − 
2) in expression (45)
coincides with the sign of the third-order polynomial in variable Ar , �1 + �2Ar + �3A2

r +
�4A3

r . From the expression of �1 it is clear that �1 is negative for any n ≥ 2, because η is
positive. However, to completely characterize the sign of coefficients �2,�3,�4, we need
to substitute the expressions of η given in (35 ). After the substitution coefficient �4 reads

�4= 1

γ
(n − 1)ns (γ + n)

[
2γ n(n − 1)

(
4n2 − 2n − 1

) + n2(n(2n − 3)(2n + 1) + 2)

+2γ 2(n − 1)(2(n − 1)n + 1)
]
.

Therefore, �4 is positive for any n ≥ 2.
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Unfortunately, the expressions for coefficients �2 and �3 are much longer and more
complicated:

�2 = γ ns
[
2(n − 1)(2δ + r) (γ + n)2 ((3n − 2)r − 2δ(n − 2))

+ 2(n − 1) (γ + n)
(
n(δ + r)(2δ + r)

(
γ + n2

)
− γ (4δ + 3r)(δ(3n − 1) + (2n − 1)r)

)

+ 1

2
(n(2n − 1) + 2γ (n − 1))

(
−2n(2δ + r)2 (γ + n)

− 2(δ + r)(2δ + r) (n(2n − 1) + γ (3n − 2))

+ (4δ + 3r)
(
2 + n2

)
(δ(3n − 1) + (2n − 1)r)

)]
,

�3 = − 1

2
s
(
2γ +n2

)
(n(2n−1)+2γ (n−1))2 ((n−1)(δ+r) + n(2δ+r))

+s (γ +n) (n(2n−1) + 2γ (n−1))
(
(1−n)n(4δ + 3r)

(
γ +n2

)

− ((1−2n)n−2γ (n−1)) (2δ(2n−1) + (3n−2)r))

−2(1−n)(n−1)s (γ +n)2 (2(δ+r) ((1−2n)n−2γ (n−1)) + γ (2δ(5n−1)+(7n−2)r))

−4(n−1)2ns(2δ+r) (γ +n)3 .

Given the complexity of the above expressions for�2 and�3, we have resorted to studying
their sign with the help of the Reduce command of the mathematical software Mathematica.
This command reduces expressions by solving both equations and inequalities by eliminating
quantifiers. This command allows us to determine that �2 and �3 are positive and negative,
respectively, for any n ≥ 2. Therefore, we can conclude that the third-order polynomial in
variable Ar ,�1+�2Ar+�3A2

r +�4A3
r is always negative for any Ar < 0, and consequently,

BI
f − BI I

f > 0.
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