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Abstract
We study a simple motion evasion differential game of m pursuers and one evader. The
maximum speed of pursuers is 1, and that of evader is σ > 1. If for all time the state of the
evader doesn’t coincide with the state of any pursuer, then evasion is said to be possible. The
evader strives to avoid capture. This problem was studied by F.L. Chernous’ko in 1976. We
propose a new evasion strategy, which guarantees evasion from any initial positions of players
and enables us to estimate the number of approach times from the above by m(m + 1)/2.
Also, it is established that all approach times of each pursuer to the evader may occur only
on the time interval associated with the first approach time of the pursuer to the evader.

Keywords Differential game · Evasion · Control · Strategy · Slow pursuers

Mathematics Subject Classification Primary: 91A23 · Secondary: 49N75

1 Introduction

The field of differential games was pioneered by Isaacs [17]. Evasion problem on the infi-
nite time interval [t0,∞) was introduced and studied by Pontryagin and Mischenko [24].
Mishchenko et al. [23] proposed a new maneuver for evasion in the game of many pursuers.

A substantial part of the researches study simple motion pursuit or evasion differential
games with many players. Chernous’ko [9] studied an evasion game of one faster evader
and several pursuers with a state constraint for the evader. The evader must remain in a
neighborhood of a given ray during the game. It was proved that the faster evader can escape
from the pursuers. This result later on was extended by Chernous’ko and Zak [10, 27–29]
to more general differential game problems. Related problems of evasion from a group of
pursuers were studied in [7] and [11].
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Blagodatskikh and Petrov [6] obtained necessary and sufficient condition of evasion in a
simple motion differential game of a group of pursuers and a group of evaders in R

n where
all evaders use the same control. By definition, pursuit is considered completed if the state
of a pursuer coincides with the state of at least one evader. Also, the works [5, 26] related to
such games.

In [25], a pursuit-evasion game involving one pursuer and multiple evaders motivated by
the seminal “selfish herd” model of Hamilton was considered. The pursuer can freely move
in any direction with bounded speed, and evaders move with bounded speed and bounded
turning speed. Using Isaacs’ heuristic argument, an optimal strategy for the pursuer was
constructed and it was concluded that the optimal strategy for the pursuer is to focus on a
single evader that can be captured in minimum time. Moreover, “non-targeted” evaders are
always able to escape.

The paper of Lee and Bakolas [22] studies a differential game of a heterogeneous group
of pursuers and one evader. Pursuers individually attempt to capture the evader, that is, the
strategy of the group of pursuers is not cooperative. The evader tries to delay or avoid capture.

Ramana and Mangal [30] studied pursuit-evasion games of multiple pursuers and a
high-speed single evader with holonomic constraints in an open domain. Using the idea
of Apollonius circle, an escape strategy was developed for the high speed evader. Jin and
Qu [18] also apply the Apollonius circles for the evader and each pursuer to study how the
evader can form a better strategy to avoid or prolong the capture time provided a successful
escape impossible. The work of Awheda and Schwartz [4] also relates to a multi-pursuer
pursuit-evasion differential game. Chen at al. [8] studied a simple motion pursuit differential
game of many identical pursuers and one faster evader. The evader is captured if the evader
becomes in dc distance from a pursuer. Sufficient conditions of completion of game were
obtained. We refer to work [21] for a detailed survey of results on differential games of many
players where the controls of players are under geometric constraints.

In the case of integral constraints, evasion differential games of many players were studied
in the papers [2, 14–16]. The work [15] is devoted to the differential game of many pursuers
and many evaders where the total energy of evaders greater or equal to that of pursuers.
Evasion strategies are constructed to avoid from any initial positions of players.

There are few papers on multi pursuer differential games with state constraints. For exam-
ple, interesting results were obtained by Alexander et al. [1] for a discrete time simple motion
differential game in an unbounded region. Kuchkarov et al [20] studied a differential game
of many pursuers and one evader on a cylinder, where all the players have equal dynamic
capabilities. The paper of Kuchkarov et al [19] is devoted to pursuit and evasion differential
games on manifolds with Euclidean metric where necessary and sufficient conditions of eva-
sion are obtained. The optimal number of pursuers in the differential games on the 1-skeleton
of orthoplex was found [3] to capture a single faster evader by many pursuers.

In the present paper, we study a simplemotion evasion differential game ofm pursuers and
one evader. The maximum speed of pursuers is 1 and that of evader is σ > 1. This problem
of evasion was studied in [9]. In the present paper, we propose a new evasion strategy and
prove that the evader can avoid from pursuers moving in any ε-vicinity of any straight line
passing through the initial state of evader. Also, we show that the number of approach times
doesn’t exceed m(m + 1)/2, whereas this number was estimated by 2m − 1 in [9]. Another
an important point to note is the fact that the approach times of each pursuer xi to the evader
may occur only on the time interval [τi , τ ′

i ) associated with the first approach time τi of the
pursuer xi to the evader.

It should be noted that the results of the current paper can be applied to multiple objective
adversarial games such as Reach-avoid (RA) [12, 31] and Capture-the-flag [13] games. For
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example, for the RA games, there are not only the attacker (evader) and the defender (the
team of pursuers), but there is also a target area. The attacker’s goal is to reach the target area
without being captured, while the defender team attempts to delay or prevent the attacker
from entering the target area by capturing attacker. The results of the current paper allow us
to conclude that a high-speed attacker can reach the target area without being captured.

2 Statement of Problem

Consider a simple motion differential game ofm pursuers x1, ..., xm and one evader y inRd ,
d ≥ 2, whose dynamics are described by the following equations

ẋi = ui , x(0) = xi0, ||ui || ≤ 1,

ẏ = v, y(0) = 0, ||v|| ≤ σ,
(1)

where xi , xi0, y, y0, ui , v ∈ R
n , xi0 �= y0, i = 1, 2, . . . ,m, and σ , σ > 1, is a given number,

ui is control parameter of pursuer xi , and v is that of evader y.

Definition 1 Measurable functions ui (t), ||ui (t)|| ≤ 1, and v(t), ||v(t)|| ≤ σ , t ≥ 0, are
called controls of the pursuer xi and the evader y, respectively.

Definition 2 The strategy of evader is defined as a function V : R×R×R×R
(2m+1)d → R

d ,

(t, θ1, θ2, y, x1, . . . , xm, u1, . . . um) → V (t, θ1, θ2, y, x1, . . . , xm, u1, . . . um)

for which initial value problem (1) with v = V (t, θ1, θ2, y, x1, . . . , xm, u1, . . . um) has a
unique solution (y(t), x1(t), . . . , xm(t)) for θ1 = θ1(t), θ2 = θ2(t), and arbitrary controls
u1 = u1(t),..., um = um(t) of pursuers, where θ1(t) and θ2(t), t ≥ 0, are given functions.

The behaviors of the pursuers are arbitrary, that is, the pursuers apply any controls and
the evader applies a strategy.

Definition 3 We say that evasion is possible in the game (1) if there exists a strategy V of
evader such that, for any controls of pursuers, xi (t) �= y(t) for all t ≥ 0 and i = 1, ...,m.

Problem 1 Construct a strategy V for the evader, for which evasion is possible in game (1).

It is sufficient to consider the case where d = 2. We therefore study the evasion of one
evader from many slow pursuers in the plane.

3 Evasion fromOne Pursuer

In this section, we consider an evasion differential game of one pursuer and one evader inR2.
We use the temporary notation x = (x1, x2) for the pursuer and u = (u1, u2) for its control
parameter only in this section. The dynamics of pursuer x and evader y are described by the
equations

ẋ = u, x(0) = x0,
ẏ = v, y(0) = y0,

(2)

where x0 �= y0, y = (y1, y2), and v = (v1, v2) is control parameter of evader. The controls
of players satisfy the inequalities

||u(t)|| ≤ 1 and ||v(t)|| ≤ σ, t ≥ 0. (3)
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Fig. 1 Trajectory of the evader when x1(τ ) ≤ y1(τ )

We fix the numbers α and a

0 < α <
1

2
(σ − 1), 0 < a < ||x0 − y0||. (4)

The pursuer x applies an arbitrary control u(t) = (u1(t), u2(t)), t ≥ 0, and let x(t) =
(x1(t), x2(t)) be the corresponding trajectory of the pursuer.

We now construct a strategy for the evader. Fist, the evader starting from the initial time
t = 0 moves with the velocity

V0 = (0, σ ), t ∈ [0, τ ), (5)

i.e., v1(t) = 0, v2(t) = σ , parallel to the Oy-axis, where τ is the first time when ||x(t) −
y(t)|| = a. We call τ the a-approach time of pursuer to the evader. The segment between the
points y0 and y(τ ) in Fig. 1 is the trajectory of the evader corresponding to (5).

Note that time τ may not occur. In this case, we have ||x(t) − y(t)|| > a for all t ≥ 0
and, clearly, x(t) �= y(t) for all t ≥ 0. Therefore, we assume that the time τ occurs. Also,
we define τ ′ = τ + 4a

σ−1 .
Also, we use temporarily the notation V (t) = (V1(t), V2(t)) only in section, where

V1(t) =
{ |u1(t)| + α, x1(τ ) ≤ y1(τ )

−(|u1(t)| + α), x1(τ ) > y1(τ )
, V2(t) =

√
σ 2 − V 2

1 (t). (6)

Clearly, |V1(t)| ≤ |u1(t)| + 1
2 (σ − 1) ≤ σ , and so V2(t) is defined. The evader applies the

following strategy on [τ, τ ′):

V (t) = (V1(t), V2(t)), t ∈ [τ, τ ′). (7)
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We call V (t) defined by (7) a maneuver of the evader y against the pursuer x . For the final
part of evader’s strategy, we let

V0 = (0, σ ), t ≥ τ ′. (8)

The main result of this section is the following statement which will be used to prove the
main result of the paper in Sect. 4.

Lemma 1 Let the evader use the strategy (5), (7), and (8), where τ is the a-approach time of
the pursuer x to the evader y. Then,

||y(t) − x(t)|| ≥ a, 0 ≤ t ≤ τ,

||y(t) − x(t)|| >
αa

2σ
, τ ≤ t ≤ τ ′, (9)

y2(t) − x2(t) > a, t ≥ τ ′. (10)

Proof We will prove this lemma by considering the three parts of evader’s strategy defined
by formulas (5), (7), (8), respectively. First, the evader moves with the velocity v(t) = (0, σ ),
0 ≤ t < τ , along the vertical line. The corresponding trajectory of the evader is a segment
with the endpoints y0 and y(τ ) (see Fig. 1). By definition of τ , we have ||x(t) − y(t)|| ≥ a
for 0 ≤ t ≤ τ .

To prove (9), we consider the case x1(τ ) ≤ y1(τ ), hence, by (6) V1(t) = |u1(s)| + α.
The argument when x1(τ ) > y1(τ ) is completely analogous. The curve between the points
y(τ ) and y(τ ′) in Fig. 1 is the trajectory of the evader corresponding to the maneuver (7).
We have, for τ ≤ t ≤ τ ′,

||y(t) − x(t)|| ≥ y1(t) − x1(t) = y1(τ ) − x1(τ ) +
t∫

τ

V1(s)ds −
t∫

τ

u1(s)ds

= y1(τ ) − x1(τ ) +
t∫

τ

(|u1(s)| + α)ds −
t∫

τ

u1(s)ds

≥ α(t − τ).

On the other hand,

||y(t) − x(t)||≥ ||y(τ ) − x(τ )|| −
∥∥∥∥∥∥

t∫
τ

V (s)ds

∥∥∥∥∥∥ −
∥∥∥∥∥∥

t∫
τ

u(s)ds

∥∥∥∥∥∥

≥ a −
t∫

τ

||V (s)||ds −
t∫

τ

||u(s)||ds

≥ a − (σ + 1)(t − τ).

Hence,

||y(t) − x(t)|| ≥ h(t) = max{α(t − τ), a − (σ + 1)(t − τ)}.
Since the function h1(t) = α(t − τ), t ≥ τ , is increasing, and the function h2(t) = a −

(σ +1)(t −τ), t ≥ τ , is decreasing, therefore the function h(t), t ≥ τ , achieves its minimum
at t = t∗ where h1(t) = h2(t) (see Fig. 2). We can see that t∗ = τ + a

α+σ+1 ∈ [τ, τ ′]. Hence,
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Fig. 2 Graph of the function h(t)

for any t ∈ [τ, τ ′], by (4) we have

||y(t) − x(t)|| ≥ h(t∗) = α(t∗ − τ) = αa

σ + 1 + α
>

αa

2σ
,

which proves (9).
Next, to prove (10), first we show that

y2(τ
′) − x2(τ

′) > a. (11)

Indeed, for τ ≤ t ≤ τ ′, due to the obvious inequality y2(τ )−x2(τ ) ≥ −||y(τ )−x(τ )|| = −a
we have

y2(t) − x2(t) = y2(τ ) − x2(τ ) +
t∫

τ

V2(s)ds −
t∫

τ

u2(s)ds

≥ −a +
t∫

τ

(√
σ 2 − (|u1(s)| + α)2 −

√
1 − u21(s)

)
ds. (12)

Noting that the function

f (ξ) =
√

σ 2 − (ξ + α)2 −
√
1 − ξ2, ξ ∈ [0, 1],

achieves its minimum at ξ0 = α
σ−1 , it follows from (12) that

y2(t) − x2(t) ≥ −a + (t − τ)

(√
σ 2 − (ξ0 + α)2 −

√
1 − ξ20

)

= −a + (t − τ)
√

(σ − 1)2 − α2.

In particular, for t = τ ′ we obtain

y2(τ
′) − x2(τ

′) ≥ −a + 4a

σ − 1

√
(σ − 1)2 − α2 > a. (13)
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Hence, (8) implies that, for t ≥ τ ′,

y2(t) − x2(t) = y2(τ
′) − x2(τ

′) +
t∫

τ ′
v2(s)ds −

t∫
τ

u2(s)ds

> a + (t − τ ′)(σ − 1) > a.

The proof of the lemma is complete. 
�
In particular, Lemma 1 implies that even though the pursuer is on the vertical line and

above the evader, the evader can avoid from capturing using the maneuver.

4 Evasion fromMany Pursuers

We prove the following statement.

Theorem 4.1 For any initial positions of players, evasion is possible in game (1).

We have divided the proof into subsections.

4.1 Definitions of Parameters

Let α, a1 and β be any fixed numbers that satisfy the following relations

0 < α < min

{
1,

1

2
(σ − 1)

}
, 0 < a1 < min

i=1,...,m
||y0 − xi0||, β = (σ − 1)α

64σ 2 .

Wedefine a decreasing geometric sequence {ak}∞k=1 by the equationak+1 = βak , k = 1, 2, ....
Next, we assume that the evader is moving under some strategy. We say that t = τ1 >

0 is the a1-approach time of a pursuer xi0 to the evader if ||xi0(τ1) − y(τ1)|| = a1 and
||xi (t) − y(t)|| > a1 for all 0 ≤ t < τ1 and i = 1, 2, ...,m. In general, if τk−1, k ≥ 2, is
the ak−1-approach time, then we define the time t = τk > τk−1 to be the ak-approach time
if for a pursuer xi1 ||xi1(τk) − y(τk)|| = ak and ||xi (t) − y(t)|| > ak for all 0 ≤ t < τk and
i = 1, 2, ...,m.

Thus, we have defined a monotone increasing sequence τ1 < τ2 < ... of the approach
times. Notice that the same time τk can be the ak-approach time of several pursuers to the
evader. For example, in Fig. 3τk is an ak-approach time of the pursuers xi , x j and xk to the
evader. If there are more than one pursuers, for which τk is the ak-approach time, we choose
any of these pursuers and, without restriction of generality, label it by xk . Hence, by the
definition of τk we have

||y(t) − xi (t)|| > ak, i = 1, 2, ...,m, 0 ≤ t < τk, ||y(τk) − xk(τk)|| = ak . (14)

It should be noted that the same pursuer xk can have several other approach times τk′ ,
τk′′ ,...., beyond the approach time τk .

Let

τ ′
k = τk + 4ak

σ − 1
, k = 1, 2, ..., τ0 = 0, τ ′

0 = ∞.

Notice that the sequence τ ′
1, τ ′

2, τ ′
3, . . . is not necessarily monotone.
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Fig. 3 τk is the ak -approach time of the pursuers xi , x j and xk to the evader y

Fig. 4 Group attacks of x1, x2, x3 on [τ1, τ ′
3) and x4, x5 on [τ4, τ ′

5)

4.2 Strategy for the Evader

Without loss of generality, we assume that y0 = (0, 0), that is, the evader is at the origin
at the initial time. For k = 1, 2, . . . , we define the maneuvers Vk(t) = (Vk1(t), Vk2(t)), as
follows

Vk1(t) =
{ |uk1(t)| + α, xk1(τk) ≤ y1(τk),

−(|uk1(t)| + α), xk1(τk) > y1(τk),
Vk2(t) =

√
σ 2 − V 2

k1(t). (15)

First, the evader moves starting from the time τ0 = 0 along the y-axis with the velocity
v(t) = V0 = (0, σ ). If the a1-approach time τ1 > 0 doesn’t occur, that is, ||y(t)−xi (t)|| > a1
for all i = 1, 2, ...,m and t ≥ 0, then, clearly, xi (t) �= y(t), t ≥ 0, i = 1, 2, ...,m, and so
evasion is possible in the game.

Let the a1-approach time τ1 > 0 occur. In general, the evader constructs its strategy as
follows. Let the time τk , k ≥ 1, occur.

(i) if the time τk+1 occurs in the interval [τk, τ ′
k), then v(t) = Vk(t) on [τk, τk+1).

(ii) if the time τk+1 doesn’t occur in [τk, τ ′
k), then v(t) = Vk(t) on [τk, τ ′

k).
(iii) if the time τk+1 occurs in [τ ′

k,∞), then v(t) = V0 on [τ ′
k, τk+1).

(iv) if the time τk+1 never occurs, then v(t) = V0 on [τ ′
k,∞).

For the times in Fig. 4, τ2 occurs in [τ1, τ ′
1); therefore, by item (i) v(t) = V1(t) on [τ1, τ2).

Similarly, τ3 < τ ′
2; therefore, v(t) = V2(t) on [τ2, τ3). However, τ4 is not in [τ3, τ ′

3);
therefore, by item (ii) v(t) = V3(t) on [τ3, τ ′

3), and by item (iii) v(t) = V0 on [τ ′
3, τ4).

Finally, since there is no an approach time on [τ ′
5,∞), therefore by item (iv) v(t) = V0 on

this interval.
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Fig. 5 Trajectory of the evader

The functions θ1(t) and θ2(t) in Definition 2 are defined as follows. Let θ1(t) =
maxτk≤t τk = τK for some K ≥ 1. In other words, τK is the greatest of the values τk
defined by the current time t . Then, we define θ2(t) = τ ′

K . For example, if τ0 ≤ t < τ1, then
K = 0; if τ1 ≤ t < τ2, then K = 1. The strategy of the evader described by steps (i)-(iv)
means that at the current time t (recall t ≥ τK ) v(t) = VK (t) if t < τ ′

K , and v(t) = V0(t) if
t ≥ τ ′

K .
According to the description of evader’s strategies (i)-(iv), there are two possible cases.
Case A. The finite approach times τ1, τ2,..., τk1 with τ1 < τ2 < ... < τk1 , occur so that

τ2 < τ ′
1, τ3 < τ ′

2,..., τk1 < τ ′
k1−1, and there is no an approach time in [τk1 , τ ′

k1
) for some

k1 ≥ 1. Then, we say that the evader is under a group attack of the pursuers x1, x2,..., xk1 on
the time interval [τ1, τ ′

k1
). Thus, the first group attack of pursuers ends at τ ′

k1
.

By items (i)-(iv), the strategy of the evader on the interval [τ0, τ ′
k1

) can be written as
follows:

v(t) =
⎧⎨
⎩
V0, τ0 ≤ t < τ1,

Vk(t), τk ≤ t < τk+1, k = 1, 2, ..., k1 − 1,
Vk1(t), τk1 ≤ t < τ ′

k1
.

(16)

By item (iii) starting τ ′
k1
, the evader starts to apply v(t) = V0 and after some time the evader

may undergo another group attack of pursuers.
Figure 4 illustrates two group attacks of pursuers. The evader is under a group attack of

the pursuers x1, x2, x3 on [τ1, τ ′
3), and it is under a group attack of the pursuers x4, x5 on

[τ4, τ ′
5).

Figure 5 illustrates the three sections of the evader’s trajectory between the points y(τ1),
y(τ2), y(τ3), and y(τ ′

3) corresponding to some maneuvers v(t) = V1(t), v(t) = V2(t), and
v(t) = V3(t) where τ2 < τ ′

1, τ3 < τ ′
2 and there is no an approach time in [τ3, τ ′

3).
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Since by the definition of approach times we have τk < τk+1, k ≥ 1, therefore, in view of
the conditions τk+1 < τ ′

k , k = 1, ..., k1 − 1, we get in Case A the following inclusion

[τ1, τ ′
k1) = ∪k1−1

k=1 [τk, τk+1) ∪ [τk1 , τ ′
k1) ⊂ ∪k1

k=1[τk, τ ′
k), (17)

For example, for the interval [τ1, τ ′
3) in Fig. 4, we have [τ1, τ ′

3) ⊂ ∪3
k=1[τk, τ ′

k).
It is natural to ask questions: Can the same pursuer participate several times in the same

group attack? Can the number of approach times in a group attack be finite? Description
(i)-(iv) doesn’t exclude the case where the number of pursuers in a group attack is infinite.

Case B. Let infinitely many successive approach times τ1, τ2,... of pursuers x1, x2,...
to the evader occur satisfying the conditions τk < τk+1 < τ ′

k for all k = 1, 2, .... Then,
[τk, τk+1) ⊂ [τk, τ ′

k) and so, for any n ≥ 1, we have

[τ1, τn) = ∪n−1
k=1[τk, τk+1) ⊂ ∪n−1

k=1[τk, τ ′
k), (18)

Clearly,

τn − τ1 =
n−1∑
k=1

(τk+1 − τk) <

n−1∑
k=1

(τ ′
k − τk) <

∞∑
k=1

4ak
σ − 1

= 4a1
(σ − 1)(1 − β)

< ∞.

This means that the increasing sequence τn is bounded. Then, the limit τ∞ = limn→∞ τn
exists. Note that in Case B inclusion (18) holds for any n ≥ 1, and passing to limit as n → ∞
in (18) we obtain

[τ1, τ∞) ⊂ ∪∞
k=1[τk, τ ′

k). (19)

By items (i)-(iv), the evader’s strategy on the interval [τ1, τ∞) is

v(t) = Vk(t), t ∈ [τk, τk+1), τk < τ ′
k−1, k = 1, 2, . . . . (20)

From now on, we use τ̄ to denote τ ′
k1
in Case A, and to denote τ∞ in Case B.We’ll discuss

in detail the first group attack, which starts at the time τ1 and ends at τ̄ . Another group attack
may occur after the time τ̄ as well, which can be studied in a similar fashion.

The results of Sect. 4.4 show that Case B will not happen. Also, in the following subsec-
tions, we’ll answer the questions: Can the same pursuer participate in several group attacks
as well? Is the number of group attacks finite?

4.3 Estimation of Distance Between Evader and FE

Take any ap-approach time τp of the pursuer xp to the evader y, where p ∈ {1, 2, . . . , k1} in
Case A, and p is any positive integer in Case B, and we will estimate the distance between
xp(t) and y(t) for t ≥ τp . In order to obtain the desired estimate, we introduce for t ∈ [τp, τ ′

p]
a fictitious evader (FE) z p whose motion is described by the equation

ż p = wp, z p(τp) = y(τp),

where wp is control parameter of FE z p . We let

wp(t) = Vp(t) = (Vp1(t), Vp2(t)), t ∈ [τp, τ ′
p). (21)

Then, by (9) we have

||z p(t) − xp(t)|| >
αap
2σ

for τp ≤ t ≤ τ ′
p. (22)
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Fig. 6 Evader y and fictitious
evader z p

Moreover, by (10)
z p2(τ

′
p) − xp2(τ

′
p) > ap. (23)

Note that FE z p moves only on the time interval [τp, τ ′
p) and its initial state z(τp) coincides

with the initial state y(τp) of the real evader.
In Case A, by (16) the strategy of evader on the interval [τp, τ ′

k1
), k1 ≥ p, is

v(t) =
{
Vk(t), t ∈ [τk, τk+1), k = p, p + 1, . . . , k1 − 1,
Vk1(t), t ∈ [τk1 , τ ′

k1
),

(24)

where
τk < τ ′

k−1, k = p + 1, p + 2, ..., k1; (25)

and in Case B, by the description (i)-(iv) the evader’s strategy on the interval [τp, τ∞) is

v(t) = Vk(t), t ∈ [τk, τk+1), τk < τ ′
k−1, k = p, p + 1, . . . . (26)

For the distance between the points y(t) and z p(t) on [τp, τ∗], τ∗ = min{τ ′
p, τ̄ }, where

τ̄ = τ ′
k1
in Case A, and τ̄ = τ∞ in Case B, we prove the following lemma, where we use the

inclusion
[τ ′

p, t) ⊂ [τp+1, t) ⊂ ∪k≥p+1, τk≤t [τk, τ ′
k), τp+1 ≤ t ≤ τ̄ , (27)

following from (17) and (19) for both Case A and Case B.

Lemma 2 Let the evader use strategy (24) in Case A and (26) in Case B. Then,

||y(t) − z p(t)|| ≤ 16σ

σ − 1
ap+1 for τp ≤ t ≤ τ∗. (28)

This lemma says that if τ ′
p ≤ τ̄ , then τ∗ = τ ′

p and estimate (28) is true on τp ≤ t ≤ τ ′
p , and

that if τ ′
p > τ̄ , then τ∗ = τ̄ and estimate (28) is true on τp ≤ t ≤ τ̄ .

Proof Note that y(τp) = z(τp) and there is no an approach time in the interval [τp, τ ′
p), then

by (21) and (24) v(t) = wp(t) = Vp(t), t ∈ [τp, τ ′
p), and so (28) is satisfied.

We let now one or several approach times τp+1, τp+2,... occur in the interval [τp, τ ′
p). In

Fig. 6, the sections of the trajectory of evader correspond to distinct maneuvers.
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Since by (21) and (24) v(t) = wp(t) = Vp(t), t ∈ [τp, τp+1), therefore, y(t) = z p(t),
t ∈ [τp, τp+1), and so (28) is satisfied.

For t ∈ [τp+1, τ∗), we obtain

||y(t) − z p(t)|| =

∥∥∥∥∥∥∥
y(τp) +

τp+1∫
τp

Vp(s)ds +
t∫

τp+1

v(s)ds −z(τp) −
τp+1∫
τp

Vp(s)ds −
t∫

τp+1

Vp(s)ds

∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
t∫

τp+1

(v(s) − Vp(s))ds

∥∥∥∥∥∥∥
≤

t∫
τp+1

‖v(s) − Vp(s)‖ds ≤
t∫

τp+1

2σds, (29)

where we used the inequality ‖v(s) − Vp(s)‖ ≤ ‖v(s)‖ + ‖Vp(s)‖ ≤ 2σ . Since due to the
condition t ≤ τ∗ ≤ τ̄ we have inclusion (27), and β ≤ 1/2 implies that

∑∞
k=p+1 ak =

ap+1
1−β

≤ 2ap+1, therefore we obtain from (29) that

‖y(t) − z p(t)‖ ≤ 2σ(t − τp+1) ≤ 2σ
∑

k≥p+1, τk≤t

(τ ′
k − τk) = 2σ

∑
k≥p+1, τk≤t

4ak
σ − 1

<
8σ

σ − 1

∞∑
k=p+1

ak = 8σ

σ − 1
· ap+1

1 − β
≤ 16σ

σ − 1
ap+1. (30)

The proof of the lemma is complete. 
�

4.4 Estimation of Distance Between Evader and Pursuer

We estimate now the distance between the evader y and pursuer xp .

Lemma 3 Let the evader use strategy (24) in Case A or (26) in Case B. Then,

‖y(t) − xp(t)‖ > ap+1, τp ≤ t ≤ τ∗, (31)

and if for the pursuer xp the inequality τ ′
p ≤ τ̄ holds, then

y2(t) − xp2(t) > ap+1, t ≥ τ ′
p. (32)

Proof To prove (31), we observe that both inequalities (22) and (28) are true on τp ≤ t ≤ τ∗,
and therefore,

‖y(t) − xp(t)‖ ≥ ‖xp(t) − z p(t)‖ − ‖z p(t) − y(t)‖
>

α

2σ
ap − 16σ

σ − 1
ap+1 = α

4σ
ap.

Consequently,

‖y(t) − xp(t)‖ >
α

4σ
ap ≥ βap = ap+1, τp ≤ t ≤ τ∗,

and (31) is proved.
Next, to prove (32), we let τ ′

p ≤ τ̄ . Since z p2(τ ′
p) − xp2(τ ′

p) > ap by (23) and

‖y(τ ′
p) − z p(τ

′
p)‖ ≤ 16σ

σ − 1
ap+1
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by (28), therefore we have

y2(τ
′
p) − xp2(τ

′
p) = (z p2(τ

′
p) − xp2(τ

′
p)) + (y2(τ

′
p) − z p2(τ

′
p))

≥ ap − ‖y(τ ′
p) − z p(τ

′
p)‖ > ap − 16σ

σ − 1
ap+1 >

1

2
ap.

(33)

For t ≥ τ ′
p , using (33) and the fact that u p2(s) ≤ 1 we have

y2(t) − xp2(t) = y2(τ
′
p) − xp2(τ

′
p) +

∫ t

τ ′
p

v2(s)ds −
∫ t

τ ′
p

u p2(s)ds

>
1

2
ap +

∫ t

τ ′
p

v2(s)ds − (t − τ ′
p). (34)

First, we prove (32) for τ ′
p ≤ t ≤ τ̄ . Indeed, since v2(t) > 0 for all t ≥ 0, therefore∫ t

τ ′
p
v2(s)ds ≥ 0. Also, by (27)

t − τ ′
p = mes([τ ′

p, t)) ≤ mes
(∪p+1≤k, τk≤t [τk, τ ′

k)
) ≤

∑
k≥p+1, τk≤t

(τ ′
k − τk)

=
∑

k≥p+1, τk≤t

4ak
σ − 1

≤ 4

σ − 1

∞∑
k=p+1

ak ≤ 8

σ − 1
ap+1. (35)

Therefore, it follows from (34) that

y2(t) − xp2(t) >
1

2
ap − 8σ

σ − 1
ap+1 >

1

2
ap − α

8σ
ap >

1

4
ap > ap+1, τ ′

p ≤ t ≤ τ̄ , (36)

and (32) is proved for τ ′
p ≤ t ≤ τ̄ .

We conclude that, if τ ′
p > τ̄ for the pursuer xp , then (31) implies that

‖y(t) − xp(t)‖ > ap+1, τp ≤ t ≤ τ̄ , (37)

and if τ ′
p ≤ τ̄ , then combining the inequalities (31) and (36) we obtain (37). Hence, (37) is

true for each pursuer xp in the group attack in both Case A and Case B.
An important conclusion to draw from the inequality (37) is that, for k ≥ p + 1, there is

no an ak-approach time τk of the pursuer xp to the evader on the time interval τp < t ≤ τ̄ .
Indeed, if there was an ak-approach time τk with τp < τk ≤ τ̄ and k ≥ p+1, then we would
have had ‖y(τk) − xp(τk)‖ = ak . However, this is impossible since ak ≤ ap+1 and by (37)
‖y(τk) − xp(τk)‖ > ap+1.

Consequently, each pursuer xp in the group attack has only one approach time τp on
the time interval τp ≤ t ≤ τ̄ . Therefore, all the pursuers in the group attack are distinct.
Moreover, the number of pursuers in the group attack≤ m since there are at mostm approach
times in the group attack. Thus, Case B is excluded. There are only finite number of pursuers
x1, x2,..., xk1 with k1 ≤ m in the (first) group attack. Hence, we deal with only Case A where
τ̄ = τ ′

k1
and the group attack ends at τ ′

k1
.

Next, we proceed to prove (32) for t ≥ τ ′
k1
assuming that τ ′

p ≤ τ ′
k1
. Clearly, the inequality

τ ′
p ≤ τ ′

k1
is satisfied at least for p = k1, that is, for the pursuer xk1 . We estimate now the

right-hand side of (34) for t ≥ τ ′
k1
. Note that if several group attacks occur on the time interval

[τ ′
k1

, t), by the description of evader’s strategy (i)-(iv) the evader moves with the velocity
v(t) = V0 between the group attacks and after the last group attack as well.
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Fig. 7 Evader is under a group attack on the intervals [τ1, τ ′
k1

), [τk1+1, τ
′
k2

), [τk2+1, τ
′
k3

)

Figure 7 illustrates three group attacks on the intervals [τk j+1, τ
′
k j+1

), j = 0, 1, 2, where
k0 = 0.

To estimate the integral
∫ t
τ ′
p
v2(s)ds in (34), we use the representation [τ ′

p, t) = I ∪ J ,

I ∩ J = ∅, where the evader undergoes a group attack of some pursuers on I , and the evader
moves with the velocity v(t) = V0 on J . For example, for the interval [τ ′

p, t) in Fig. 7, we
have

I = [τ ′
p, τ

′
k1) ∪ [τk1+1, τ

′
k2) ∪ [τk2+1, τ

′
k3), J = [τ ′

k1 , τk1+1) ∪ [τ ′
k2 , τk2+1) ∪ [τ ′

k3 , t).

In general, for t ≥ τ ′
k1
, let j0 ≥ 0 be the greatest integer such that τk j0+1 ≤ t . We then

have

I = [τ ′
p, τ

′
k1) ∪

(
∪1≤ j≤ j0 [τk j+1, τ

′
k j+1

)
)
if t /∈ [τk j0+1, τ

′
k j0+1

),

I = [τ ′
p, τ

′
k1) ∪

(
∪1≤ j≤ j0−1 [τk j+1, τ

′
k j+1

)
)

∪ [τk j0+1, t) if t ∈ [τk j0+1, τ
′
k j0+1

).

Next, by (27)

[τ ′
p, τ

′
k1) ⊂ [τp+1, τ

′
k1) ⊂ ∪p+1≤k≤k1 [τk, τ ′

k)

and, for the a group attack on [τk j+1, τ
′
k j+1

), we have τk+1 < τ ′
k , k = k j + 2, ..., k j+1, and

so similar to (17) we can write

[τk j+1, τ
′
k j+1

) ⊂ ∪k j+1
k=k j+1[τk, τ ′

k), (38)

therefore I ⊂ ∪k≥p+1, τk≤t [τk, τ ′
k), and the length |I | of I can be estimated as follows

|I | ≤
∑

k≥p+1, τk≤t

(τ ′
k − τk) =

∑
k≥p+1, τk≤t

4ak
σ − 1

≤ 4

σ − 1

∞∑
k=p+1

ak ≤ 8

σ − 1
ap+1. (39)

Since v2(t) > 0 for all t ∈ I , therefore
∫
I v2(s)ds ≥ 0. Using this and (39) we obtain

∫ t

τ ′
p

v2(s)ds =
∫
I∪J

v2(s)ds =
∫
I
v2(s)ds +

∫
J
σds ≥

∫
J
σds = σ |J |

= σ |[τ ′
p, t] \ I | ≥ σ(t − τ ′

p − |I |) ≥ σ

(
t − τ ′

p − 8

σ − 1
ap+1

)
.

Thus, it follows from (34) that if τ ′
p ≤ τ ′

k1
, then for any t ≥ τ ′

k1
,

y2(t) − xp2(t) >
1

2
ap − 8σ

σ − 1
ap+1 + (σ − 1)(t − τ ′

p)

>
1

2
ap − α

8σ
ap >

1

4
ap > ap+1,

which is the desired conclusion. The proof of the lemma is complete. 
�
We are now in a position to prove Theorem 4.1.
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Proof Let τ ′
p ≤ τ ′

k1
for a pursuer xp in the first group attack of pursuers. Note that this

condition is satisfied at least for p = k1. Combining the inequality in (14) with k = p,
inequality (31) where τ∗ = τ ′

p , and inequality (32) we obtain that ‖y(t)− xp(t)‖ > ap+1 for
all t ≥ 0. Therefore, the pursuer xp , for which τ ′

p ≤ τ ′
k1
, can never reach the ap+1-vicinity

of the evader y. Hence, xp will not participate in the further group attacks starting from the
second one satisfying the inequality y2(t) − xp2(t) > ap+1 ≥ ak1+1, t ≥ τ ′

p (p ≤ k).
If the time τk1+1 occurs, then the evader undergoes the second group attack of some

pursuers on an interval [τk1+1, τ
′
k2

) for some k2 ≥ k1 + 1. We can use similar arguments to
obtain ‖y(t) − xq(t)‖ > aq+1 for all t ≥ 0 and for some q ∈ {k1 + 1, ..., k2} for which
τ ′
q ≤ τ ′

k2
. The pursuer xq will not participate in further group attacks starting from the third

one staying "behind" the evader satisfying the inequality y2(t) − xq2(t) > aq+1 ≥ ak2+1,
t ≥ τ ′

q , and so on.
Thus, after the first group attack of pursuers x1, x2, ..., xk1 we can ignore at least one

pursuer, for example, xk1 , after the second group attack of pursuers xk1+1, xk1+2, ..., xk2 we
can ignore at least one pursuer from this group of pursuers, for example, xk2 , and so on. Since
the total number of pursuers is m, therefore after at most m group attacks of pursuers all the
pursuers remain "behind" the evader. The proof of Theorem 4.1 is complete. 
�

We can now estimate from above the total number of approach times. Since there are at
mostm approach times in the first group attack of pursuers, there are at mostm−1 approach
times in the second group attack of pursuers and so on, therefore the total number of the
approach times is at most m + (m − 1) + ... + 1 = m(m + 1)/2. If τk j0

is the last approach
time, then k j0 ≤ m(m + 1)/2 and

‖xi (t) − y(t)‖ > r = ak j0+1, t ≥ 0, i = 1, 2, ...,m. (40)

This means that the evader can avoid from all pursuers moving at the distance not less than
r from them.

5 Discussion

5.1 The Evader Moves in "-Vicinity of theOy-axis

For any given positive number ε, we can choose the number a1 so that the trajectory of evader
is always in the ε-vicinity of the Oy-axis (Fig. 8). Indeed, since v(t) = V0 = (0, σ ), (hence,
v1(t) = 0) if t /∈ I1 = ⋃

k≥1
[τk, τ ′

k), therefore if a1 ≤ σ−1
8σ ε, then

|y1(t)| =
∣∣∣∣∣∣

t∫
0

v1(s)ds

∣∣∣∣∣∣ =
t∫

0

|v1(s)|ds =
∫

I1∩[0,t]
|v1(s)|ds

≤
∫
I1

|v1(s)|ds ≤
∑
k≥1

τ ′
k∫

τk

|v1(s)|ds ≤
∑
k≥1

σ(τ ′
k − τk)

≤
∞∑
k=1

4σak
σ − 1

≤ 8σ

σ − 1
a1 ≤ ε.
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Fig. 8 Evader can avoid moving
only in an ε-neighborhood of the
Oy-axis

Hence, |y1(t)| ≤ ε for all t ≥ 0, meaning that the state of the evader is in the ε-vicinity
of the Oy-axis for all t ≥ 0.

For simplicity of the proof of Theorem 4.1, the evader moved around the Oy-axis. In fact,
we could take any ray l with the beginning at y0 and construct a strategy for the evader to
escape from pursuers in the ε-vicinity of the ray l as well.

Next, it follows from |I1| ≤ 8
σ−1a1 = ε

σ
< ε that the measure of the set I1 can be made

smaller than any given positive number ε by choosing a1. Thus, the evader moves under a
group attack of some pursuers only on a subset of the set I1 of measure less than ε, and
outside the set I1 the evader moves with velocity v(t) = V0 = (0, σ ).

5.2 Informativeness

The estimate (40) allows the evader to weaken the condition to informativeness. We show
that it suffices for the evader to use only information about x1(t), ..., xm(t), y(t), u1(t −
δ), u2(t − δ), ..., um(t − δ) at the current time to avoid from capturing, where δ is a positive
number.

Indeed, let

ûi (t) =
{
0, 0 ≤ t ≤ δ

ui (t − δ), t > δ
, i = 1, 2, ...,m. (41)

Clearly, ‖ûi (t)‖ ≤ 1. We consider auxiliary objects (AO) x̂i (t), i = 1, 2, ...,m, whose
dynamics are given by the equations

˙̂xi = ûi , i = 1, 2, ...,m,
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Fig. 9 For the pursuer xp , τ ′
k1

< τ ′
p

and their trajectories are defined as follows. AO x̂i moves with the trajectory x̂i (t) = xi0 +∫ t
0 ûi (s)ds, t ≥ 0, if there is no an ak -approach time of the pursuer xi to the evader y. If the first
ai -approach time τi occurs, thenAO x̂i moveswith the trajectory x̂i (t) = xi (τk)+

∫ t
τk
ûi (s)ds

for t ≥ τi .
In general, whenever the ail -approach time τil , l = 1, 2, ..., of the pursuer xi to the evader

y occurs, x̂i moves with the trajectory x̂i (t) = xi (τil ) + ∫ t
τil

ûi (s)ds until the next approach

time τil+1 . Clearly, the trajectory of AO x̂i is, in general, discontinuous at the approach times
τil .

For 0 ≤ t ≤ δ, by (41), we have

‖xi (t) − x̂i (t)‖ =
∥∥∥∥∥∥xi0 +

t∫
0

ui (s)ds − xi0 −
t∫

0

ûi (s)ds

∥∥∥∥∥∥

=
∥∥∥∥∥∥

t∫
0

ui (s)ds

∥∥∥∥∥∥ ≤
t∫

0

‖ui (s)‖ds ≤ t ≤ δ,

and, for t > δ and τil ≤ t < τil+1 , we have

‖xi (t) − x̂i (t)‖ =

∥∥∥∥∥∥∥
xi (τil ) +

t∫
τil

ui (s)ds − xi (τil ) −
t∫

τil

ui (s − δ)ds

∥∥∥∥∥∥∥

≤
τil∫

τil −δ

‖ui (s)‖ds +
t∫

t−δ

‖ui (s)‖ds ≤
τil∫

τil −δ

1ds +
t∫

t−δ

1ds ≤ 2δ, (42)

and so ‖xi (t) − x̂i (t)‖ ≤ 2δ for all t ≥ 0.
The evader knows now information about x1(t), ..., xm(t), y(t), û1(t), û2(t), ..., ûm(t) at

the current time t . We let the evader use strategy (16) with ui (t) replaced by ûi (t) in (15).
By Theorem 4.1, we have then ‖y(t) − x̂i (t)‖ > r0 for some r0 > 0. Consequently, if we
choose δ < r0/4, then by (42)

‖y(t) − xi (t)‖ ≥ ‖y(t) − x̂i (t)‖ − ‖x̂i (t) − xi (t)‖ > r0 − 2δ > r0/2,

that is the evader can avoid from capturing moving from each pursuer at least r0/2 distance
away.

5.3 The CaseWhere �′
k1

< �′
p for the Pursuer xp

Figure 9 illustrates this case. It is important to note that if τ ′
k1

< τ ′
p (see Fig. 4 where

τ ′
k1

= τ ′
3 < τ ′

2 = τ ′
p), then the inequality ‖y(t) − xp(t)‖ > ap+1 in (31) may not be true

for τ ′
k1

≤ t ≤ τ ′
p . Since (31) was proved based on (28), and in its turn (28) was proved
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using the fact that the interval [τp+1, t) is a subset of the set A = ∪k≥p+1, τk≤t [τk, τ ′
k).

However, if τ ′
k1

< τ ′
p , then the interval [τ ′

k1
, t) is not, in general, a subset of A. For example,

if max
p+1≤k≤k1

τ ′
k < min{τ ′

p, τk1+1} and max
p+1≤k≤k1

τ ′
k < t < min{τ ′

p, τk1+1}, then, clearly, the
interval [ max

p+1≤k≤k1
τ ′
k, t) is not a subset of the set A.

Also, note that if τ ′
k1

< τ ′
p , then the pursuer xp , in general, can approach to an ak distance

of the evader for some k ≥ p + 1 on the time interval [τ ′
k1

, τ ′
p), but it is important to note

that after the time τ ′
p there is no an ak-approach time to the evader for k ≥ p+ 1. Indeed, by

(23) we have

y2(τ
′
p) − xp2(τ

′
p) = y2(τ

′
p) − z p2(τ

′
p) + z p2(τ

′
p) − xp2(τ

′
p) > y2(τ

′
p) − z p2(τ

′
p) + ap

= ap + y2(τ
′
k1) +

τ ′
p∫

τ ′
k1

v2(s)ds − z p2(τ
′
k1) −

τ ′
p∫

τ ′
k1

Vp2(s)ds. (43)

Since, for the set I2 = ⋃
τk≥τ ′

k1

[τk, τ ′
k) = ⋃

k≥k1+1
[τk, τ ′

k), similar to (39) we have |I2| ≤
8

σ−1ak1+1 ≤ 8
σ−1ap+1, and by (28)

y2(τ
′
k1) − z p2(τ

′
k1) ≥ −‖y(τ ′

k1) − z(τ ′
k1)‖ ≥ − 16σ

σ − 1
ap+1,

therefore using the obvious inequality Vp2(s) ≤ √
σ 2 − α2 we obtain from (43) that

y2(τ
′
p) − xp2(τ

′
p) ≥ ap − 16σ

σ − 1
ap+1 +

∫
[τ ′
k1

,τ ′
p)\I2

σds −
τ ′
p∫

τ ′
k1

√
σ 2 − α2ds

≥ ap − 16σ

σ − 1
ap+1 +

(
τ ′
p − τ ′

k1 − 8

σ − 1
ap+1

)
σ − (τ ′

p − τ ′
k1 )

√
σ 2 − α2

= ap − 24σ

σ − 1
ap+1 + (τ ′

p − τ ′
k1 )(σ −

√
σ 2 − α2) ≥ ap − 24σ

σ − 1
ap+1 ≥ ap

2
.

Then, for t ≥ τ ′
p , using the fact that v2(s) = σ , s ∈ [τ ′

p, t)\I2 and v2(s) > 0, s ∈ I2, we
have

y2(t) − xp2(t) = y2(τ
′
p) +

t∫
τ ′
p

v2(s)ds − xp2(τ
′
p) −

t∫
τ ′
p

u p2(s)ds

= y2(τ
′
p) − xp2(τ

′
p) +

∫
[τ ′

p,t)\I2
σds +

∫
I

v2(s)ds −
t∫

τ ′
p

1ds

≥ ap
2

+
(
t − τ ′

p − 8

σ − 1
ap+1

)
σ − (t − τ ′

p)

= ap
2

− 8σ

σ − 1
ap+1 + (σ − 1)(t − τ ′

p) > ap+1.

Hence, for the pursuer xp , there is no an ak , k ≥ p + 1, approach time to the evader on the
interval t ≥ τ ′

p . This fact shows that the number of pursuers participating in the group attacks
decreases more faster.
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6 Conclusion

We have studied a simple motion evasion differential game of many pursuers and one faster
evader and proposed a new strategy for the evader.

In in the paper of Chernous’ko [9], the evader first moves along a straight line l. Then, as
the a1-approach time τ1 occurs, the evader starting from this time moves along some spiral
curves and at most 2m−1 approach times may occur until the evader reaches the straight line
l again. The same pursuer can have several approach times during this period. As the evader
reaches the straight line l, it moves again along l until the another approach time occurs.
Then, the evader moves again along some spirals and at most 2m−2 approach times may
occur until the evader reaches the straight line l again and so on. Therefore, the total number
of approach times in that paper is ≤ 2m−1 + 2m−2 + · · · + 1 = 2m − 1.

In the present paper, in the first group attack at most m approach times may occur and
the evader, in general, doesn’t reach again the Oy-axis after the first group attack, but moves
parallel to the Oy-axis with the speed σ until the second group attack of pursuers occurs.
Any pursuer participated in a group attack cannot have another approach time in the same
group attack.

Also, we can specify at least one pursuer from each group attack, whichwill not participate
in the following group attacks. This is namely the last pursuer joined the group attack.
Therefore, the total number of approach times τk of m pursuers during the game doesn’t
exceed m(m + 1)/2 in the present paper.

The proof of Theorem 4.1 strongly depended on the inequality that τ ′
p ≤ τ ′

k1
. If τ ′

p > τ ′
k1

for a pursuer xp , then this pursuer can have an ak-approach time to the evader for some
k > k1. In other words, this pursuer can participate in the next group attack of pursuers.
However, good news is that this pursuer will not have any ak-approach time to the evader for
k ≥ p + 1 on the interval [τ ′

p,∞). Hence, this pursuer will not participate in further group
attacks after the time τ ′

p .
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